国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

秸稈分解對(duì)兩種類型土壤無機(jī)氮和氧化亞氮排放的影響

2022-04-21 08:24張學(xué)林吳梅何堂慶張晨曦田明慧李曉立侯小畔郝曉峰楊青華李潮海
關(guān)鍵詞:黑土無機(jī)氮肥

張學(xué)林,吳梅,何堂慶,張晨曦,田明慧,李曉立,侯小畔,郝曉峰,楊青華,李潮海

秸稈分解對(duì)兩種類型土壤無機(jī)氮和氧化亞氮排放的影響

張學(xué)林,吳梅,何堂慶,張晨曦,田明慧,李曉立,侯小畔,郝曉峰,楊青華,李潮海

河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/省部共建小麥玉米作物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室/2011河南糧食作物協(xié)同創(chuàng)新中心,鄭州 450002

【】明確作物秸稈分解對(duì)土壤無機(jī)氮和氧化亞氮(N2O)排放的影響,為不同土壤類型采用合理的氮肥用量,促進(jìn)秸稈分解、增加土壤可利用養(yǎng)分、減少N2O等溫室氣體排放提供理論依據(jù)。室內(nèi)采用尼龍網(wǎng)袋法,設(shè)置秸稈類型(小麥和玉米)、土壤類型(潮土和砂姜黑土)和氮肥用量(N0:0,N1:180 kg N·hm-2,N2:360 kg N·hm-2)三因素培養(yǎng)試驗(yàn),并設(shè)置無秸稈無氮肥為對(duì)照(CK),測(cè)定了土壤無機(jī)氮含量、N2O和CO2排放通量以及土壤酶活性等參數(shù)。與CK相比,添加作物秸稈的N0處理土壤無機(jī)氮含量顯著降低,每添加1 g小麥或玉米秸稈平均減少0.8 mg或0.4 mg土壤無機(jī)氮。與潮土相比,不同氮肥用量條件下砂姜黑土添加小麥秸稈后土壤無機(jī)氮含量降低16%,而添加玉米秸稈后增加41%。與添加小麥秸稈相比,潮土和砂姜黑土添加玉米秸稈后無機(jī)氮含量分別增加111%和252%。兩種土壤添加小麥或玉米秸稈均促進(jìn)N2O和CO2排放。與CK相比,添加小麥秸稈和玉米秸稈的N0處理土壤N2O排放累積量分別增加70%和47%;CO2排放累積量增加346%和154%;全球變暖潛力增加53%和71%。與潮土相比,砂姜黑土添加小麥秸稈和玉米秸稈后N2O排放通量降低38%和61%,N2O排放累積量降低12%和51%,CO2排放累積量降低28%和16%。與潮土相比,砂姜黑土添加小麥秸稈的全球變暖潛力增加13%,而添加玉米秸稈卻降低44%。與添加小麥秸稈相比,潮土和砂姜黑土添加玉米秸稈后N2O排放累積量分別增加88%和6%;CO2排放累積量降低21%和6%。不同氮肥用量和土壤類型條件下添加玉米秸稈的全球變暖潛力比小麥秸稈高91%。與N0和N2處理相比,砂姜黑土添加小麥秸稈或玉米秸稈的同時(shí)配施適量氮肥(N1)降低N2O排放量以及全球變暖潛力。與CK相比,兩種土壤類型添加小麥或玉米秸稈后土壤蔗糖酶活性增加,而過氧化氫酶和氧氣含量降低。與添加小麥秸稈相比,兩種土壤添加玉米秸稈后脲酶、蔗糖酶、過氧化氫酶活性降低。與潮土相比,砂姜黑土添加作物秸稈后脲酶、過氧化氫酶活性降低,氧氣含量增加;而過氧化氫酶活性和氧氣含量均與N2O排放通量呈顯著負(fù)相關(guān)。小麥和玉米秸稈分解均降低土壤無機(jī)氮含量、促進(jìn)溫室氣體排放。玉米秸稈分解過程中土壤無機(jī)氮含量和N2O排放量均高于小麥秸稈;潮土添加小麥或玉米秸稈的N2O排放量高于砂姜黑土;砂姜黑土添加小麥或玉米秸稈并配施適量氮肥不會(huì)增加土壤N2O排放和全球變暖潛力。生產(chǎn)上秸稈還田應(yīng)綜合考慮秸稈類型、土壤類型和氮肥用量。

