黃麗平 周中流 伍影瑤 李春燕 張燦龍 薛中峰
摘要:? 桉屬(Eucalyptus L. Herit)是桃金娘科(Myrtaceae)的大屬,該屬約600余種,主要分布于世界各地?zé)釒啛釒У貐^(qū)。我國引入品種較多,主要分布于華南地區(qū),其中廣東和廣西為桉樹的主要種植基地。桉屬植物具有較多的工業(yè)價值,其木材、葉、果實等是化學(xué)工業(yè)、香料、醫(yī)藥領(lǐng)域的重要原料,可用作開發(fā)高性能桉木重組材、竹桉復(fù)合材料、造漿與造紙等。桉屬植物作為民間藥材被使用,具有抑菌消炎、疏風(fēng)解熱、防腐止癢等功效,其藥理研究表明,桉屬植物具有良好的抗氧化、抗炎、抗菌、抗病毒、抗腫瘤、抗心血管疾病等藥理活性。該研究通過查閱近三十年桉屬植物相關(guān)的國內(nèi)外文獻報道,對桉屬植物不同部位的421個非揮發(fā)性化學(xué)成分及其藥理活性等進行了較詳細的分類闡述,其中黃酮類化合物共73個、有機酸化合物共61個、萜類化合物共45個、多酚類化合物共229個、脂肪醇類化合物共13個,藥理活性多集中在抗氧化、抗菌、抗病毒、抗腫瘤等,但相關(guān)機制仍需進一步闡明。該文重點關(guān)注桉屬植物的藥用部位,充分發(fā)掘其藥用價值,開展臨床轉(zhuǎn)化和新藥研究工作,為今后桉屬植物的進一步研究、開發(fā)和利用提供科學(xué)依據(jù)。
關(guān)鍵詞: 桉屬植物, 非揮發(fā)性化學(xué)成分, 結(jié)構(gòu)分類, 藥理活性, 研究進展
中圖分類號:? Q946文獻標(biāo)識碼:? A文章編號:? 1000-3142(2022)04-0531-12
Research progress of non-volatile chemical components
from Eucalyptus genus plants and their
pharmacological activities
HUANG Liping ZHOU Zhongliu WU Yingyao LI Chunyan
ZHANG Canlong XUE Zhongfeng
( 1. Lingnan Normal University, Zhanjiang 524048, Guangdong, China;
2. Western Guangdong Characteristic Biology and Medicine Englineering
and Research Center, Zhanjiang 524048, Guangdong, China;
3. Guangxi University of Chinese Medicine, Nanning 530220, China )
Abstract:? Eucalyptus L. Herit is a large genus of Myrtaceae with more than 600 species, native to Australia and some of its northern islands and mainly distributed in tropical and subtropical regions of the world. Eucalyptus has the characteristics of fast growth, high yield, short rotation period and so on. It is an excellent pulp material with remarkable economic benefits. There are many introduced species in China, mainly distributed in South China. Nearly 80 species have been introduced into China since 1890, and are widely distributed in Guangdong, Guangxi, Guizhou, Sichuan, Yunnan, Jiangxi and other places. At present, China has become one of the countries with the largest area of Eucalyptus plants in the world and is also the largest exporter of Eucalyptus oil. Eucalyptus has a lot of industrial value. Its wood, leaves and fruits are important raw materials in chemical industry, fragrance and medicine fields. They can be used for developing high performance Eucalyptus recombination material, bamboo Eucalyptus composite material, pulp and paper-making, etc. Eucalyptus plants are used as folk medicine, with anti-bacterial and anti-inflammatory, wind-relieving and anti-pyretic, anti-corrosion and anti-pruritic effects. As a traditional medicine, Australian aborigines are the first to use Eucalyptus for the treatment of fever and bronchial diseases; in China, the leaves of E. globulus, E. robusta, E. exserta, E. tereticornis, E. citriodora are often used to treat influenza, dysentery, eczema, and injuries for a long time. Pharmacological studies show that Eucalyptus plants have good anti-oxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-tumor, anti-cardiovascular diseases and other pharmacological activities. In this study, 421 non-volatile chemical constituents from different parts of Eucalyptus and their pharmacological activities are classified and described in detail by referring to the domestic and foreign literatures related to Eucalyptus in recent 30 years. There are 73 flavonoids, 61 organic acids, 45 terpenoids, 229 polyphenols and 13 fatty alcohols. Most of the pharmacological activities are anti-oxidant, anti-bacterial, anti-viral and anti-tumor, but the related mechanisms still need to be further elucidated. This study focuses on the medicinal parts of Eucalyptus, fully explores their medicinal value, and carries out clinical transformation and new drug research, which provides scientific basis for further research, development and utilization of Eucalyptus in the future.
