孔凡林,李媛,付彤,刁其玉,屠焰
蛋氨酸羥基異丙酯對(duì)母犢牛瘤胃發(fā)酵和微生物區(qū)系的影響
1中國(guó)農(nóng)業(yè)科學(xué)院飼料研究所/奶牛營(yíng)養(yǎng)學(xué)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100081;2河南農(nóng)業(yè)大學(xué)牧醫(yī)工程學(xué)院,鄭州 450000
【】蛋氨酸羥基異丙酯(HMBi)作為飼料添加劑廣泛用于補(bǔ)充反芻動(dòng)物日糧中缺乏的蛋氨酸(Met),盡管HMBi擁有過(guò)瘤胃特性,但仍有部分在瘤胃中降解。研究擬探究HMBi對(duì)犢牛瘤胃發(fā)酵和微生物區(qū)系的影響。選取36頭體重在(101±10)kg的84日齡斷奶后荷斯坦母犢牛并隨機(jī)分為兩個(gè)處理組,分別為對(duì)照組(PC,0.40%Met)和蛋氨酸扣除組(PCMet,0.28%Met),通過(guò)減少PCMet組日糧中HMBi的添加使Met含量較PC組少30%。試驗(yàn)期97 d,其中預(yù)飼期7 d,正式試驗(yàn)期90 d。于試驗(yàn)0、90 d測(cè)定犢牛體重,正試期每天記錄采食量,在試驗(yàn)90 d收集血清樣品和瘤胃液樣品用于發(fā)酵參數(shù)和微生物區(qū)系的測(cè)定。(1)與PC組相比,PCMet組犢牛生長(zhǎng)性能無(wú)顯著差異(>0.05),血清Met含量有降低的趨勢(shì)(0.05<<0.10);(2)PCMet組瘤胃乙酸摩爾百分比和微生物蛋白濃度與PC組相比顯著降低(<0.05),但兩組間氨態(tài)氮和總揮發(fā)性脂肪酸濃度無(wú)顯著差異(>0.05);(3)與PC組相比,PCMet組微生物菌群的Shannon指數(shù)顯著降低(<0.05),PCoA和PREANOVA分析顯示兩組間顯著分離(<0.05)。PCMet組的后壁菌門(Firmicutes)相對(duì)豐度顯著降低(<0.05),而擬桿菌門(Bacteroidetes)相對(duì)豐度顯著升高(<0.05)。屬水平上,PCMet組萊克氏菌屬()、瘤胃球菌屬(group)、聚乙酸菌屬()、真桿菌屬(group)和糞球菌屬()的相對(duì)豐度顯著降低。相關(guān)性分析揭示聚乙酸菌屬和真桿菌屬與乙酸摩爾百分比之間呈正相關(guān)關(guān)系,瘤胃球菌屬與微生物蛋白濃度間呈正相關(guān)關(guān)系(<0.05,>0.7)。研究說(shuō)明扣除日糧中HMBi后犢牛瘤胃微生物多樣性降低,微生物蛋白合成減少,其中,產(chǎn)乙酸菌屬對(duì)HMBi扣除敏感,降低了乙酸的產(chǎn)生??傊?,HMBi盡管作為過(guò)瘤胃產(chǎn)品,瘤胃中被降解部分仍對(duì)瘤胃發(fā)酵有調(diào)控作用。
蛋氨酸羥基異丙酯;母犢牛;微生物區(qū)系;瘤胃發(fā)酵參數(shù)
【研究意義】蛋氨酸(Met)是后備牛營(yíng)養(yǎng)研究的重點(diǎn)之一,其重要性在于Met作為一種限制性氨基酸,一旦供給不足將嚴(yán)重限制后備牛的生長(zhǎng)和發(fā)育[1-2],進(jìn)而使得泌乳階段無(wú)法發(fā)揮應(yīng)有的遺傳潛力[3]。為解決日糧中Met供應(yīng)不足這一問(wèn)題,在后備牛日糧中添加Met添加劑已成為解決該問(wèn)題的手段之一[2]。但由于后備牛在斷奶前后采食固體飼料[4],導(dǎo)致瘤胃快速發(fā)育,瘤胃微生物區(qū)系定植,發(fā)酵功能趨于完善[5],所以在斷奶后應(yīng)使用過(guò)瘤胃蛋氨酸來(lái)增加達(dá)到小腸的Met數(shù)量,防止瘤胃中微生物對(duì)Met的降解。蛋氨酸羥基異丙酯(HMBi)作為Met的化學(xué)衍生物已被證明有著良好的過(guò)瘤胃特性和實(shí)踐效果[6-7],Met有效性達(dá)48%[8],但研究表明仍有25%—50%的HMBi在瘤胃中被微生物降解[9-10],所以HMBi即是過(guò)瘤胃添加劑,也有潛力成為瘤胃調(diào)控劑?!厩叭搜芯窟M(jìn)展】前人研究表明干奶牛日糧中添加HMBi可增加瘤胃中產(chǎn)琥珀酸絲狀桿菌和黃色瘤胃球菌的數(shù)量以及總揮發(fā)性脂肪酸(TVFA)濃度,證明HMBi可促進(jìn)瘤胃發(fā)酵[11];周帥等[12]通過(guò)體外發(fā)酵試驗(yàn)同樣發(fā)現(xiàn)HMBi添加可改善瘤胃發(fā)酵,增加乙酸、丁酸和TVFA濃度。體外發(fā)酵試驗(yàn)同樣發(fā)現(xiàn)HMBi添加可增加細(xì)菌中氮沉積,但乙酸的含量減少,說(shuō)明HMBi可促進(jìn)MCP的合成[13]?!颈狙芯壳腥朦c(diǎn)】因此,目前HMBi僅在干奶牛和體外試驗(yàn)中對(duì)瘤胃發(fā)酵產(chǎn)生效果,且效果不一。而荷斯坦?fàn)倥T跀嗄毯筇幱诹鑫赴l(fā)育和調(diào)控的窗口期,日糧成為調(diào)控瘤胃發(fā)育和發(fā)酵的重要手段,但目前仍缺乏HMBi對(duì)該階段犢牛的瘤胃發(fā)酵和微生物區(qū)系影響的結(jié)果?!緮M解決的關(guān)鍵問(wèn)題】基于此,本研究以斷奶后荷斯坦母犢牛為對(duì)象,系統(tǒng)研究了HMBi對(duì)瘤胃發(fā)酵和微生物區(qū)系的影響,以期明確HMBi的飼喂效果和功能,為HMBi在生產(chǎn)中的應(yīng)用提供支撐。
試驗(yàn)于2018年3月在山東省銀香偉業(yè)第三牧場(chǎng)進(jìn)行,選取36頭平均日齡為84日齡、體重為(101.2±10.8)kg的中國(guó)荷斯坦母犢牛,根據(jù)日齡和體重相近的原則隨機(jī)分到兩個(gè)處理組,每組18頭牛,分別為對(duì)照組(PC)和蛋氨酸扣除組(PCMet)。其中,PC組日糧中蛋氨酸的水平根據(jù)ZINN等[14]提出Met預(yù)測(cè)公式(METR=1.956+0.0292ADG[268-(29.4 ×0.0557BW0.75ADG1.097)/ADG]+0.112BW0.75)計(jì)算得出,賴氨酸(Lys)水平則是根據(jù)本團(tuán)隊(duì)云強(qiáng)[15]得到的斷奶后犢牛適宜賴蛋比為3﹕1添加,基礎(chǔ)日糧不足部分通過(guò)添加HMBi和過(guò)瘤胃賴氨酸補(bǔ)充。PCMet組的Met含量則是在PC組基礎(chǔ)上扣除30%。隨著母犢牛的生長(zhǎng),每30d根據(jù)體重(BW)和日增重(ADG)重新計(jì)算HMBi添加量。