秸稈;潮土;砂姜黑土;溫室氣體;氮素礦化;全球變暖潛力

0 引言

【研究意義】氧化亞氮(N2O)作為重要的溫室氣體,其排放量不斷增加是導(dǎo)致全球變暖這一生態(tài)環(huán)境問題的根源[1-2]。農(nóng)田是該溫室氣體的重要排放源,其排放通量受土壤類型、氮肥用量、秸稈類型等因素的影響[3-5]。秸稈分解一方面釋放出作物生長(zhǎng)需要的大量可利用性養(yǎng)分;另一方面通過影響微生物活動(dòng),調(diào)控N2O排放[6-8]。研究不同土壤類型條件下作物秸稈分解對(duì)土壤可利用性氮素供應(yīng)和溫室氣體排放的影響,對(duì)于采取合理的秸稈還田管理措施提高土壤養(yǎng)分含量、減少溫室氣體排放,實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】大田試驗(yàn)和室內(nèi)培養(yǎng)研究表明,不同秸稈類型對(duì)土壤N2O排放的影響存在差異[9-12]。一些研究認(rèn)為秸稈分解增加土壤N2O的排放[13-15],但YANG等[10]的研究結(jié)果則相反。BASCHE等[16]采用Meta分析發(fā)現(xiàn),40%的作物秸稈分解過程中降低N2O排放,而60%的秸稈分解促進(jìn)N2O排放。秸稈類型對(duì)N2O排放的影響主要與秸稈品質(zhì)有關(guān)[9,14,17]。普遍認(rèn)為低C/N比的作物秸稈促進(jìn)N2O排放[18-19],而高C/N比的作物秸稈抑制N2O排放[20-21];然而,也有研究認(rèn)為高C/N比作物秸稈增加氧氣(O2)消耗,促進(jìn)N2O排放[22]。秸稈分解過程中受氮肥用量[23-24]和土壤類型[12,22,25]的影響,N2O排放特征不同。普遍認(rèn)為秸稈分解過程中增施氮肥促進(jìn)土壤氮素礦化,形成更多的礦物氮[9,26-27],增加N2O排放量[12,23];而SHAN等[11]采用Meta分析發(fā)現(xiàn),添加氮肥后秸稈分解抑制N2O的排放;WU等[8]也認(rèn)為增施氮肥不影響土壤N2O的排放。土壤通透性對(duì)土壤硝化和反硝化作用以及 N2O 在土壤中的擴(kuò)散速率影響較大,且顯著影響土壤有機(jī)質(zhì)的分解速率[6,25,28]。STEHFEST等[29]發(fā)現(xiàn),以黏粒為主的土壤N2O排放量是砂質(zhì)土壤的1.5倍,細(xì)質(zhì)土壤比粗質(zhì)土壤產(chǎn)生更多的N2O排放量[30-32]。徐華等[33]也認(rèn)為,壤質(zhì)土壤排放的N2O高于砂質(zhì)和黏質(zhì)土壤,主要是由于細(xì)質(zhì)土壤中較小的顆粒尺寸增加了缺氧微位,反硝化產(chǎn)生的N2O排放量更多[31];而重質(zhì)地土壤N2O排放量高于輕質(zhì)地土壤,是由重質(zhì)地土壤較強(qiáng)的保水能力所致?!颈狙芯壳腥朦c(diǎn)】前人研究了秸稈分解過程中氮肥用量對(duì)N2O排放的影響,而關(guān)于土壤類型對(duì)N2O排放影響方面的研究相對(duì)較少,秸稈分解過程中不同土壤類型之間影響N2O排放的機(jī)制也不清楚,對(duì)這些管理措施的交互作用鮮有報(bào)道?!緮M解決的關(guān)鍵問題】室內(nèi)培養(yǎng)條件下,選用小麥和玉米兩種特性不同的秸稈,分析秸稈類型、土壤類型和氮肥用量三因素對(duì)土壤可利用性氮素、溫室氣體排放的影響,以期為不同氮肥用量和土壤類型制定合理的秸稈還田措施,為農(nóng)田培肥減排綠色生產(chǎn)提供技術(shù)支撐。