Key words: Eucalyptus genus plants, non-volatile chemical components, structure classification, pharmacological activity, research progress
桉屬(Eucalyptus L. Herit),是桃金娘科(Myrtaceae)的大屬,廣泛種植于澳大利亞、印度尼西亞和馬布亞新幾里亞,常統(tǒng)稱為桉樹。其功能多樣化,在生態(tài)方面可蓄水保土、固碳釋氧、積累營養(yǎng)物質(zhì)和凈化環(huán)境;在藥理作用方面,桉屬植物長期以來作為民間藥被使用,廣泛應(yīng)用于流行性感冒、痢疾、濕疹、跌打損傷等。中國引種桉樹將近100年的歷史,約80種,主要分布在福建、廣東、廣西、云南和四川等地,主要樹種有細葉桉、赤桉、檸檬桉、窿緣桉、大葉桉、斜脈膠桉、藍桉和直桿藍桉等。桉屬植物生長迅速,適應(yīng)性廣,產(chǎn)量高,材質(zhì)優(yōu)良,是化學(xué)工業(yè)、香料、醫(yī)藥領(lǐng)域的重要原料。隨著人們對健康的標(biāo)準(zhǔn)日益提高,均向往綠色天然且安全低毒的藥物來達到治療疾病的目的。
目前,關(guān)于桉屬植物的研究多集中在桉葉的揮發(fā)油部位,其揮發(fā)油的生物活性物質(zhì)非常豐富,具有抗腫瘤、抗糖尿病、抗氧化、驅(qū)蟲、抗菌等活性。國內(nèi)外學(xué)者研究發(fā)現(xiàn)桉屬植物中非揮發(fā)性化合物主要含有黃酮、多酚、萜類和有機酸等,具有抗氧化、抗炎、抗菌、抗病毒、抗腫瘤和抗心血管疾病等藥理活性(Chattopadhyay et al., 2002; 陳斌,2002; 唐偉軍等,2006; Achiwa et al., 2007;Steinkamp-fenske et al., 2007; Solmaz et al., 2014)。但目前對桉屬植物非揮發(fā)性成分總結(jié)不夠全面,化合物結(jié)構(gòu)及其對應(yīng)的生物活性缺乏系統(tǒng)的歸納總結(jié)。本研究依托Web of Science,PubMed和中國知網(wǎng)等數(shù)據(jù)庫檢索網(wǎng)站,整理了近30年以來有關(guān)桉屬植物非揮發(fā)性成分的國內(nèi)外研究論文進行分析,采用羅列、對比、總結(jié)歸納等方法,擬探討以下問題:(1)桉屬植物非揮發(fā)性成分的分類;(2)桉屬植物非揮發(fā)性成分的來源;(3)桉屬植物非揮發(fā)性成分的藥理活性和相關(guān)機制。本文旨在對其非揮發(fā)性化學(xué)成分的分類、來源、結(jié)構(gòu)、生物活性等方面進行整理和歸納,以期為桉屬植物的深入研究與開發(fā)提供參考。
1化學(xué)成分
1.1 黃酮類化合物
黃酮類化合物是指兩個苯環(huán)通過三個碳原子相互連接而成的一系列化合物,即具有C6-C3-C6結(jié)構(gòu)的化合物。國內(nèi)外學(xué)者從桉屬植物中分離得到73個黃酮類化合物(附表1),主要包括黃酮和黃酮醇類、二氫黃酮和二氫黃酮醇類、異黃酮類和黃烷醇類。黃酮類化合物數(shù)量達62個,主要分布于葉中。
1.2 有機酸類化合物
有機酸是一種含有羧基的酸性有機化合物,結(jié)構(gòu)分為脂肪酸和芳香酸。國內(nèi)外學(xué)者在桉屬植物中鑒定了61個有機酸類化合物(附表2),主要有二元羧酸、羥基酸、高級飽和脂肪酸和不飽和脂肪酸。主要分布在葉和莖中的桉屬有機酸類化合物數(shù)量分別為28和19個。
1.3 萜類化合物
萜類是異戊二烯的聚合體及其衍生物,其骨架一般以5個碳為基本單位。文獻報道了桉屬植物含42個三萜和3個非揮發(fā)性二萜類化合物(附表3和附表4)。桉屬非揮發(fā)性萜類化合物的結(jié)構(gòu)骨架主要為二萜和三萜,其中二萜類化合物具有直鏈和單環(huán)的結(jié)構(gòu)特征。此外,三萜類化合物主要為五環(huán)三萜,結(jié)構(gòu)骨架可分為烏蘇烷型、齊墩果烷型和羽扇豆烷型。桉屬萜類化合物數(shù)量為31個,主要分布在樹皮中。
1.4 多酚類化合物
1.4.1 間苯三酚桉屬植物中報道了113個間苯三酚類化合物(附表5),基本骨架為1, 3, 5-三羥基苯。間苯三酚類化合物具有明顯的結(jié)構(gòu)特征:R1常與鄰位的酚羥基結(jié)合,結(jié)合的基團多數(shù)為單萜、倍半萜及二萜類結(jié)構(gòu)片段,形成多環(huán)狀化合物;R2和R3一般為醛基、甲基、甲氧基、甲基丁酮等。桉屬間苯三酚化合物數(shù)量達76個,主要分布在其葉中。
1.4.2 鞣質(zhì)鞣質(zhì)是一類結(jié)構(gòu)較為復(fù)雜的多元酚類化合物,主要由沒食子酸及其衍生物構(gòu)成。桉屬植物中已發(fā)現(xiàn)82個鞣質(zhì)(附表6),結(jié)構(gòu)骨架主要為水解鞣質(zhì)和縮合鞣質(zhì)。主要分布在其葉和樹皮中的桉屬鞣質(zhì)化合物數(shù)量分別為58個和15個。
1.4.3 酚酸類研究發(fā)現(xiàn)桉屬植物含34個酚酸化合物(附表7),結(jié)構(gòu)骨架主要為苯甲酸類、苯烯丙酸、苯丙酸。其中,苯甲酸類可分為單羥基苯甲酸類,雙羥基苯甲酸類和三羥基苯甲酸類。桉屬酚酸類化合物數(shù)量達28個,主要分布在葉中。
1.5 脂肪醇類
從桉屬植物中鑒定了13個脂肪醇化合物(附表8),結(jié)構(gòu)骨架主要為直鏈高級脂肪醇類,碳鏈含有8~29個碳原子,是合成醇系表面活性劑的主要原料。桉屬脂肪醇類化合物數(shù)量為11個,主要分布在葉中。
2藥理活性
2.1 抗氧化活性
桉屬植物E. globules 50%乙醇提取物具有清除DPPH自由基活性,最大清除率為65%,其作用機制通過抑制基質(zhì)金屬蛋白酶(MMPs)和白介素-6(IL-6)的表達,增加轉(zhuǎn)化生長因子-β1(TGF-β1)和1型膠原蛋白的表達,調(diào)節(jié)TGF-β/Smad信號傳導(dǎo)通路,減少皺紋的形成和防止皮膚干燥(Park et al., 2018)。