根據(jù)NRC(2001)[16]中150 kg生長(zhǎng)母牛ADG為1 kg·d-1的營(yíng)養(yǎng)需要配制基礎(chǔ)日糧。因此,兩組基礎(chǔ)日糧的組成和營(yíng)養(yǎng)成分均一致,差別僅存在于HMBi的添加量不同,最終結(jié)果使得PCMet組日糧中Met含量為PC組的70%?;A(chǔ)日糧組成見(jiàn)表1,兩組日糧中過(guò)瘤胃氨基酸的添加量和最終日糧中氨基酸的含量見(jiàn)表2。
表1 基礎(chǔ)飼糧組成及營(yíng)養(yǎng)水平(干物質(zhì)基礎(chǔ))
1)預(yù)混料為每千克基礎(chǔ)日糧提供 The premix provided per kg of the basal diet: VA, 15000 IU; VD, 5000IU; VE, 50 mg; Fe, 90 mg; Cu, 12.5 mg; Mn, 30 mg; Zn, 90 mg; Se, 0.3 mg; I, 1.0 mg; Co, 0.3 mg
2)營(yíng)養(yǎng)水平除代謝能外均為實(shí)測(cè)值,代謝能按照甲烷能占總能的6.5%計(jì)算[10]ME was a calculated value and others were measured values. Metabolic energy is calculated on the basis that methane energy accounts for 6.5% of total energy
表2 飼糧中過(guò)瘤胃氨基酸的添加量及氨基酸水平(干物質(zhì)基礎(chǔ))
1)過(guò)瘤胃賴氨酸產(chǎn)品由北京亞禾營(yíng)養(yǎng)高新技術(shù)有限責(zé)任公司提供,Lys含量為36%,過(guò)瘤胃率為80% Ruminal bypass Lys purchased by Yahe Nutrition Co., (36% content and 80% bypass rate)
2)過(guò)瘤胃蛋氨酸產(chǎn)品由安迪蘇生命科學(xué)制品有限公司提供,Met含量為44%,過(guò)瘤胃率為50% Ruminal bypass Met purchased by Adisseo Co., (44.4% content, 50% bypass rate)
母犢牛單籠單飼,每天日糧干物質(zhì)的飼喂量為犢牛體重的3%,每天飼喂3次,分別在早晨8點(diǎn)、下午2點(diǎn)及晚上8點(diǎn)飼喂,飼喂量隨著犢牛體重的增長(zhǎng)及時(shí)調(diào)整,試驗(yàn)全期自由飲水。預(yù)飼期7 d,正式試驗(yàn)期90 d。
試驗(yàn)過(guò)程中采集有代表性的日糧,用于檢測(cè)常規(guī)營(yíng)養(yǎng)成分。其中,Lys和Met含量采用日立L-8900氨基酸自動(dòng)分析儀測(cè)定。
試驗(yàn)全期每天記錄每頭牛的投料量和剩料量用于計(jì)算干物質(zhì)采食量(DMI);在試驗(yàn)始末測(cè)定BW用于計(jì)算ADG,進(jìn)一步計(jì)算飼料轉(zhuǎn)化比。
在正式試驗(yàn)期第90天,每組選取5頭體況健康、體重接近每組平均體重的母犢牛用于血液和瘤胃液的采集。其中,在晨飼前靜脈采集血液,隨后傾斜放置至析出血清后,3 000 r/min離心10 min,收集血清于2 mL離心管中用于Met含量的測(cè)定,Met測(cè)定采用日立L-8900氨基酸自動(dòng)分析儀。
于晨飼后2 h使用滅菌的口腔采樣器收集瘤胃液,瘤胃液在裝入15 mL離心管后立即使用便攜式pH計(jì)(Testo-206-pH2)測(cè)定pH,隨后液氮保存帶回實(shí)驗(yàn)室用于后續(xù)瘤胃發(fā)酵參數(shù)的測(cè)定;剩余瘤胃液分裝于2 mL凍存管中液氮保存并用于后續(xù)微生物區(qū)系的測(cè)定。對(duì)于揮發(fā)性脂肪酸的測(cè)定,將瘤胃液4 ℃解凍,加入0.2 mL配置好的濃度為2 g·L-1的含有內(nèi)標(biāo)物2-乙基丁酸的偏磷酸去蛋白溶液,混勻后冰浴30 min,隨后10 000 r/min離心10 min并使用邁瑞MR-96A型酶標(biāo)儀測(cè)定;瘤胃液中氨態(tài)氮濃度(NH3-N)使用苯酚比色法測(cè)定[17];微生物蛋白(MCP)含量的測(cè)定參照文獻(xiàn)[18]方法進(jìn)行。
將存放于凍存管中的瘤胃液在4 ℃解凍,使用E.Z.N.A.? Soil DNA試劑盒提取DNA,試劑盒購(gòu)于Omega生物技術(shù)有限公司,具體步驟參照試劑盒說(shuō)明書進(jìn)行。用1%瓊脂糖凝膠電泳和NanoDrop 2000原子分光光度計(jì)檢測(cè)DNA。提取的DNA用于后續(xù)PCR擴(kuò)增和高通量測(cè)序。
用細(xì)菌引物對(duì)338F(5′-ACTCCTACGGGAGGCA GCAG-3′)和806R(5′-GGACTACHVGGGTWTCTA AT-3′),針對(duì)細(xì)菌16SrRNA基因的V3-V4區(qū)進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增體系為20 μL,包括5×Buffer 5.0 μL,dNTPs(2.5 mmol·L-1)2 μL,引物(5μmol·L-1)各0.8 μL,10 ng模板DNA,補(bǔ)充ddH2O至20 μL。PCR的反應(yīng)條件:95 ℃進(jìn)行3 min,95 ℃進(jìn)行30 s,共27個(gè)循環(huán),55℃進(jìn)行30 s,72 ℃進(jìn)行45 s,72 ℃進(jìn)行10 min。
