孫權(quán)
(海裝廣州局,云南 昆明 650107)
水中兵器采用捷聯(lián)慣性技術(shù),減少了硬件,強(qiáng)化了軟件,可較大程度提高武器性能。水中兵器捷聯(lián)慣性系統(tǒng)是把慣性敏感元件直接固連在載體上,利用陀螺和加速度計(jì)的測量信息,通過導(dǎo)航計(jì)算機(jī)實(shí)時(shí)解算,從而得到水中兵器航行控制所需航向、姿態(tài)角等控制參數(shù)。同以往水中兵器采用框架航向陀螺和垂直陀螺來獲得控制參數(shù)的慣性系統(tǒng)相比,捷聯(lián)慣性系統(tǒng)有許多優(yōu)點(diǎn),如精度較高、反應(yīng)時(shí)間短、可靠性高、體積小、質(zhì)量輕、成本低、維護(hù)方便等[1]。但水中兵器捷聯(lián)慣性系統(tǒng)存在一個(gè)比較突出的問題,即其敏感元件動(dòng)態(tài)誤差要比平臺(tái)式慣導(dǎo)系統(tǒng)動(dòng)態(tài)誤差大很多。在平臺(tái)式慣導(dǎo)系統(tǒng)中,慣性敏感元件安裝在穩(wěn)定平臺(tái)上,平臺(tái)隔離了載體運(yùn)動(dòng)特別是角運(yùn)動(dòng),載體運(yùn)動(dòng)基本不會(huì)引起陀螺儀和加速度計(jì)動(dòng)態(tài)誤差。而水中兵器捷聯(lián)慣性系統(tǒng)中,敏感元件直接安裝在載體上,載體的動(dòng)態(tài)環(huán)境,特別是角運(yùn)動(dòng)直接影響慣性儀表,導(dǎo)致陀螺儀與加速度計(jì)動(dòng)態(tài)誤差成為系統(tǒng)各種誤差中最為主要的誤差,必須加以補(bǔ)償。因此,研究分析水中兵器捷聯(lián)慣性系統(tǒng)各種誤差,尤其是慣性敏感元件誤差及其補(bǔ)償方法尤為必要。
水中兵器捷聯(lián)慣性系統(tǒng)在慣性敏感元件、結(jié)構(gòu)安裝以及系統(tǒng)實(shí)現(xiàn)中的各個(gè)環(huán)節(jié)都不可避免地存在誤差,這些誤差因素統(tǒng)稱為誤差源,其主要有以下幾種。
數(shù)學(xué)模型近似性所引起的誤差。當(dāng)水中兵器捷聯(lián)慣性系統(tǒng)的數(shù)學(xué)模型建立得不夠精確時(shí)會(huì)引起系統(tǒng)誤差。作為慣導(dǎo)基本方程基礎(chǔ)的牛頓第二定律,對于運(yùn)動(dòng)速度非常高的運(yùn)載體不夠精確,但對于水中兵器捷聯(lián)慣性系統(tǒng)己足夠精確,由數(shù)學(xué)模型近似性所造成的系統(tǒng)誤差可以忽略不計(jì)。
慣性敏感元件誤差。慣性敏感元件(陀螺與加速度計(jì))誤差包括元件本身誤差以及一些有關(guān)誤差,如安裝誤差、標(biāo)度因子誤差。敏感元件本身誤差由器件原理、加工、裝配工藝的不完善和惡劣的使用環(huán)境造成,這項(xiàng)誤差比較難以控制,大約會(huì)占系統(tǒng)誤差的90%,是水中兵器捷聯(lián)慣性系統(tǒng)中最主要的誤差[2],后面進(jìn)一步分析。
計(jì)算機(jī)算法誤差。水中兵器捷聯(lián)慣性系統(tǒng)需要在數(shù)字計(jì)算機(jī)內(nèi)完成初始對準(zhǔn)、導(dǎo)航參數(shù)解算、誤差補(bǔ)償。由于計(jì)算方法的近似和計(jì)算機(jī)的有限字長,因此必然存在算法誤差,它包括量化誤差、不可交換性誤差、舍入誤差和截?cái)嗾`差。
初始對準(zhǔn)誤差。水中兵器捷聯(lián)慣性系統(tǒng)初始對準(zhǔn)誤差是由載體平臺(tái)慣性敏感元件誤差以及初始對準(zhǔn)過程中的算法誤差造成。由于這項(xiàng)誤差會(huì)在系統(tǒng)中傳播,必須對初始對準(zhǔn)誤差加以限制。