多酚類化合物317、318、320、324、368和387(圖1)具有顯著的抗氧化活性,可防止人肝癌細胞氧化及對DPPH和ABTS+兩種自由基均具有較強的清除活性,IC50范圍為41.4~538.7 μm。多酚類化合物352抗氧化活性最強,IC50為41.4 μm,其結(jié)構(gòu)由一個單糖基連接5個沒食子酸,形成含多個沒食子酸的水解鞣質(zhì)類化合物,其抗氧化活性與沒食子酸密切相關(guān)(謝曉艷等,2011; 肖蘇堯等,2012)。
酚酸類化合物341、384和389具有單苯環(huán)類母核,結(jié)構(gòu)含酚羥基和羧基,抗氧化能力強。化合物341對DPPH、NO和羥自由基清除率及抑制脂質(zhì)過氧化的能力強于維生素C(王艷芳等,2005;Ma et al., 2010b),通過調(diào)節(jié)MMP和TGF-β1表達保護皮膚?;衔?68具有保護人臍靜脈內(nèi)皮細胞(HUVEC)免受輻射誘導(dǎo)的氧化應(yīng)激損傷的作用,可能機制是通過調(diào)節(jié)PI3K和ERK信號通路,誘導(dǎo)Nrf2活化,增加細胞內(nèi)谷胱甘肽(GSH)和煙酰胺腺嘌呤二核苷酸磷酸(NADPH)含量,進而保護HUVEC免受輻射誘導(dǎo)的氧化應(yīng)激損傷(Ma et al., 2010a)?;衔?89通過JNK介導(dǎo)的磷酸化激活Nrf2,增強小鼠巨噬細胞的谷胱甘肽過氧化物酶(GPx)和谷胱甘肽還原酶(GR)的表達,從而提高巨噬細胞抗氧化能力(Ma et al., 2010b)。
此外,三萜類化合物152增加氧化應(yīng)激敏感性轉(zhuǎn)錄因子Nrf2和MAP激酶的表達來保護人肝細胞,使其免受叔丁基過氧化氫(t-BHP)誘導(dǎo)的細胞毒性;還具有消除ROS,抑制脂質(zhì)過氧化和強化抗氧化防御系統(tǒng)的功能(Ma et al., 2010a)。
2.2 抗炎活性
藍桉乙醇提取物具有明顯的抗炎鎮(zhèn)痛作用,可顯著減輕小鼠耳廓腫脹和提高毛細血管通透性,明顯抑制大鼠棉球肉芽腫和阻止組胺從RBL-2H3細胞中的釋放,從而達到抗炎及治療哮喘的效果(何耀松等,2007; 唐云等,2015)。另外,酚酸類化合物384通過阻斷 JNK信號通路,抑制輻射誘導(dǎo)的U937對HUVEC的粘附,阻止細胞間黏附分子-1(ICAM-1)和血管細胞黏附分子-1(VCAM-1)的表達,發(fā)揮抗炎作用(Ma et al., 2010b)。
2.3 抗菌作用
桉屬植物中具有抗菌活性的三萜類化合物主要為烏蘇烷型和羽扇豆烷型(圖2)。Chattopadhyay等(2002)發(fā)現(xiàn)熊果酸(151)具有抗菌活性強、廣譜等特點,對金黃色葡萄球菌、腐生葡萄球菌、糞鏈球菌等細菌均表現(xiàn)出良好的抑制作用,最低抑菌濃度(MIC)為0.128~2 mg·mL-1。陳斌等(2002)報道了白樺酸(156)和2α-羥基熊果酸(153)對金黃色葡萄球菌和大腸桿菌表現(xiàn)出較強的抑菌活性,MIC為12.5~50 μg·mL-1。熊果酸和2α-羥基熊果酸均有良好的抗菌活性,且羥基取代物抗菌活性有增大趨勢。另外,酚類化合物間苯三酚化合物272和273對葡萄球菌和枯草桿菌具有良好的抑制作用,半數(shù)抑制濃度(IC50)分別為3.9和7.8 μg·mL-1,且α構(gòu)型活性強于β構(gòu)型。大果桉醛類化合物對革蘭陽性菌有明顯抑制活性,其中化合物217、218、219、220、224和233均具有較強的抗齲齒和牙周病菌活性,MIC為0.39~100 μg·mL-1,且抗菌活性強于抗菌劑百里酚;大果桉醛A-G(217-223)對金黃色葡萄球菌、枯草芽孢桿菌、藤黃微球菌和包皮垢分支桿菌的IC50均處于0.78~3.13 μg·mL-1范圍;化合物233對變形鏈球菌和茸毛鏈球菌均表現(xiàn)出良好的抑制作用,MIC分別為12.5和6.25 μg·mL-1(Osawa et al.,1996; 付文衛(wèi)等,2003; 劉玉明,2004; Huang et al.,2014)。桉屬植物中以大果桉醛類為代表的間苯三酚類化合物具有抗菌譜廣、活性強等特點,有望從中發(fā)現(xiàn)新的天然抗菌先導(dǎo)化合物。
2.4 抗病毒作用
桉屬植物提取物對甲型流感病毒、人類皰疹病毒和乙肝病毒均有一定的抑制作用。Wang等(2005)以甲Ⅰ型流感病毒感染的小鼠為研究對象,蘆丁(53)表現(xiàn)出明顯的抗甲Ⅰ型流感病毒作用。Tang等(2015)報道了間苯三酚207、202和220(圖3)具有顯著的抗人類皰疹病毒作用。三萜類化合物156、151和153具有較強的抗乙肝病毒作用,對乙肝表面抗原(HBsAg)的抑制率分別為47.0%、39.9%和30.2%,對乙型肝炎E抗原(HBeAg)的抑制率分別為12.3%、23.6%和13.96%(陳斌,2002)。
2.5 抗腫瘤作用
2.5.1 抗白血病白血病是血液系統(tǒng)惡性腫瘤的一種,Benyahia等(2004)研究發(fā)現(xiàn)黃酮類化合物13和14(圖4)可抑制人早幼粒細胞白血病細胞HL-60的存活和增殖,化合物13(IC50= 1.7±0.1 μmol·L-1)的抑制作用強于14(IC50=7.4±2.3 μmol·L-1),可能原因是B環(huán)對位甲氧基被羥基取代,導(dǎo)致活性降低。半胱天冬酶(caspases)在細胞凋亡的過程中起關(guān)鍵性作用,caspase-8和caspase-3的表達在各種癌癥中顯著下降。化合物13和14均通過活化caspase-8,激活caspase-3,釋放細胞色素c,裂解聚腺苷二磷酸核糖聚合酶-1(PARP-1),使DNA無法修復(fù),最終導(dǎo)致腫瘤細胞凋亡。
Solmaz等(2014)研究表明芹菜素(9)對伊馬替尼敏感和耐藥的慢性髓性白血病具有治療潛力,通過磷酸化熱休克蛋白27(Hsp27)、活化半胱天冬酶和促進HL-60細胞中的線粒體去極化,從而誘導(dǎo)腫瘤細胞凋亡;另外,還通過降低線粒體膜電位(MMP)和激活caspase-3,誘導(dǎo)K562和K562/IMA3兩種細胞凋亡,高劑量條件下可使K562細胞周期停滯在G2/M期。