PCR產(chǎn)物用含溴化乙錠的2%的瓊脂糖凝膠電泳鑒定,并用PCR純化試劑盒純化和回收?;厥盏腜CR產(chǎn)物用AxyPrep DNA Gel試劑盒定量。送上海美吉生物醫(yī)學(xué)科技有限公司,利用Illumina MiSeq測(cè)序平臺(tái)構(gòu)建文庫(kù)及MiSeq測(cè)序。
對(duì)生長(zhǎng)性能、血清指標(biāo)和瘤胃發(fā)酵參數(shù)使用SAS8.0軟件的one-way ANOVA模型進(jìn)行分析。差異顯著(<0.05)時(shí)采用最小顯著差數(shù)法進(jìn)行比較,0.05<<0.1表示具有顯著降低或升高的趨勢(shì)。使用Graphpad Prism 7對(duì)數(shù)據(jù)進(jìn)行可視化作圖。
將獲得的Fastq文件原始數(shù)據(jù)使用QIIME1.7.0軟件對(duì)數(shù)據(jù)進(jìn)行質(zhì)控,去除掉平均堿基質(zhì)量值小于Q20的序列,將含有模糊堿基的reads移除。最后根據(jù)相似性大于97%的標(biāo)準(zhǔn),進(jìn)一步使用QIIME軟件對(duì)相似性大于97%的序列聚類為OUT(operational taxonomic units),將序列與基因數(shù)據(jù)庫(kù)中的參考序列進(jìn)行比對(duì),用QIIME軟件剔除嵌合體和Singletons,并使用RDP分類器對(duì)序列從門到屬進(jìn)行物種注釋,置信閾值為0.7。α多樣性指數(shù)使用MOTHUR軟件計(jì)算得出[19];β多樣性基于OTU水平使用加權(quán)的UniFrac距離算法計(jì)算,R語(yǔ)言中的GUniFrac和ape包將β多樣性可視化為柱坐標(biāo)分析圖(Principal coordinate analysis,PCoA)[20],為檢測(cè)兩組間是否存在顯著差異,使用非參數(shù)多變量方差分析(PREANOVA)對(duì)數(shù)據(jù)進(jìn)行分析。使用R語(yǔ)言工具制作門水平組成柱形圖,使用R的stats包和Python的scipy包尋找兩組間差異菌屬。16s rRNA基因預(yù)測(cè)功能(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States,PICRUSt)用于對(duì)微生物組成功能進(jìn)行預(yù)測(cè)[21]。最后,對(duì)兩組間顯著差異菌屬和表型變量使用SPSS 20.0進(jìn)行斯皮爾曼相關(guān)性分析(Spearman’s test),以<0.05和相關(guān)性系數(shù)>0.7作為存在相關(guān)性的標(biāo)準(zhǔn)。
表3為日糧中扣除部分Met對(duì)母犢牛生長(zhǎng)性能和血清Met濃度的影響。兩組初始體重之間無(wú)顯著差異(>0.05),結(jié)束體重、ADG、DMI和飼料轉(zhuǎn)化比同樣均無(wú)顯著差異(>0.05)。與PC組相比,PCMet組的血清Met濃度具有降低的趨勢(shì)(0.05<<0.1),相比下降18%。
圖1為日糧中部分扣除Met對(duì)母犢牛瘤胃發(fā)酵參數(shù)的影響。由圖1可知,部分扣除Met對(duì)瘤胃中TVFA無(wú)顯著影響(>0.05),但揮發(fā)酸成分中乙酸的摩爾百分比因Met扣除而顯著降低(<0.05),丙酸、丁酸的摩爾百分比和乙丙比無(wú)顯著差異(>0.05)??鄢齅et同樣對(duì)pH和NH3-N濃度無(wú)顯著影響(>0.05),但MCP濃度顯著降低(<0.05)。
2.3.1 α多樣性 圖2為部分扣除Met對(duì)母犢牛瘤胃微生物區(qū)系α多樣性的影響,Chao-1和ACE指數(shù)用來(lái)形容物種豐富度,由圖可知Met扣除對(duì)Chao-1指數(shù)、ACE指數(shù)無(wú)顯著影響(>0.05)。Simpson指數(shù)和Shannon指數(shù)用來(lái)形容物種多樣性,由圖可知兩組間Simpson指數(shù)無(wú)顯著差異,與PC組相比,PCMet組的Shannon指數(shù)顯著下降(<0.05)。
表3 部分扣除蛋氨酸對(duì)母犢牛生長(zhǎng)性能和血清蛋氨酸水平的影響
圖1 部分扣除蛋氨酸對(duì)母犢牛瘤胃發(fā)酵參數(shù)的影響
圖2 組間α多樣性指數(shù)的差異性比較
2.3.2 β多樣性 由圖3可知,兩組樣品依據(jù)所處組別并沒(méi)有聚類到一起,存在明顯的分離,說(shuō)明組間相似性比組內(nèi)相似性高,PERANOVA的結(jié)果也說(shuō)明二組之間存在顯著差異(<0.05)。
2.3.3 不同分類水平上的物種組成分析 由圖4-a可知,兩處理組的優(yōu)勢(shì)門(>1%)分別為后壁菌門(Firmicutes,48.56%)、擬桿菌門(Bacteroidetes,36.40%)、變形菌門(Proteobacteria,10.44%)和放線菌門(Actinobacteria,3.59%)。其中,在門水平上(圖4-b),與PC組相比,PCMet組后壁菌門的相對(duì)豐度顯著降低(<0.05),而擬桿菌門的相對(duì)豐度顯著升高(<0.05)。進(jìn)一步對(duì)相對(duì)豐度大于0.1%的菌屬進(jìn)行差異性分析(圖4-c),結(jié)果表明,與PC組相比,屬于后壁菌門的5個(gè)菌屬的相對(duì)豐度在PCMet中顯著降低(<0.05),分別為斯萊克氏菌屬()、瘤胃球菌屬(group)、聚乙酸菌屬()、真桿菌屬(group)和糞球菌屬()。
圖3 Principal coordinate analysis聚類分析
標(biāo)星號(hào)表示不同處理中的相對(duì)豐度差異顯著。*表示P<0.05,**表示P<0.01