其他誤差。其他誤差如初始條件誤差,它是水中兵器捷聯(lián)慣性系統(tǒng)為進(jìn)行初始對準(zhǔn)和導(dǎo)航參數(shù)解算而引入的初始給定(如初始速度、初始位置)誤差;其他誤差再如因地球參考橢球體選取參數(shù)造成的誤差。
水中兵器捷聯(lián)慣性系統(tǒng)敏感元件存在多種誤差。由于其工作環(huán)境十分惡劣,受載體復(fù)雜運(yùn)動(dòng)影響,敏感元件本身會(huì)被激發(fā)出多種形式誤差,這些誤差便是慣性敏感元件本身誤差。除此以外,慣性敏感元件誤差還有標(biāo)度因素誤差、安裝誤差。所有這些誤差中慣性敏感元件本身誤差又是最為主要的。
由于慣性敏感元件直接固連在載體上,當(dāng)水中兵器在水下航行時(shí),受浪涌影響,敏感元件也隨著載體同時(shí)進(jìn)行復(fù)雜的線運(yùn)動(dòng)和角運(yùn)動(dòng)。敏感元件輸出信號除了本身輸入軸上的加速度和角速度外,它還會(huì)被激發(fā)出多種形式誤差,這些誤差可歸結(jié)為確定性誤差和隨機(jī)性誤差。確定性誤差又可分為靜態(tài)誤差和動(dòng)態(tài)誤差2種,前者由載體的線運(yùn)動(dòng)引起,后者由載體的角運(yùn)動(dòng)引起。另外由隨機(jī)干擾引起的敏感元件隨機(jī)誤差往往也比較突出。對于水中兵器捷聯(lián)慣性系統(tǒng),由于載體在水中運(yùn)動(dòng)時(shí)的線運(yùn)動(dòng)、角運(yùn)動(dòng)及各種干擾全部加到敏感元件上,其動(dòng)態(tài)誤差和隨機(jī)誤差比較嚴(yán)重,必須加以補(bǔ)償,否則會(huì)大大降低水中兵器捷聯(lián)慣性系統(tǒng)精度。
加速度計(jì)和陀螺的輸出一般是脈沖數(shù)或脈沖調(diào)寬的寬度,這些基本量最終都要轉(zhuǎn)換成導(dǎo)航計(jì)算機(jī)比特值,每一個(gè)最基本單位對加速度計(jì)來說,代表一個(gè)速度增量;對陀螺來說,代表一個(gè)最小角度增量,這個(gè)增量值便是加速度計(jì)和陀螺的標(biāo)度因子。由于敏感元件實(shí)際應(yīng)用時(shí)的環(huán)境、溫度、振動(dòng)和電磁干擾與測定標(biāo)度因子時(shí)有所不同,導(dǎo)致工作過程中的實(shí)際標(biāo)度因子和存放在計(jì)算機(jī)內(nèi)的標(biāo)度因子之間總會(huì)不一致,這便形成了標(biāo)度因子誤差。慣性敏感元件標(biāo)度因子誤差可等效為陀螺漂移和加速度計(jì)零偏。
水中兵器捷聯(lián)慣性系統(tǒng)中,陀螺和加速度計(jì)安裝于慣性測量裝置(IMU)底座上以及IMU安裝于水中兵器上,都不可避免地會(huì)產(chǎn)生安裝誤差,此安裝誤差包括2個(gè)方面:加速度計(jì)和陀螺的測量輸入軸同載體坐標(biāo)軸線不一致引起的安裝角誤差、敏感元件偏離水中兵器搖擺中心引起的安裝位置誤差。
對于安裝角誤差,若能知道敏感元件的安裝誤差角,則可消除此誤差,但工程實(shí)際中是很難做到的,只有盡可能提高水中兵器安裝基座加工精度,精確安裝慣性敏感元件,然后估計(jì)出其誤差值,只要在精度允許范圍內(nèi)即可。以加速度計(jì)為例,若加速度計(jì)的安裝誤差角為3′,水中兵器的運(yùn)動(dòng)加速度為0.1g,則安裝誤差便相當(dāng)于10-4g的加速度計(jì)零位誤差。對于陀螺,若有1′的安裝誤差角,則大約等效于0.004°/h的漂移值??梢姡瑢?shí)際水中兵器捷聯(lián)慣性系統(tǒng)中的敏感元件安裝誤差角須達(dá)到角分級,才能滿足水中兵器使用要求[3]。水中兵器慣性測量組件中的加速度計(jì)理想安裝位置應(yīng)位于水中兵器質(zhì)心,但實(shí)際上不大可能實(shí)現(xiàn)。當(dāng)加速度計(jì)偏離該理想位置和水中兵器做旋回運(yùn)動(dòng)、蛇形運(yùn)動(dòng)或搖擺運(yùn)動(dòng)時(shí),由于存在離心加速度和切向加速度,因此會(huì)引起加速度計(jì)的測量誤差,這種現(xiàn)象稱為“尺寸效應(yīng)”。慣性敏感元件安裝誤差也可等效為陀螺漂移和加速度計(jì)零偏進(jìn)行補(bǔ)償。