2.5.2 抗消化系統(tǒng)腫瘤桉屬植物中黃酮類化合物槲皮素(12)、異槲皮苷(18)、木犀草素(23)等對消化系統(tǒng)腫瘤具有很好的抑制作用(圖5)。Huang等(2014)研究發(fā)現(xiàn),化合物18對肝癌具有很強的抑制作用,其分子機制可能與絲裂原活化蛋白激酶(MAPK)和蛋白激酶C(PKC)信號通路密切相關(guān)。Sabry等(2021)研究發(fā)現(xiàn),桉樹水溶性樹脂多酚對肝癌也具有抑制作用,其機制與抑制MMP-9和TEF-β的基因表達相關(guān)。Solmaz等(2014)發(fā)現(xiàn)異槲皮苷通過激活caspase-3發(fā)揮抑制ERK和p38-MAPK蛋白磷酸化和促進應(yīng)激活化蛋白激酶(JNK)的磷酸化,使肝癌細胞被阻滯在G1期?;衔?3可抑制人胃癌BGC-823細胞裸鼠移植瘤,且抑制作用強于陽性對照藥5-氟尿嘧啶。化合物12通過激活5′-AMP活化蛋白激酶(AMPK)/p38-MAPK通路,降低線粒體膜電位,使AMPKα1磷酸化,抑制細胞的生長和增殖,從而誘導(dǎo)HT-29結(jié)腸癌細胞p53突變細胞凋亡。此外,還可通過調(diào)節(jié)AMPK/COX-2通路,激活A(yù)MPK磷酸化,抑制COX-2、PGs表達和血管生成,使細胞周期停滯在亞G1期,最終誘導(dǎo)HT-29結(jié)腸癌細胞凋亡(Lee et al., 2009)。
2.5.3 抗乳腺癌、子宮癌槲皮素(12)激活了MCF-7乳腺癌細胞,激活A(yù)MPKα1/ASK1/p38信號通路誘導(dǎo)乳腺癌細胞凋亡(Lee et al., 2010)。木犀草素(23)抑制MCF-7細胞增殖、Bcl-2和基質(zhì)金屬蛋白酶2(MMP-2)蛋白表達,從而達到抗乳腺癌的效果(姜英等,2013)。Achiwa等(2007)發(fā)現(xiàn)熊果酸(151)具有抗子宮內(nèi)膜癌作用,主要通過抑制子宮內(nèi)膜癌細胞系SNG-Ⅱ和低分化的HEC108細胞系中的PI3K-Akt途徑和MAPK-P44/42途徑,降低子宮內(nèi)膜癌SNG-Ⅱ細胞中的PI3K水平,從而殺死腫瘤細胞。
2.5.4 廣譜抗腫瘤作用藍桉總?cè)凭哂袕V譜抑制腫瘤細胞生長作用,對人肺癌細胞A-549,人胃癌細胞AGS、SGC-7901,人結(jié)腸癌細胞Caco-2、LS-174T等各種類型癌細胞均有抑制作用,尤其是對小鼠黑色素瘤 B16,抑制率可達到55.6%(陳斌,2002; 劉玉明,2004)。劉玉明等(2004)發(fā)現(xiàn)苯三酚類化合物218對人肝、胃、食管等癌細胞具有顯著的抑制活性。另外,化合物211、215和216(圖6)對人肝癌細胞Huh-7、人外周血白血病T細胞Jurkat、人胃癌細胞BGC-823和漿細胞骨髓瘤細胞KE-97均具有顯著的抑制活性(唐偉等,2015)。化合物185和207可通過抑制由TPA誘導(dǎo)的細胞周期減少腫瘤形成(張廣晶等,2014)。Solmaz等(2014)發(fā)現(xiàn)黃酮類化合物芹菜素(9)也可誘導(dǎo)多種腫瘤細胞凋亡,包括乳腺癌、宮頸癌、肺癌、卵巢癌、前列腺癌和肝癌,機制與PI3K(磷脂酰肌醇3-激酶)/Akt(蛋白激酶B)通路密切相關(guān)。
2.6 抗心血管疾病
動脈硬化和血栓性疾病的發(fā)病可能與高濃度的纖溶酶原激活劑抑制劑1(plasminogen activator inhibitor type-1,PAI-1)有關(guān),特異性抑制PAI-1可增加纖維蛋白溶解,從而達到治療動脈硬化和血栓性疾病作用。桉屬植物間苯三酚類272-274、199、276和204(圖7)具有較強的抑制PAI-1活性,其IC50值分別為3.3、5.3、4.7、138、700和152 μmol·L-1(付文衛(wèi)等,2003; 李偉,2015)。三萜類化合物也具有保護心腦血管的作用,ursolic acid(151)可通過抑制活性氧的產(chǎn)生,增加NO的表達,發(fā)揮保護血管內(nèi)皮功能。Betulinic acid(156)通過激活 PI3K和 ERK/Nrf2通路,上調(diào)血管平滑肌細胞(VSMC)中血管平滑肌細胞血紅素氧合酶-1(HO-1)的表達,表現(xiàn)出抗動脈粥樣硬化功能(Steinkamp-fenske et al., 2007; Feng et al., 2011)。
2.7 其他作用
桉屬植物中的間苯三酚類化合物具有較強的酶抑制活性(圖8)?;衔?12具有抑制P450酶活性,其IC50值為38.8 μmol·mL-1(王冀,2012)。217-221能夠抑制HIV 逆轉(zhuǎn)錄酶,其IC50值分別為 10、5.3、8.4、12和8.1 μmol·L-1(李偉, 2015)。217、218、220、221、272和273等具有抑制醛糖還原酶活性,其中272和273對醛糖還原酶的IC50值分別為1.25 和2.47 μmol·L-1(Elaissi et al., 2011)。217-220、224-226和233在濃度為100 μg·mL-1時均具有明顯的抑制葡萄糖基轉(zhuǎn)移酶活性,抑制作用強于陽性對照藥(付文衛(wèi)等,2003)。間苯三酚類化合物還表現(xiàn)出抗附著及拒食和抑制受精卵發(fā)育的藥理作用,可抗驅(qū)逐藍貝類Mytilus edulis galloprovincialis的附著(付文衛(wèi)等,2003; 王冀,2012)。此外,桉屬黃酮類化合物可應(yīng)用于農(nóng)作物增產(chǎn)(宋永芳等,1984)。
3討論與展望
目前,桉屬植物非揮發(fā)性化學(xué)成分的提取分離較系統(tǒng)和全面,從根、莖、葉、樹皮和果實等中分離報道了421個非揮發(fā)性化合物,其中主要為黃酮類、有機酸類、萜類、多酚類和脂肪醇類成分,表現(xiàn)出較好的抗氧化、抗病毒、抗腫瘤等藥理活性,但相關(guān)的作用機制尚淺,仍需進一步闡明。具體如下:(1) 抗氧化活性多集中在乙醇提取物、多酚類化合物、簡單酚酸類化合物和三萜類化合物,機制可能與TGF-β/Smad、PI3K/ERK/Nrf2等通路相關(guān)。(2) 藍桉乙醇提取物和酚酸類化合物表現(xiàn)出一定的抗炎鎮(zhèn)痛活性,但如何發(fā)揮抗炎作用的具體作用靶點和機制仍需詳細闡明。(3)抗菌作用主要集中在三萜類化合物和酚類化合物間苯三酚,但抑菌機制仍未明確。(4)桉屬植物提取物的抗病毒作用較強,尤其對甲型流感病毒、人類皰疹病毒和乙肝病毒均有一定的抑制作用,但相關(guān)機制尚未完全清晰。(5)抗腫瘤作用主要集中在黃酮類化合物(芹菜素,槲皮素,木犀草素等)、藍桉總?cè)苹衔铩㈤g苯三酚類化合物,對白血病、消化系統(tǒng)腫瘤以及其他癌癥效果顯著,機制研究深入,值得臨床推廣。(6)間苯三酚類和三萜類化合物表現(xiàn)出較好的抗動脈粥樣硬化保護心腦血管功能,但機制仍不完全闡明。(7)間苯三酚類化合物還表現(xiàn)出有較強的酶抑制活性,如抑制HIV 逆轉(zhuǎn)錄酶、醛糖還原酶和葡萄糖基轉(zhuǎn)移酶活性,提示其仍有很大的開發(fā)應(yīng)用價值。