2.3.4 功能預(yù)測(cè)分析 使用PICRUSt對(duì)細(xì)菌組成進(jìn)行功能預(yù)測(cè),結(jié)果顯示相對(duì)豐度占比在前5的KEGG通路和與Met代謝有關(guān)的KEGG通路(表4)。結(jié)果顯示兩組之間相對(duì)豐度排名前5的通路無(wú)顯著差異(>0.05),與Met代謝有關(guān)的通路也同樣沒(méi)有顯著差異(>0.05)。
表4 蛋氨酸扣除對(duì)瘤胃微生物基因KEGG通路的影響
2.3.5 相關(guān)性分析 對(duì)兩組間相對(duì)豐度出現(xiàn)顯著差異的菌屬與表型指標(biāo)進(jìn)行Spearman相關(guān)性分析,結(jié)果如圖5所示,其中,、group和與乙酸的摩爾百分比之間存在正相關(guān)關(guān)系(<0.05,>0.7),group和與MCP之間存在正相關(guān)關(guān)系(<0.05,>0.7)。
Met和Lys是荷斯坦后備牛的第一或第二限制性氨基酸[1, 22],研究表明Lys和Met添加對(duì)泌乳牛產(chǎn)奶量存在互作效應(yīng)[23]。本研究根據(jù)本團(tuán)隊(duì)在該階段犢牛上獲得的日糧中適宜的Lys和Met比例添加過(guò)瘤胃賴氨酸[15],其目的在于防止Lys不足可能通過(guò)破壞日糧氨基酸平衡來(lái)影響試驗(yàn)結(jié)果。本研究結(jié)果表明扣除日糧中30%Met對(duì)3—6月齡母犢牛生長(zhǎng)性能無(wú)影響,這與前人在生長(zhǎng)母牛階段獲得的結(jié)果一致[22],但在斷奶前犢牛的研究中表明扣除30%的Met顯著降低犢牛BW和飼料轉(zhuǎn)化比[24],這一方面與斷奶后母牛瘤胃發(fā)育逐漸完善有關(guān),瘤胃微生物利用NH3-N合成MCP能力逐漸增強(qiáng),MCP中含有的Met可以部分彌補(bǔ)日糧中缺乏的Met[25];另一方面也與動(dòng)物體內(nèi)存在AA代謝池有關(guān),由于包括新生犢牛在內(nèi)的新生哺乳動(dòng)物機(jī)體尚未發(fā)育完全,體蛋白動(dòng)員分解從而補(bǔ)充氨基酸的能力不足,導(dǎo)致新生哺乳動(dòng)物較其他生長(zhǎng)階段動(dòng)物對(duì)氨基酸缺乏敏感[26]。
本研究中盡管Met扣除并未影響生長(zhǎng)性能,但血清Met含量的降低說(shuō)明日糧HMBi扣除經(jīng)過(guò)瘤胃發(fā)酵、小腸吸收等消化、吸收和代謝過(guò)程后,最終使得到達(dá)血清中的Met降低,多項(xiàng)研究表明血清Met是評(píng)價(jià)日糧Met有效性的重要指標(biāo),隨日糧中Met數(shù)量的增加而增加[8, 27]。因此,本研究結(jié)果表明日糧中Met扣除的處理效果由日糧差異反映在瘤胃發(fā)酵、小腸吸收等多個(gè)過(guò)程,直至血清Met濃度變化。
*標(biāo)星號(hào)表示具有相關(guān)性(P<0.05,|r|>0.7),變量間相關(guān)性的強(qiáng)度由正方形的顏色深淺來(lái)表示,而正方形的顏色表示正相關(guān)關(guān)系(藍(lán))和負(fù)相關(guān)關(guān)系(紅)
本研究目的在于探究HMBi作為補(bǔ)充Met的外源添加劑對(duì)荷斯坦斷奶后犢牛瘤胃發(fā)酵和微生物區(qū)系的影響。當(dāng)日糧中的HMBi到達(dá)瘤胃后,約50%的HMBi被瘤胃壁快速吸收,然后脫去異丙醇轉(zhuǎn)化為蛋氨酸羥基類似物(HMB),隨后進(jìn)入到外周血液中被吸收,剩余HMBi在瘤胃中被微生物降解為HMB和異丙酯[8,28],50%—90%的HMB在瘤胃中被降解用于合成MCP,另一部分進(jìn)入小腸被吸收,所以HMBi在瘤胃中損失25%—50%[9-10]。對(duì)于降解的HMBi對(duì)瘤胃發(fā)酵的影響,在體外試驗(yàn)上的結(jié)果顯示日糧中添加1%的HMBi可提高日糧產(chǎn)氣量、乙酸和TVFA濃度[12],說(shuō)明HMBi可以提高日糧在瘤胃中的消化率,但由于體外試驗(yàn)無(wú)法模擬瘤胃上皮吸收HMBi,所以與動(dòng)物飼養(yǎng)試驗(yàn)結(jié)果相比,體外試驗(yàn)的劑量要遠(yuǎn)高于本試驗(yàn)的劑量,這可能會(huì)擴(kuò)大HMBi的效果。另一體外試驗(yàn)脈沖供給日糧占比為0.11%的HMBi時(shí)發(fā)現(xiàn)乙酸、丙酸和TVFA濃度下降[13],而NH3-N轉(zhuǎn)化成的MCP和小肽的比例增加,這可能與VFA為NH3-N轉(zhuǎn)化為MCP提供能量有關(guān)?;隗w外試驗(yàn)結(jié)果可以看出HMBi對(duì)瘤胃發(fā)酵存在促進(jìn)效果,但是由于培養(yǎng)條件和添加量的不同導(dǎo)致試驗(yàn)結(jié)果不一,這也是開(kāi)展該動(dòng)物試驗(yàn)的原因。當(dāng)日糧中AA達(dá)到瘤胃后即可以被微生物脫氨基生成NH3-N,也可以與NH3-N共同參與合成MCP[25],本研究發(fā)現(xiàn)NH3-N濃度因Met扣除而增加,而MCP合成降低,這與Met參與細(xì)菌轉(zhuǎn)氨作用、減少飼料氨基酸脫氨作用有關(guān)[11, 13, 29]。另一方面,與未保護(hù)的Met相比,50%的HMBi雖被瘤胃上皮快速吸收,但瘤胃中剩余的HMBi可緩慢釋放HMB,為瘤胃細(xì)菌合成MCP提供穩(wěn)定的Met供應(yīng)[30],本研究中Met扣除后合成MCP的原料減少,NH3-N無(wú)法參與MCP合成進(jìn)而有所剩余。
瘤胃發(fā)酵參數(shù)是評(píng)價(jià)瘤胃發(fā)酵能力和日糧營(yíng)養(yǎng)價(jià)值的重要指標(biāo),與瘤胃中微生物的組成有密切關(guān)系。有研究表明包被Met對(duì)圍產(chǎn)期奶牛瘤胃中的主要細(xì)菌的生長(zhǎng)無(wú)影響,包括產(chǎn)琥珀酸絲狀桿菌和反芻獸新月形單胞菌等[31],但這可能與圍產(chǎn)期奶牛特殊的生理狀態(tài)以及脂肪包被Met在瘤胃中降解量較小的原因有關(guān)。當(dāng)使用HMBi飼喂干奶期荷斯坦奶牛時(shí)發(fā)現(xiàn)產(chǎn)琥珀酸絲狀桿菌和黃色瘤胃球菌在瘤胃中的濃度升高,瘤胃中纖維分解酶活性卻并未增加[11],瘤胃菌群作為一個(gè)整體,該結(jié)果可能與瘤胃中其他微生物的活動(dòng)改變有關(guān),但仍能說(shuō)明HMBi對(duì)瘤胃微生物具有調(diào)控作用。