由于水中兵器捷聯(lián)慣性系統(tǒng)中敏感元件本身誤差是系統(tǒng)中最為主要的誤差,為了使系統(tǒng)達(dá)到精度要求,一種方法是提高敏感元件精度,另一種是對誤差進(jìn)行補(bǔ)償。第一種方法不易實(shí)現(xiàn),而且會(huì)顯著增加敏感元件成本和制造加工難度。因此有必要分析敏感元件各種誤差源及其對敏感元件性能影響的表現(xiàn)形式,進(jìn)行計(jì)算機(jī)誤差補(bǔ)償,以提高水中兵器捷聯(lián)慣性系統(tǒng)精度。分析敏感元件誤差最有效的手段就是數(shù)學(xué)模型,敏感元件數(shù)學(xué)模型是表現(xiàn)誤差源及其對測量影響的一種數(shù)學(xué)關(guān)系。為便于建立這種關(guān)系,依據(jù)器件在不同環(huán)境下的輸入和輸出,將數(shù)學(xué)模型分為靜態(tài)數(shù)學(xué)模型、動(dòng)態(tài)數(shù)學(xué)模型、隨機(jī)數(shù)學(xué)模型3類。
建立數(shù)學(xué)模型有2種方法:①解析方法。依據(jù)器件的實(shí)際結(jié)構(gòu)和力學(xué)原理,用解析方法建立起器件在線運(yùn)動(dòng)和角運(yùn)動(dòng)環(huán)境下的靜態(tài)和動(dòng)態(tài)數(shù)學(xué)關(guān)系,這種方法實(shí)際操作起來比較困難。②實(shí)驗(yàn)研究方法。在工程實(shí)際中,水中兵器捷聯(lián)慣性系統(tǒng)可以采用此方法,這樣可以不考慮敏感元件的的物理概念和原理,先根據(jù)陀螺和加速度計(jì)的類型和精度,確定靜態(tài)、動(dòng)態(tài)數(shù)學(xué)模型的某種形式。以下給出加速度計(jì)和陀螺的典型數(shù)學(xué)模型。
3.1.1 加速度計(jì)靜態(tài)數(shù)學(xué)模型
加速度計(jì)靜態(tài)數(shù)學(xué)模型描述載體運(yùn)動(dòng)環(huán)境下加速度計(jì)輸出與穩(wěn)態(tài)加速度之間的依賴關(guān)系Y=f(A),目前采用的典型靜態(tài)數(shù)學(xué)模型為:
式(1)中:Y為加速度計(jì)輸出;Y0為加速度計(jì)零偏;K1為刻度系數(shù);K2、K3為二階及三階非線形系數(shù);K4、K5為交叉耦合系數(shù)。
顯然,在模型中,除K1是加速度計(jì)理想的系數(shù)外,其余各項(xiàng)均為誤差項(xiàng),其他誤差模型同此模型的差別僅在于所考慮誤差繁簡不一。
3.1.2 加速度計(jì)動(dòng)態(tài)數(shù)學(xué)模型
加速度計(jì)動(dòng)態(tài)數(shù)學(xué)模型描述在角運(yùn)動(dòng)環(huán)境中,加速度計(jì)輸出與載體角速度、角加速度輸入之間的關(guān)系為Y=f(ω,ω˙)。目前采用的動(dòng)態(tài)數(shù)學(xué)模型為:
式(2)中:ωi、ωo、ωp、iω、oω、pω˙為載體相對慣性空間繞其輸入軸、輸出軸及擺軸的角速率和角加速率;D1~D10均為誤差系數(shù)。
理想的加速度計(jì)應(yīng)對角運(yùn)動(dòng)不敏感,因此動(dòng)態(tài)數(shù)學(xué)模型中的各項(xiàng)均為誤差項(xiàng)。
3.2.1 陀螺靜態(tài)數(shù)學(xué)模型
這里給出陀螺一個(gè)輸出軸的誤差模型,它適用于單自由度和雙自由度陀螺:
式(3)中:Y為陀螺的漂移速率;Y0為固定常值漂移;K1、K2、K3與加速度有關(guān)的漂移系數(shù);K4、K5、K6為與加速度平方有關(guān)的漂移系數(shù);K7、K8、K9為與加速度交叉乘積有關(guān)的漂移系數(shù)。