總之,該屬植物的提取物具有諸多生物活性,但主要為揮發(fā)性成分,對非揮發(fā)性成分研究較少。根據(jù)目前已有的相關(guān)研究可在適宜的地區(qū)進行研究和推廣,進一步分離提純其有效成分,研究和闡明其化學(xué)結(jié)構(gòu)、藥理活性與作用機制,將有助于桉屬植物資源的開發(fā)和利用。
參考文獻:
ABDEL-MOEIN NM, ABDEL-MONIEM EA, MOHAMED DA,et al., 2011. Evaluation of the anti-inflammatory and anti-arthritic effects of some plant extracts [J]. Grasas Aceites, 62(4): 365-374.
ACHIWA Y, HASEGAWA K, UDAGAWA Y, 2007. Regulation of the phosphatidylinositol 3-kinase-akt and the mitogen-activated protein kinase pathways by ursolic acid in human endometrial cancer cells [J]. Biosci Biotechnol Biochem, 71(1): 31-37.
AL-SAYED E, SINGAB A, AYOUB N,et al., 2012. HPLC-PDA-ESI-MS/MS profiling and chemopreventive potential of Eucalyptus gomphocephala DC [J]. Food Chem, 133(3): 1017-1024.
BENOUADAH N, PRANOVICH A, ALIOUCHE D,et al., 2018. Analysis of extractives from Pinus halepensis and Eucalyptus camaldulensis as predominant trees in Algeria [J]. Holzforschung, 72(2): 97-104.
BENYAHIA S, BENAYACHE S, BENAYACHE F, et al., 2004. Isolation from Eucalyptus occidentalis and identification of a new kaempferol derivative that induces apoptosis in human myeloid leukemia cells [J]. J Nat Prod, 67(4): 527-531.
BHUYAN DJ, VUONG QV, BOND DR,et al., 2018. Eucalyptus microcorys leaf extract derived HPLC-fraction reduces the viability of mia paca-2 cells by inducing apoptosis and arresting cell cycle [J]. Biomed Pharmacotherapy, 105: 449-460.
BOULEKBACHE MAKHLOUF L, MEUDEC E, MAZAURIC JP, et al., 2013. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry [J]. Phytochem Analy, 24(2): 162-170.
CHATTOPADHYAY D, ARUNACHALAM G, MANDAL AB,et al., 2002. Antimicrobial and anti-inflammatory activity of folklore: Mallotus peltatus leaf extract [J]. J Ethnopharmacol, 82(2-3): 229-237.
CHEN B, 2002. Study on a ctive constituents of fruit of Eucalyptus globules [D]. Shanghai: The Second Military Medical University.? [陳斌, 2002. 藍桉果實活性成分的研究 [D]. 上海:? 第二軍醫(yī)大學(xué).]
CHEN HZ, HUANG JS, WANG JL,et al., 2015. Total polyphenol and antioxidant activities of ‘Guanglin No.9 eucalyptus leaves from different months [J]. Sci Technol Food Ind, 34(17): 56-59.? [陳洪璋, 黃景晟, 王俊亮, 等, 2013. 不同月份“廣林9號”桉葉粗提物總酚含量與抗氧化活性研究 [J]. 食品工業(yè)科技, 34(17): 56-59.]
CHEN YJ, WANG JJ, OU YW, et al., 2014. Cellular antioxidant activities of polyphenols isolated from Eucalyptus leaves (Eucalyptus grandis×Eucalyptus urophylla GL9) [J]. J Funct Foods, 7: 737-745.