本研究首次使用16s rRNA微生物測(cè)序技術(shù)對(duì)HMBi對(duì)瘤胃微生物區(qū)系的影響進(jìn)行全面評(píng)價(jià),MCP濃度和微生物區(qū)系α多樣性的降低說(shuō)明微生物生長(zhǎng)受到抑制,原因在于微生物用于生長(zhǎng)和合成MCP的原料因HMBi扣除而減少[25],這與前人獲得的結(jié)論一致[32]。此外,泌乳牛日糧中添加0.1%的HMBi可提高觀測(cè)到的OTU數(shù)量和Shannon指數(shù),這與本研究的結(jié)果一致,且誘導(dǎo)泌乳牛乳脂含量下降的日糧中添加HMBi可減緩乳脂含量降低的程度,來(lái)自Firmicutes的菌屬包括、、以及的相對(duì)豐度隨HMBi的添加而降低,僅相對(duì)豐度隨HMBi添加而增加[33],這些菌屬的變化均與緩解乳脂降低相關(guān),但這與本研究發(fā)現(xiàn)來(lái)自Firmicutes的菌屬隨HMBi供應(yīng)降低而降低的結(jié)果相矛盾。這一方面與犢牛階段和泌乳牛階段的日糧組成和動(dòng)物營(yíng)養(yǎng)分配方式不同有關(guān);其次,盡管HMBi對(duì)瘤胃中微生物區(qū)系的影響在不同生長(zhǎng)階段奶牛上表現(xiàn)不一,但均表現(xiàn)為促進(jìn)奶牛生長(zhǎng)和泌乳,在本研究中,是一種將碳水化合物發(fā)酵為乳酸的乳酸菌[34],在差異菌屬中相對(duì)豐度最大,盡管本研究未測(cè)定日糧中碳水化合物的降解率,在瘺管母羊上的研究結(jié)果表明HMBi添加可提高日糧在瘤胃中的有機(jī)物降解率[30],另一項(xiàng)研究表明相對(duì)豐度在瘤胃酸中毒的情況下增加[35]。因此,結(jié)合本研究結(jié)果說(shuō)明Met可通過(guò)調(diào)控瘤胃中的碳水化合物分解菌來(lái)影響瘤胃發(fā)酵能力。LEE等[35]飼喂荷斯坦奶牛HMBi后發(fā)現(xiàn)糞球菌屬()和出現(xiàn)顯著變化,其認(rèn)為瘤胃微生物比例的變化是導(dǎo)致瘤胃微生物氮沉積增加的原因,這與本研究結(jié)果一致。此外,有研究表明扣除過(guò)瘤胃Lys后斷奶后犢牛瘤胃中g(shù)roup和的相對(duì)豐度降低[36],本研究扣除Met同樣使得二者相對(duì)豐度降低,二者連同均被認(rèn)為是產(chǎn)乙酸菌,這也是差異菌屬與乙酸具有相關(guān)性的原因之一,也說(shuō)明瘤胃中存在部分菌屬對(duì)日糧中AA的變化非常敏感,Lys更多是影響產(chǎn)丁酸菌[37],而本研究說(shuō)明Met扣除降低產(chǎn)乙酸菌相對(duì)豐度。盡管Met扣除后瘤胃菌群發(fā)生改變,但微生物功能并未發(fā)生顯著變化,包括Met相關(guān)代謝通路和氮代謝通路。Met扣除后微生物生長(zhǎng)雖受到抑制,但微生物菌群作為一個(gè)相互掣肘和穩(wěn)定的生態(tài)系統(tǒng),總數(shù)的減少并沒(méi)有改變微生物菌群整體的功能,此外,對(duì)于微生物功能的精準(zhǔn)預(yù)測(cè)還需要技術(shù)的進(jìn)一步更新[31]??傊狙芯空J(rèn)為HMBi在瘤胃中調(diào)控多個(gè)產(chǎn)乙酸菌屬的生長(zhǎng)和MCP的產(chǎn)量。
本研究以3—6月齡的斷奶后荷斯坦母犢牛為對(duì)象,探究部分扣除HMBi形式的Met對(duì)瘤胃發(fā)酵參數(shù)和微生物區(qū)系的影響。結(jié)果表明扣除30%的Met不影響母犢牛生長(zhǎng)性能,但使得瘤胃微生物區(qū)系和發(fā)酵模式改變,瘤胃中乙酸和MCP的變化與微生物組成的變化緊密相關(guān),HMBi扣除后抑制瘤胃中屬于Firmicutes的多個(gè)菌屬的生長(zhǎng),包括group和等產(chǎn)乙酸菌屬。本研究說(shuō)明HMBi盡管是過(guò)瘤胃氨基酸,但仍然對(duì)瘤胃代謝具有調(diào)控作用,在使用HMBi時(shí)需同樣關(guān)注其對(duì)瘤胃的影響。未來(lái)可通過(guò)同位素標(biāo)記技術(shù)來(lái)進(jìn)一步明確HMBi在瘤胃中的代謝途徑。
[1] WANG J H, DIAO Q Y, TU Y, ZHANG N F, XU X C. The limiting sequence and proper ratio of lysine, methionine and threonine for calves fed milk replacers containing soy protein. Asian-Australasian Journal of Animal Sciences, 2012, 25(2): 224-233. doi:10.5713/ ajas.2011.11190.
[2] 孔凡林, 李媛, 唐夢(mèng)琪, 馬滿鵬, 付彤, 刁其玉, 成思源, 屠焰. 氨基酸缺乏對(duì)母犢牛生長(zhǎng)和日糧養(yǎng)分消化代謝的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(2): 418-430. doi: 10.3864/j.issn.0578-1752.2020.02.016.