對陀螺來說,靜態(tài)數(shù)學(xué)模型的各項(xiàng)均為誤差項(xiàng)。
3.2.2 陀螺動(dòng)態(tài)數(shù)學(xué)模型
陀螺的動(dòng)態(tài)數(shù)學(xué)模型為:
式(4)中:D1~D12均為誤差系數(shù),其中D1為陀螺刻度系數(shù);ωi、ωo、ωS分別為載體相對慣性空間沿陀螺輸入軸、輸出軸、自轉(zhuǎn)軸的角速率。
根據(jù)已確定的加速計(jì)和陀螺數(shù)學(xué)模型,可以設(shè)計(jì)一種實(shí)驗(yàn)方案,選擇一組能激勵(lì)模型中各項(xiàng)誤差的靜、動(dòng)態(tài)輸入,采集并處理輸出的實(shí)驗(yàn)數(shù)據(jù),獲得模型中各誤差項(xiàng)系數(shù),從而最終建立起慣性敏感元件的靜、動(dòng)態(tài)誤差模型。依據(jù)建立的模型,編制誤差補(bǔ)償軟件,裝入導(dǎo)航計(jì)算機(jī),根據(jù)載體的線運(yùn)動(dòng)與角運(yùn)動(dòng),便可對陀螺和加速度計(jì)的確定性誤差進(jìn)行實(shí)時(shí)補(bǔ)償。
對于慣性敏感元件隨機(jī)誤差,其誤差源有很多,主要是陀螺隨機(jī)漂移和加速度計(jì)隨機(jī)零位偏置。陀螺隨機(jī)漂移十分復(fù)雜,大致有3種分量:①逐次啟動(dòng)漂移。它取決于啟動(dòng)時(shí)刻的環(huán)境條件和電器參數(shù)的隨機(jī)性因素,一旦啟動(dòng)完成,這種漂移便保持在某一固定值,為隨機(jī)常值漂移。②慢變漂移。由陀螺工作過程中環(huán)境條件、電器參數(shù)的隨機(jī)改變而引起,它是在隨機(jī)常值漂移的基礎(chǔ)上以較慢速率變化,因變化過程中前后時(shí)刻有一定關(guān)聯(lián)性,為相關(guān)漂移。③快變漂移。是在前面兩種分量基礎(chǔ)上的高頻跳變,其任意兩時(shí)間點(diǎn)漂移值不相關(guān),為非相關(guān)漂移。陀螺隨機(jī)常值漂移,在同一次啟動(dòng)后的工作過程中保持為常值,它在隨機(jī)漂移中所占比例較大。由于純慣導(dǎo)系統(tǒng)的隨機(jī)誤差引起的導(dǎo)航誤差是隨時(shí)間積累的,因此在水中兵器捷聯(lián)系統(tǒng)啟動(dòng)進(jìn)入工作狀態(tài)前,需對陀螺儀隨機(jī)常值漂移進(jìn)行測漂和補(bǔ)償。在水中兵器捷聯(lián)慣性系統(tǒng)中,可在捷聯(lián)系統(tǒng)啟動(dòng)后結(jié)合外觀測信息(如載體速度),利用卡爾曼濾波法估計(jì)出陀螺儀隨機(jī)常值漂移并加以補(bǔ)償。目前組合導(dǎo)航技術(shù)日益發(fā)展,計(jì)算機(jī)容量不斷增大,速度不斷提高,該方法的實(shí)現(xiàn)無技術(shù)上的困難。同理,加速度計(jì)隨機(jī)誤差模型也可分為3種分量,因相關(guān)誤差比較小,一般只考慮隨機(jī)常值誤差,其隨機(jī)零偏同樣也可以通過卡爾曼濾波法進(jìn)行估計(jì)并加以補(bǔ)償[4]。
水中兵器捷聯(lián)慣性系統(tǒng)誤差源來自于系統(tǒng)實(shí)現(xiàn)中的各個(gè)環(huán)節(jié),其中,與慣性敏感元件有關(guān)的誤差是系統(tǒng)最主要的誤差,特別是因慣性敏感元件陀螺和加速度計(jì)直接安裝于水中兵器基座,受載體發(fā)射前及發(fā)射后復(fù)雜持續(xù)的動(dòng)態(tài)環(huán)境影響,慣性敏感元件動(dòng)態(tài)誤差和隨機(jī)誤差較大,嚴(yán)重影響了水中兵器捷聯(lián)慣性系統(tǒng)精度,必須通過建立誤差模型進(jìn)行實(shí)時(shí)補(bǔ)償。