CHEN YQ, LI W, CHEN HZ, et al., 2016. The isolation and purification of compounds from Eucalyptus leaves and their antioxidant activity [J]. Eucalypt Sci Technol, 33(2): 25-32.? [陳運嬌, 李偉, 陳洪璋, 等, 2016. 桉葉抗氧化物分離純化及其抗氧化活性的研究 [J]. 桉樹科技, 33(2): 25-32.]
DOMINGUES RMA, OLIVEIRA ELG, FREIRE CSR, et al., 2012. Supercritical fluid extraction of Eucalyptus globulus bark — a promising approach for triterpenoid production [J]. Int J Mol Sci, 13(6): 7648-7662.
DOMINGUES RMA, SOUSA GDA, FREIRE CSR,et al., 2010. Eucalyptus globulus biomass residues from pulping industry as a source of high value triterpenic compounds [J]. Ind Crop Prod, 31(1): 65-70.
DOMINGUES RMA, SOUSA GDA, SILVA CM,et al., 2011. High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal [J]. Ind Crop Prod, 33(1): 158-164.
ELAISSI A, MEDINI H, SIMMONDS M, et al., 2011. Variation in volatile leaf oils of seven Eucalyptus species harvested from Zerniza Arboreta (Tunisia) [J]. Chem Biodivers, 8(2): 362-372.
FENG J, ZHANG P, CHEN XX, et al., 2011. PI3K and ERK/Nrf2 pathways are involved in oleanolic acid-induced heme oxygenase-1 expression in rat vascular smooth muscle cells [J]. J Cell Biochem, 112(6): 1524-1531.
FU WW, ZHAO CJ, PEI YP,et al., 2003. Chemical constituents and biological activities of Eucalyptus [J]. Drugs Clinic, 18(2): 51-58.? [付文衛(wèi), 趙春杰, 裴玉萍, 等, 2003. 桉屬植物的化學(xué)成分與生物活性 [J]. 國外醫(yī)藥(植物藥分冊), 18(2): 51-58.]
GAO X, 2017. Extraction and analysis of effective components from Eucalyptus [D]. Nanning: Guangxi University.? [高璇, 2017. 窿緣桉樹有效成分的提取及分析 [D]. 南寧: 廣西大學(xué).]
GU ZB, YAN L, XU YX,et al., 2001. Studies on chemical constituents of Eucalyptus camaldulensis var. pendula [J]. Chin Trad Herb Drugs, (4): 12-13.? [顧正兵, 閆露, 徐一新, 等, 2001. 垂枝赤桉的化學(xué)成分研究 [J]. 中草藥, (4): 12-13.]
GUAN XF, GUO QY, HUANG XJ,et al., 2015. A new flavonoid glycoside from leaves of Eucalyptus robusta [J]. Chin J Chin Mat Med, 40(24): 4868-4872.? [管希鋒, 郭倩儀, 黃曉君, 等, 2015. 大葉桉葉中一個新的黃酮苷 [J]. 中國中藥雜志, 40(24): 4868-4872.]
GUIMARES R, BARROS L, CARVALHO AM, et al., 2009. Aromatic plants as a source of important phytochemicals: vitamins, sugars and fatty acids in cistus ladanifer, cupressus lusitanica and Eucalyptus gunnii leaves [J]. Ind Crop Prod, 30(3): 427-430.
GULL?N B, MU?IZ-MOURO A, L?-CHAU TA,et al., 2019. Green approaches for the extraction of antioxidants from Eucalyptus leaves [J]. Ind Crop Prod, 138: 111473.
HAKKI Z, CAO B, HESKES AM,et al., 2010. Synthesis of the monoterpenoid esters cypellocarpin c and cuniloside b and evidence for their widespread occurrence in Eucalyptus [J]. Carbohyd Res, 345(14): 2079-2084.
HE YS, ZHANG JD, 2007. Progress on chemical constituents and pharmacological effects of Eucalyptus [J]. Prog Veter Med, 28(7): 98-101.? [何耀松, 張繼東, 2007. 桉樹化學(xué)成分及藥理作用研究進展 [J]. 動物醫(yī)學(xué)進展, 28(7): 98-101.]
HUANG BS, 2013.Chemical composition, antimicrobial and antioxidative properties from leaves of Eucalyptus growing in Guangdong [D]. Guangzhou: Guangdong Pharm University.? [黃炳生, 2013. 廣東桉樹葉化學(xué)成分及其抗菌抗氧化活性研究 [D]. 廣州: 廣東藥學(xué)院.]
HUANG GH, TANG B, TANG K,et al., 2014. Isoquercitrin inhibits the progression of liver cancer in vivo and in vitro via the MAPK signalling pathway [J]. Oncol Rep, 31(5): 2377-2384.
IBRAHIM M, AMBREEN S, HUSSAIN A,et al., 2014. Phytochemical investigation on Eucalyptus globulus Labill [J]. Asian J Chem, 26(4): 1011-1014.
JIANG Y, XIE KP, HUO HN, et al., 2013. Inhibitory effect of luteolin on the angiogenesis of chick chorioallantoic membrane and invasion of breast cancer cells via downregulation of AEG-1 and MMP-2 [J]. Acta Physiol Sin, 65(5): 513-518.? [姜英, 謝鯤鵬, 霍洪楠, 等, 2013. 木犀草素下調(diào)AEG-1和MMP-2的表達對血管生成和乳腺癌細胞侵襲性的抑制作用 [J]. 生理學(xué)報, 65(5): 513-518.]
KAHLA Y, ZOUARI-BOUASSIDA K, REZGUI F,et al., 2017. Efficacy of Eucalyptus cinerea as a source of bioactive compounds for curative biocontrol of crown gall caused by agrobacterium tumefaciens strain B6 [J]. Biomed Res Int, 2017: 9308063.
LEE Y, SONG YP, KIM Y,et al., 2009. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin [J]. Exp Mol Med, 41(3): 201-207.
LEE YK, HWANG JT, KWON DY, et al., 2010. Induction of apoptosis by quercetin is mediated through AMPKα1/ASK1/p38 pathway [J]. Cancer Lett, 292(2): 228-236.