KONG F L, LI Y, TANG M Q, MA M P, FU T, DIAO Q Y, CHENG S Y, TU Y. Effects of amino acid deficiency on growth development, dietary nutrients digestion and metabolism in heifers. Scientia Agricultura Sinica, 2020, 53(2): 418-430. doi: 10.3864/j.issn.0578- 1752.2020.02.016. (in Chinese)
[3] SOBERON F, RAFFRENATO E, EVERETT R W, VAN AMBURGH M E. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. Journal of Dairy Science, 2012, 95(2): 783-793. doi:10.3168/jds.2011-4391.
[4] 任春燕, 畢研亮, 郭艷麗, 杜漢昌, 于博, 屠焰, 刁其玉. 開(kāi)食料中性洗滌纖維水平對(duì)犢牛生長(zhǎng)性能、血清生化指標(biāo)和抗氧化功能的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(2): 440-450. doi:10.3864/j.issn.0578- 1752.2020.02.018.
REN C Y, BI Y L, GUO Y L, DU H C, YU B, TU Y, DIAO Q Y. Effects of NDF level of starter on growth performance, serum biochemical parameters and antioxidant indices in calves. Scientia Agricultura Sinica, 2020, 53(2): 440-450. doi:10.3864/j.issn.0578- 1752.2020.02.018. (in Chinese)
[5] KERTZ A F, HILL T M, QUIGLEY J D 3rd, HEINRICHS A J, LINN J G, DRACKLEY J K. A 100-Year Review: calf nutrition and management. Journal of Dairy Science, 2017, 100(12): 10151-10172. doi:10.3168/jds.2017-13062.
[6] WHELAN S J, MULLIGAN F J, FLYNN B, MCCARNEY C, PIERCE K M. Effect of forage source and a supplementary methionine hydroxy analog on nitrogen balance in lactating dairy cows offered a low crude protein diet. Journal of Dairy Science, 2011, 94(10): 5080-5089. doi:10.3168/jds.2011-4174.
[7] ORDWAY R S, BOUCHER S E, WHITEHOUSE N L, SCHWAB C G, SLOAN B K. Effects of providing two forms of supplemental methionine to periparturient Holstein dairy cows on feed intake and lactational performance. Journal of Dairy Science, 2009, 92(10): 5154-5166. doi:10.3168/jds.2009-2259.
[8] GRAULET B, RICHARD C, ROBERT J C. Methionine availability in plasma of dairy cows supplemented with methionine hydroxy analog isopropyl ester. Journal of Dairy Science, 2005, 88(10): 3640-3649. doi:10.3168/jds.S0022-0302(05)73049-6.
[9] KOENIG K M, RODE L M, KNIGHT C D, MCCULLOUGH P R. Ruminal escape, gastrointestinal absorption, and response of serum methionine to supplementation of liquid methionine hydroxy analog in dairy cows. Journal of Dairy Science, 1999, 82(2): 355-361. doi:10.3168/jds.S0022-0302(99)75242-2.
[10] NOFTSGER S, ST-PIERRE N R, SYLVESTER J T. Determination of rumen degradability and ruminal effects of three sources of methionine in lactating cows. Journal of Dairy Science, 2005, 88(1): 223-237. doi:10.3168/jds.S0022-0302(05)72680-1.
[11] MARTIN C, MIRANDE C, MORGAVI D P, FORANO E, DEVILLARD E, MOSONI P. Methionine analogues HMB and HMBi increase the abundance of cellulolytic bacterial representatives in the rumen of cattle with no direct effects on fibre degradation. Animal Feed Science and Technology, 2013, 182(1/2/3/4): 16-24. doi:10.1016/ j.anifeedsci.2013.03.008.