1 材料與方法

1.1 土壤和作物秸稈收集

室內(nèi)培養(yǎng)試驗(yàn)選用黃淮海兩種代表性土壤類型:潮土(Fluvo-aquic soil,AS)和砂姜黑土(Shajiang black soil,LS)。潮土取自河南農(nóng)業(yè)大學(xué)毛莊農(nóng)場(chǎng)農(nóng)田0-20 cm土層(113.59 E,34.86 N);砂姜黑土取自駐馬店西平縣二郎鄉(xiāng)張堯村0-20 cm土層(114.02E,33.38N)。土壤風(fēng)干過2 mm篩后測(cè)定其基本理化特性(表1),土壤質(zhì)地采用濕篩法分析潮土(AS)和砂姜黑土(LS)砂粒、粉粒和黏粒比重。2015年6月和10月于小麥和玉米成熟期收集其秸稈,秸稈主要由莖和葉組成,60 ℃烘干至恒重后切成1 cm段用于培養(yǎng)試驗(yàn),并測(cè)定其基本理化特性(表1)。其中AS土壤pH顯著高于LS;兩種土壤質(zhì)地的砂粒和粉粒差異較大。小麥秸稈中碳、氮、可溶性糖含量均低于玉米秸稈,但其C/N比顯著高于玉米秸稈(表1)。

1.2 試驗(yàn)設(shè)計(jì)和室內(nèi)培養(yǎng)

本試驗(yàn)為秸稈類型(小麥和玉米)、土壤類型(潮土和砂姜黑土)、氮肥用量(N0:0,N1:180 kg N·hm-2,N2:360 kg N·hm-2)三因素試驗(yàn)設(shè)計(jì),并設(shè)不添加作物秸稈和氮肥為對(duì)照(CK),氮肥選用尿素,所有處理均重復(fù)4次。

表1 兩種土壤類型或秸稈類型之間基本參數(shù)的比較

*,**和***表示兩種土壤類型性狀之間或兩種秸稈類型性狀之間在0.05,0.01和0.001水平的差異顯著性。下同

*, ** and*** indicated the significant difference of soil properties between two soil types or residue characteristics between two residue types at 0.05, 0.01 and 0.001 levels, respectively. The same as below

2015年12月采用尼龍網(wǎng)分解袋+培養(yǎng)瓶法于室內(nèi)培養(yǎng)箱進(jìn)行培養(yǎng)試驗(yàn)[34]。具體做法為:選用容積為1 L的廣口培養(yǎng)瓶,先在培養(yǎng)瓶底部平鋪100 g過篩風(fēng)干土,后將裝有 10 g小麥或玉米秸稈的分解袋(規(guī)格為 10 cm×10 cm,網(wǎng)孔1 mm2)放入培養(yǎng)瓶?jī)?nèi);再在分解袋上部添加土400 g。根據(jù)培養(yǎng)瓶容積和土壤重量,計(jì)算出培養(yǎng)瓶?jī)?nèi)土壤容重 1.2 g·cm-3條件下的裝土高度,進(jìn)而調(diào)整分解袋與土壤在培養(yǎng)瓶?jī)?nèi)的緊實(shí)度?;诿總€(gè)培養(yǎng)瓶裝土量為500 g,按照每公頃土壤2 000 000 kg,計(jì)算出每個(gè)氮肥處理每個(gè)培養(yǎng)瓶?jī)?nèi)的氮肥使用量。將裝有樣品的培養(yǎng)瓶在培養(yǎng)箱內(nèi)預(yù)處理7 d,使所有培養(yǎng)瓶?jī)?nèi)土壤水分保持在田間持水量的 60%左右,后把定量尿素溶于蒸餾水,均勻噴灑于培養(yǎng)土壤的表層;CK處理添加相同體積的蒸餾水。試驗(yàn)期間培養(yǎng)箱內(nèi)溫度設(shè)定為20℃左右,根據(jù)需要每2—3天采用稱重法調(diào)控土壤含水量。秸稈分解試驗(yàn)持續(xù) 180 d,7次破壞性取樣,共計(jì)392個(gè)培養(yǎng)瓶。