LEI QC, 2017. Study on the bioactivities and active constituents of Eucalyptus globulus leaves [D]. Hangzhou: Zhejiang Gongshang University.? [雷啟成, 2017. 藍桉葉的生物活性及活性成分研究 [D]. 杭州: 浙江工商大學(xué).]
LI JJ, XU HH, 2014. Isolation, structural ldentification and bioactivity of chemical constituents from the bark of Eucalyptus exserta F. Muell [J]. Nat Prod Res Dev, 26(9): 1345-1349.? [李晶晶, 徐漢虹, 2014. 窿緣桉樹皮化學(xué)成分的分離鑒定及其生物活性研究 [J]. 天然產(chǎn)物研究與開發(fā), 26(9): 1345-1349.]
LI W, 2015. Research advances on phloroglucinol derivatives in plants of Eucalyptus L. Heritier [J]. Chin Trad Herb Drugs, 46(23): 3592-3604.? [李偉, 2015. 桉屬植物中間苯三酚衍生物的研究進展 [J]. 中草藥, 46(23): 3592-3604.]
LIANG QS, WEI JX, 1985. Research progress on chemical and physiological active components of Eucalyptus [J]. Eucalypt Sci Technol, (2): 25-46.? [梁慶燊, 魏景新, 1985. 桉屬植物的化學(xué)及其生理活性成分的研究進展 [J]. 桉樹科技, (2): 25-46.]
LIU H, FENG MY, YU Q, et al., 2018. Formyl phloroglucinol meroterpenoids from eucalyptus tereticornis and their bioactivities [J]. Tetrahedron, 74(13): 1540-1545.
LIU YM, 2004.Studies on chemical constituents of fruit of Eucalyptus globules and its quality control [D]. Shanghai: The Second Military Medical University.? [劉玉明, 2004. 藍桉果實化學(xué)成分及質(zhì)量控制研究 [D]. 上海: 第二軍醫(yī)大學(xué)藥物分析學(xué).]
LIU YM, CAI YF, WU YT, et al., 2004. Study on the essential oil from the fruit of Eucalyptus globulus Labill. and E. robusta smith by GC-MS [J]. Chin J Pharm Anal, 24(1): 24-26.? [劉玉明, 柴逸峰, 吳玉田, 等, 2004. GC-MS對藍桉果實及大葉桉果實揮發(fā)油成分研究 [J]. 藥物分析雜志, 24(1): 24-26.
MA ZC, HONG Q, WANG YG,et al., 2010a. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways [J]. Biol Pharm Bull, 33(1): 29-34.
MA ZC, HONG Q, WANG YG,et al., 2010b. Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells [J]. Biol Pharm Bull, 33(5): 752-758.
NIKBAKHT MR, RAHIMI-NASRABADI M, AHMADI F,et al., 2015. The chemical composition and in vitro antifungal activities of essential oils of five Eucalyptus species [J]. J Essent Oil Bear Plant, 18(3): 666-677.
OKBA MM, GEDAILY RAE, ASH RM, 2017. UPLC-PDA-ESI-qTOF-MS profiling and potent anti-HSV-Ⅱ activity of Eucalyptus sideroxylon leaves [J]. J Chromatogr B, 1068-1069: 335-342.
OSAWA K, YASUDA H, MORITA H,et al., 1996. Macrocarpals H, I, and J from the leaves of Eucalyptus globulus [J]. J Nat Prod, 59(9): 823-827.
PAN M, LEI Q, ZANG N,et al., 2019. A strategy based on GC-MS/MS, UPLC-MS/MS and virtual molecular docking for analysis and prediction of bioactive compounds in Eucalyptus globulus leaves [J]. Int J Mol Sci, 20(16): 3875.
PARK B, HWANG E, SEO SA, et al., 2018. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1 [J]. Arch Biochem Biophys, 637(1): 31-39.
PARREIRA P, SOARES BIG, FREIRE SR,et al., 2017. Eucalyptus spp. outer bark extracts inhibit helicobacter pylori growth: in vitro studies(Article) [J]. Ind Crop Prod, 207-214.
PAVLOVA LV, PLATONOV IA, NIKITCHENKO NV, et al., 2017. Extraction of biologically active compounds from Eucalyptus (Eucalypti viminalis Labill) leaves by subcritical water and water-ethanol mixtures [J]. Russ J Phys Chem B, 11(7): 1129-1143.
PHAM TA, HU XL, HUANG XJ, et al., 2019. Phloroglucinols with immunosuppressive activities from the fruits of Eucalyptus globulus [J]. J Nat Prod, 82(4): 859-869.
PUIG CG, REIGOSA MJ, VALENT?O P,et al., 2018. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: biochemistry and effects of its aqueous extract [J]. PLoS ONE, 13(2): 19-28.
QIN GW, XU RS, 1986. Studies on chemical constituents of Eucalyptus grandis-isolation and identification of phenol B and other components of Eucalyptus grandis [J]. Acta Chim Sin, 44(2): 151-156.? [秦國偉, 徐任生, 1986. 大葉桉化學(xué)成分的研究-大葉桉酚乙和其它成分的分離和鑒定 [J]. 化學(xué)學(xué)報, 44(2): 151-156.]
RODRIGUES VH, DE MELO MMR, PORTUGAL I,et al., 2018. Extraction of Eucalyptus leaves using solvents of distinct polarity cluster analysis and extracts characterization [J]. J Supercrit Fluid, 135: 263-274.
SABRY OM, SABRY MO, EI-SONBATY et al., 2021. In-vivo and in-silico studies of Eucalyptus kino polyphenolics: outstanding activity in quenching solid liver tumors through inhibition of MMP-9 and TGF-β gene expression [J]. Nat Prod Res, DOI: 10.1080/14786419.2021.1961254
SHEN ZB, XU JP, 1987. Studies on chemical constituents of Eucalyptus citri leaves (second report)-isolation and identification of flavonoids [J]. Chem Ind For Prod, (2): 29-35.? [沈兆邦, 徐建平, 1987. 檸檬桉葉化學(xué)成分研究(二報)-黃酮類化合物的分離鑒定 [J]. 林產(chǎn)化學(xué)與工業(yè), (2): 29-35.]