[12] 周帥, 韓兆玉, 劉軍彪, 王群, 唐波. 蛋氨酸羥基類似物異丙酯對(duì)瘤胃體外發(fā)酵參數(shù)的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2012, 24(6): 1105-1109. doi:10.3969/j.issn.1006-267x.2012.06.016.
ZHOU S, HAN Z Y, LIU J B, WANG Q, TANG B. Influence of 2-hydroxy-4-(methylthio)butanoic acid isopropyl ester on rumen fermentation parameters. Acta Zoonutrimenta Sinica, 2012, 24(6): 1105-1109. doi:10.3969/j.issn.1006-267x.2012.06.016. (in Chinese)
[13] FOWLER C M, PLANK J E, DEVILLARD E, BEQUETTE B J, FIRKINS J L. Assessing the ruminal action of the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid in continuous and batch cultures of mixed ruminal microbes. Journal of Dairy Science, 2015, 98(2): 1167-1177. doi:10.3168/jds.2014-8692.
[14] ZINN R A, SHEN Y. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. Journal of Animal Science, 1998, 76(5): 1280-1289. doi:10.2527/ 1998.7651280x.
[15] 云強(qiáng). 蛋白水平及Lys/Met對(duì)斷奶犢牛生長(zhǎng)、消化代謝及瘤胃發(fā)育的影響[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2010.
YUN Q. Effects of protein level and Lys/met on performance, nutrient digestibility and rumen development for weaned calves[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[16] NATION RESEARCH COUNCIL. Requirements of Dairy Cattle. 7th revised. W. Washington, D.C.: National Academies Press, 2021. doi:10.17226/25806.
[17] VERDOUW H, VAN ECHTELD C J A, DEKKERS E M J. Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 1978, 12(6): 399-402. doi:10.1016/0043-1354(78) 90107-0.
[18] 王洪榮, 陳旭偉, 王夢(mèng)芝. 茶皂素和絲蘭皂苷對(duì)山羊人工瘤胃發(fā)酵和瘤胃微生物的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(8): 1710-1719.
WANG H R, CHEN X W, WANG M Z. Effect ofsaponin and tea saponin mixture on the rumen fermentation and its fibrolytic bacterial activity in the rusitec substrates with different concentrate to forage ratio. Scientia Agricultura Sinica, 2011, 44(8): 1710-1719. (in Chinese)
[19] SCHLOSS P D, WESTCOTT S L, RYABIN T, HALL J R, HARTMANN M, HOLLISTER E B, LESNIEWSKI R A, OAKLEY B B, PARKS D H, ROBINSON C J, SAHL J W, STRES B, THALLINGER G G, VAN HORN D J, WEBER C F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541. doi:10.1128/AEM.01541-09.
[20] CHEN J, BITTINGER K, CHARLSON E S, HOFFMANN C, LEWIS J, WU G D, COLLMAN R G, BUSHMAN F D, LI H Z. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics, 2012, 28(16): 2106-2113. doi:10.1093/bioinformatics/bts342.
[21] LANGILLE M G I, ZANEVELD J, CAPORASO J G, MCDONALD D, KNIGHTS D, REYES J A, CLEMENTE J C, BURKEPILE D E, VEGA THURBER R L, KNIGHT R, BEIKO R G, HUTTENHOWER C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9): 814-821. doi:10.1038/nbt.2676.
[22] LI Y, BI Y L, DIAO Q Y, PIAO M Y, WANG B, KONG F L, HU F M, TANG M Q, SUN Y, TU Y. The limiting sequence and appropriate amino acid ratio of lysine, methionine, and threonine for seven-to nine-month-old Holstein heifers fed corn-soybean M-based diet. Animals: an Open Access Journal from MDPI, 2019, 9(10): 750. doi:10.3390/ani9100750.
[23] WANG C, LIU H Y, WANG Y M, YANG Z Q, LIU J X, WU Y M, YAN T, YE H W. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. Journal of Dairy Science, 2010, 93(8): 3661-3670. doi:10.3168/jds. 2009-2750.
[24] 王建紅, 刁其玉, 許先查, 屠焰, 張乃鋒, 云強(qiáng). 日糧Lys、Met和Thr添加模式對(duì)0-2月齡犢牛生長(zhǎng)性能、消化代謝與血清學(xué)生化指標(biāo)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(9): 1898-1907. doi:10.3864/j. issn.0578-1752.2011.09.017.
WANG J H, DIAO Q Y, XU X C, TU Y, ZHANG N F, YUN Q. Effects of dietary addition pattern of lysine, methionine and threonine in the diet on growth performance, nutrient digestion and metabolism, and serum biochemical parameters in calves at the ages of 0-2 months. Scientia Agricultura Sinica, 2011, 44(9): 1898-1907. doi:10.3864/j. issn.0578-1752.2011.09.017. (in Chinese)
[25] SOK M, OUELLET D R, FIRKINS J L, PELLERIN D, LAPIERRE H. Amino acid composition of rumen bacteria and protozoa in cattle. Journal of Dairy Science, 2017, 100(7): 5241-5249. doi:10.3168/jds. 2016-12447.
[26] BERGEN W G. Measuringintracellular protein degradation rates in animal systems. Journal of Animal Science, 2008, 86(suppl_ 14): E3-E12. doi:10.2527/jas.2007-0430.
[27] KOENIG K M, RODE L M. Ruminal degradability, intestinal disappearance, and plasma methionine response of rumen-protected methionine in dairy cows. Journal of Dairy Science, 2001, 84(6): 1480-1487. doi:10.3168/jds.S0022-0302(01)70181-6.
[28] BREVES G, SCHR?DER B, HEIMBECK W, PATTON R A. Short communication: transport of 2-hydroxy-4-methyl-thio-butanoic isopropyl ester by rumen epithelium. Journal of Dairy Science, 2010, 93(1): 260-264. doi:10.3168/jds.2009-2200.