1.3 氣體采集及樣品測(cè)定

施肥后第1、2、3、4、5、6、30、60、90、120、150和180天采集土壤N2O氣體。采樣時(shí)間一般為上午8:00—11:00,抽氣時(shí)間點(diǎn)分別為密封前的0 min (即C0)和密封后30 min (即Ct),每次取樣25 mL,并記錄培養(yǎng)箱內(nèi)的溫度。所抽氣體樣品用日本島津氣相色譜儀GC-2010 測(cè)定N2O的濃度,N2O氣體排放通量計(jì)算公式為:

N2O flux (mg·m-2·h-1)= {(Ct ? C0)×3.2×V/A×[1/0.0821×(273 + T)]}×28×60/30/1000式中,C0為試驗(yàn)開始0時(shí)的氣體濃度,Ct為培養(yǎng)30 min時(shí)的氣體濃度,V為培養(yǎng)瓶土壤上部體積,A為培養(yǎng)瓶底部面積,T為培養(yǎng)箱內(nèi)溫度。

采用H3860 B紅外氣體分析儀(中國(guó)北京華和天地有限公司)分別于施肥后0、30、60、90、120、150和180 d (間隔30 d)測(cè)定培養(yǎng)瓶?jī)?nèi)土壤CO2排放通量,計(jì)算公式為:

CO2(mg·kg-1·h-1) = (W2-W1)×V×M×1000/(ms×t)

式中,W1為試驗(yàn)開始0 時(shí)的氣體濃度(mg·L-1),W2為培養(yǎng)30 min 時(shí)的氣體濃度(mg·L-1),V為容量瓶的總體積(mL),M為CO2的原子量(44.0 g·mol-1),ms為土壤重量(g),t為30 min。

以100 年時(shí)間尺度為計(jì),計(jì)算全球變暖潛力(Global Warming Potential, GWP),即以CO2作為參考?xì)怏w(CO2的GWP值為1),1 kg N2O的變暖潛力是 1 kg CO2的298倍[21],其全球變暖潛力計(jì)算公式為:

GWP = TCO2+ TN2O×298

式中,GWP表示全球變暖潛力(kg CO2-e·hm-2),即二氧化碳和氧化亞氮排放量的總CO2當(dāng)量;TCO2表示CO2累積排放量;TN2O表示N2O的累積排放量。

于施肥后0、30、60、90、120、150和180 d 進(jìn)行破壞性取樣,用50 mL 2 mol·L-1KCL浸提并流動(dòng)分析儀(Skalar autoanalyzer SANPlus,荷蘭)測(cè)定土壤硝態(tài)氮(NO3--N)、銨態(tài)氮(NH4+-N)含量,計(jì)算無機(jī)氮(NO3--N+NH4+-N)含量;同時(shí)測(cè)定秸稈可溶性糖含量、土壤酶活性等參數(shù)。其中土壤O2含量采用Pyro Science FireSting O2(德國(guó))公司光纖式氧氣測(cè)量?jī)x測(cè)定。土壤和作物秸稈全碳采用重鉻酸鉀-硫酸外加熱法測(cè)定,全氮采用凱氏定氮法,全磷采用鉬銻抗比色法測(cè)定,蒽酮比色法測(cè)定小麥和玉米秸稈中可溶性糖含量,土壤pH采用1﹕5水土比測(cè)定,土壤速效氮、速效磷、脲酶、過氧化氫酶、蛋白酶和蔗糖酶等采用文獻(xiàn)[35-36]中方法測(cè)定。

1.4 統(tǒng)計(jì)分析

采用GLM-ANOVA分析秸稈類型、土壤類型和氮肥用量對(duì)土壤無機(jī)氮含量、N2O排放通量、CO2排放通量、N2O排放累積量、CO2排放累積量、全球變暖潛力、秸稈可溶性糖、土壤脲酶、過氧化氫酶、蛋白酶、蔗糖酶和O2含量的影響,并采用Duncan比較處理之間的差異性;采用paired -T test比較兩種土壤類型和兩種秸稈類型之間的差異性;采用Pearson correlation 分析N2O排放通量與其他參數(shù)的相關(guān)性。所有數(shù)據(jù)均采用SPSS 19.0軟件進(jìn)行分析,并采用Sigmaplot 12.5進(jìn)行作圖。