SHEN ZB, YU QZ, 1986. Study on chemical constituents of Eucalyptus citri leaves (first report) [J]. Chem Ind For Prod, (3): 30-33.? [沈兆邦, 虞啟莊, 1986. 檸檬桉葉化學(xué)成分研究(一報) [J]. 林產(chǎn)化學(xué)與工業(yè), (3): 30-33.]
SILVRIO FO, BARBOSA LCA, FIDNCIO PH,et al., 2011. Evaluation of chemical composition of Eucalyptus wood extracts after different storage times using principal component analysis [J]. J Wood Chem Technol, 31(1): 26-41.
SOLMAZ S, ADAN GOKBULUT A, CINCIN B,et al., 2014. Therapeutic potential of apigenin, a plant flavonoid, for imatinib-sensitive and resistant chronic myeloid leukemia cells [J]. Nutr Cancer, 66(4): 599-612.
SONG YF, WANG BL, YU Q, et al., 1984. Extraction of flavonoids from Eucalyptus leaves and its application in agriculture [J]. Chem Ind For Prod, (2): 19-28.? [宋永芳, 王碧蘭, 郁青, 等, 1984. 桉樹葉中黃酮類的提取及其在農(nóng)業(yè)上的應(yīng)用 [J]. 林產(chǎn)化學(xué)與工業(yè), (2): 19-28.]
STEINKAMP-FENSKE K, BOLLINGER L, LLER NV, et al., 2007. Ursolic acid from the chinese herb danshen (Salvia miltiorrhiza L.) upregulates eNOS and downregulates nox4 expression in human endothelial cells [J]. Atherosclerosis, 195(1): e104-e111.
TANG WJ, ZHOU JF, LI XN, et al., 2006. Study on the chemical components in leaf essential oil of Eucalyptus robusta [J]. J Anal Sci, 22(2): 182-186.? [唐偉軍, 周菊峰, 李曉寧, 等, 2006. 大葉桉葉揮發(fā)油的化學(xué)成分研究 [J]. 分析科學(xué)學(xué)報, 22(2): 182-186.]
TANG Y, LI W, 2015. Research advances on chemical constituents of Eucalyptus globulus and their pharmacological activities [J]. Chin Trad Herb Drugs, 46(6): 923-931.? [唐云, 李偉, 2015. 藍桉的化學(xué)成分及其藥理活性研究進展 [J]. 中草藥, 46(6): 923-931.]
TIAN LW, XU M, LI Y, 2012. Phenolic compounds from the branches of Eucalyptus maideni [J]. Chem Biodivers, 9(1): 123-130.
TSIRI D, ALIGIANNIS N, GRAIKOU K,et al., 2008. Triterpenoids from Eucalyptus camaldulensis Dehnh. tissue cultures [J]. Helv Chim Acta, 91(11): 2110-2114.
VUONG QV, CHALMERS AC, JYOTI BHUYAN D,et al., 2015. Botanical, phytochemical, and anticancer properties of the Eucalyptus species [J]. Chem Biodivers, 12(6): 907-924.
WANG C, YANG J, ZHAO P,et al., 2014. Chemical constituents from Eucalyptus citriodora Hook leaves and their glucose transporter 4 translocation activities [J]. Bioorg Med Chem Lett, 24(14): 3096-3099.
WANG J, XU JJ, QIAO W, et al., 2016. Chemical constituents from fruits of Eucalyptus globulus [J]. Chin Trad Herb Drugs, 47(24): 4336-4339.? [王佳, 許嬌嬌, 喬衛(wèi), 等, 2016. 藍桉果實化學(xué)成分研究 [J]. 中草藥, 47(24): 4336-4339.]
WANG Y, 2012. Studies on the chemical and bioactive constituents from the fruits of Eucalyptus globulus [D]. Shanghai: East China normal Univercity.? [王冀, 2012. 中藥藍桉果實化學(xué)成分及其生物活性研究 [D]. 上海: 華東師范大學(xué). ]
WANG YF, WANG XH, ZHU YT, et al., 2005. Inhibitory effect of rutin on influenza a virus [J]. Chin Arch Trund Chin Med, (5): 827.? [王艷芳, 王新華, 朱宇同, 等, 2005. 蘆丁對甲型流感病毒抑制作用實驗研究 [J]. 中華中醫(yī)藥學(xué)刊, (5): 827.]
XAVIER L, FREIRE MS, VIDAL-TATO I,et al., 2014. Aqueous two-phase systems for the extraction of phenolic compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes [J]. J Chem Technol Biot, 89(11): 1772-1778.
XIAO SR, CHEN XX, CHEN YJ, et al., 2012. Research progress in antioxidant activities of Eucalyptus leaves [J]. Technol Food Ind, 33(14): 396-399.? [肖蘇堯, 陳雪香, 陳運嬌, 等, 2012. 桉葉抗氧化作用研究進展 [J]. 食品工業(yè)科技, 33(14): 396-399.]
XIE XY, LIU HT, ZHANG J, et al., 2011. Study on the antioxidative activity of gallic acid in vitro [J]. J Chongqing Med Univ, 36(3): 319-322.? [謝曉艷, 劉洪濤, 張吉, 等, 2011. 沒食子酸體外抗氧化作用研究 [J]. 重慶醫(yī)科大學(xué)學(xué)報, 36(3): 319-322.]
ZHANG GJ, YANG YY, ZHANG SY, et al., 2014. Research on chemical composition of lanan [J]. W J Trad Chin Med, (9): 162-165.? [張廣晶, 楊瑩瑩, 張舒媛, 等, 2014. 藍桉化學(xué)成分研究 [J]. 西部中醫(yī)藥, (9): 162-165.]
ZHENG SD, FANG H, LIU JF, 2021. Study on chemical constituents and bioactivities from Eucalyptus globulus [J]. Med Res, 5: 210007
ZHOU GH, ZHU XA, LIU YH, et al., 2015. Effects of ethanol extracts from Eucalyptus leaves on uric acid metabolism of hogs [J]. Guangdong Agric Sci, 42(22): 92-96.? [周國海, 朱曉艾, 劉又豪, 等, 2015. 桉葉醇提物對育肥豬體內(nèi)尿酸代謝作用的研究 [J]. 廣東農(nóng)業(yè)科學(xué), 42(22): 92-96.]
(責(zé)任編輯李莉)