[29] OR-RASHID M M, ONODERA R, WADUD S. Biosynthesis of methionine from homocysteine, cystathionine and homoserine plus cysteine by mixed rumen microorganisms. Applied Microbiology and Biotechnology, 2001, 55(6): 758-764. doi:10.1007/ s002530100548.
[30] BAGHBANZADEH-NOBARI B, TAGHIZADEH A, KHORVASH M, PARNIAN-KHAJEHDIZAJ F, MALONEY S K, HASHEMZADEH- CIGARI F, GHAFFARI A H. Digestibility, ruminal fermentation, blood metabolites and antioxidant status in ewes supplemented with DL-methionine or hydroxy-4 (methylthio) butanoic acid isopropyl ester. Journal of Animal Physiology and Animal Nutrition, 2017, 101(5): e266-e277. doi:10.1111/jpn.12600.
[31] ABDELMEGEID M K, ELOLIMY A A, ZHOU Z, LOPREIATO V, MCCANN J C, LOOR J J. Rumen-protected methionine during the peripartal period in dairy cows and its effects on abundance of major species of ruminal bacteria. Journal of Animal Science and Biotechnology, 2018, 9: 17. doi:10.1186/s40104-018-0230-8.
[32] 林奕, 王之盛, 周安國(guó). 2-羥基-4-甲硫基丁酸異丙酯(HMBi)以及2-羥基-4-甲硫基丁酸(HMB)在反芻動(dòng)物中的應(yīng)用. 中國(guó)奶牛, 2008(11): 11-15.
LIN Y, WANG Z S, ZHOU A G. Application of 2-Hydroxy-4- (Methylthio) butanoic acid isopropyl ester and Methionine hydroxyl analogue in ruminants. China Dairy Cattle, 2008(11): 11-15. (in Chinese)
[33] KRAATZ M, WALLACE R J, SVENSSON L.sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of,uli and. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 4): 795-803. doi:10.1099/ijs.0.022954-0.
[34] KHAFIPOUR E, LI S C, PLAIZIER J C, KRAUSE D O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 75(22): 7115-7124. doi:10.1128/AEM.00739-09.
[35] LEE C, OH J, HRISTOV A N, HARVATINE K, VAZQUEZ-ANON M, ZANTON G I. Effect of 2-hydroxy-4-methylthio-butanoic acid on ruminal fermentation, bacterial distribution, digestibility, and performance of lactating dairy cows. Journal of Dairy Science, 2015, 98(2): 1234-1247. doi:10.3168/jds.2014-8904.
[36] KONG F L, GAO Y X, TANG M Q, FU T, DIAO Q Y, BI Y L, TU Y. Effects of dietary rumen-protected Lys levels on rumen fermentation and bacterial community composition in Holstein heifers. Applied Microbiology and Biotechnology, 2020, 104(15): 6623-6634. doi:10. 1007/s00253-020-10684-y.
[37] DENMAN S E, MORGAVI D P, MCSWEENEY C S. Review: The application of omics to rumen microbiota function. Animal, 2018, 12: s233-s245. doi:10.1017/S175173111800229X.
Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves
KONG FanLin1, LI Yuan1, FU Tong2, DIAO QiYu1, TU Yan1
1Feed Research Institute, Chinese Academy of Agricultural Sciences/Beijing Key Laboratory for Dairy Cow Nutrition, Beijing 100081;2College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000
【】2-Hydroxy-4-(Methylthio)-Butanoic Acid (HMBi) is widely used to satisfy the absent of methionine (Met) in ruminal diet. Although the characteristic of HMBi is a rumen protected product, there is still an amount of HMBi degraded in rumen, which should be taken seriously. Hence, this study was conducted to evaluate the effects of HMBi on rumen fermentation and microbiota. 【】The experiment was conducted for 97 days with 36 Holstein female calves aged about 84 day-old with (101±10) kg body weight, and those calves were allocated to 2 groups, including PC group (0.40% Met) and PCMet group (0.28% Met). The treatment was achieved by deducting HMBi in diet of PCMet group and made Met level 30% lower than that of PC group. The first 7 d were an adaptation to the diets and the next 90 d for sampling. The body weight was measured at 0 d and 90 d, respectivley. The dry matter intake was recorded daily throughout the whole trial period. The serum and rumen fluid samples from five calves in each group were sampled on day 90 to determine rumen fermentation parameters and microbial communities. 【】(1) Compared with PC group, the growth performance of PCMet group was not changed (>0.05). The Met in serum of PCMet group had trend to be significantly decreased when compared with PC group (0.05<<0.1); (2) The molar proportion of acetate and microprotein concentration in PCMet group was significantly decreased by Met deduction (<0.05). There were no significant differences on concentrations of total volatile fatty acid and ammonia nitrogen between two groups (>0.05). (3) The Shannon index of microbiota in PCMet group was lower than that in PC group (<0.05). The PCoA and PREANOVA analysis showed the significant distinction between microbiota in two groups (<0.05). Furthermore, the relative abundance of Firmicutes in PCMet group was decreased and the relative abundance of Bacteroidetes was increased when compared with PC group (<0.05). At genus level, the relative abundance of,group,,group, andwere decreased in PCMet group (<0.05). The correlation analysis showed thatgroupandwere significantly correlated with acetate andgroup was significantly correlated with MCP (<0.05,>0.7). 【】The ruminal microbiota was inhibited by HMBi deduction, which led to the decrease of MCP and Shannon index. Among them, the acetogen was sensitive with HMBi. In conclusion, although HMBi was a rumen protected product, the part of HMBi degraded in rumen still had the ability to regulate rumen fermentation.
HMBi; female calves; microbiota; rumen fermentation parameters
10.3864/j.issn.0578-1752.2022.04.014
2020-06-30;
2021-12-30
河北省重點(diǎn)研發(fā)計(jì)劃(19226621D)、河南省科技開(kāi)放合作項(xiàng)目(182106000035)、奶牛產(chǎn)業(yè)技術(shù)體系北京市創(chuàng)新團(tuán)隊(duì)項(xiàng)目(BAIC06-2017)
孔凡林,Tel:13240129429;E-mail:a895833622@163.com。通信作者屠焰,E-mail:tuyan@caas.cn
(責(zé)任編輯 林鑒非)