2 結(jié)果

2.1 秸稈類型、土壤類型和氮肥用量對(duì)土壤無機(jī)氮的影響

試驗(yàn)培養(yǎng)期間,土壤NO3--N(圖1-A,1-B,1-C,1-D)、NH4+-N (圖1-E,1-F)和無機(jī)氮(圖1-I,1-J,1-K,1-L)含量均呈增加趨勢(shì),但添加玉米秸稈的土壤NH4+-N含量(圖1-G,1-H)呈先升高后降低趨勢(shì)。與CK相比,潮土和砂姜黑土添加小麥秸稈的N0處理無機(jī)氮含量分別減少9.56和22.69 mg·kg-1,添加玉米秸稈的N0處理分別減少11.67和2.98 mg·kg-1(表2),由此計(jì)算出500 g潮土和砂姜黑土中添加10 g小麥秸稈后的減少量分別為4.78和11.35 mg;添加10 g玉米秸稈的無機(jī)氮減少量為5.84和1.49 mg,說明兩種土壤類型每分解1 g小麥秸稈消耗無機(jī)氮量為0.5—1.1 mg,分解1 g玉米秸稈的消耗量為0.1—0.6 mg,據(jù)此可為秸稈還田補(bǔ)施氮肥提供依據(jù)。與潮土相比,不同氮肥用量條件下砂姜黑土添加小麥秸稈后無機(jī)氮含量均值降低16%,而添加玉米秸稈后增加41%,說明不同氮肥用量條件下潮土添加小麥秸稈能夠分解釋放更多的無機(jī)氮,而玉米秸稈更適宜在砂姜黑土中施用。與添加小麥秸稈相比,潮土和砂姜黑土添加玉米秸稈后無機(jī)氮含量分別增加111%和252%,說明不同氮肥條件下玉米秸稈比小麥秸稈分解釋放出更多的無機(jī)氮。

表2 秸稈類型、土壤類型和氮肥用量對(duì)土壤無機(jī)氮、溫室氣體排放和全球變暖潛力的影響

均值后不同字母表示處理間<0.05水平的差異顯著性。Tr:處理;INN:無機(jī)氮。下同

Different letters in the same column indicate a significant difference among treatments at<0.05 level. Tr: Treatment; INN: Inorganic N. The same as below

圖1 小麥和玉米秸稈分解過程中土壤NO3--N (A,B,C,D)、NH4+-N (E,F(xiàn),G,H)和無機(jī)氮含量(I,J,K,L)動(dòng)態(tài)變化

2.2 秸稈類型、土壤類型和氮肥用量對(duì)土壤N2O、CO2排放通量和全球變暖潛力的影響

試驗(yàn)培養(yǎng)期間,小麥秸稈和玉米秸稈分解過程中土壤N2O排放通量最大值均出現(xiàn)在施肥后第1—4天(圖2),后逐漸下降。與CK相比,添加小麥秸稈和玉米秸稈的N0處理土壤N2O排放通量分別平均增加254%和13%,累積量增加70%和47%(表2),說明秸稈還田增加土壤N2O排放通量和累積量。與潮土相比,不同氮肥用量條件下砂姜黑土添加小麥秸稈后N2O排放通量和排放累積量分別降低38%和12%,添加玉米秸稈則分別降低61%和 51%,說明潮土添加小麥秸稈或玉米秸稈后均比砂姜黑土排放更多的N2O。與小麥秸稈相比,不同氮肥用量條件下潮土添加玉米秸稈后N2O排放累積量增加88%,而砂姜黑土增加6%,說明不同土壤添加玉米秸稈比小麥秸稈釋放更多的N2O溫室氣體。

圖2 小麥和玉米秸稈分解過程中土壤N2O排放通量動(dòng)態(tài)變化

秸稈類型、土壤類型和氮肥量顯著影響土壤CO2排放通量和累積量(表2,圖3)。與CK相比,N0處理添加小麥秸稈和玉米秸稈后土壤CO2排放累積量分別增加346%和154%,說明秸稈還田促進(jìn)土壤CO2排放。與潮土相比,不同氮肥用量條件下砂姜黑土添加小麥秸稈和玉米秸稈的CO2排放累積量分別降低28%和16%,說明小麥秸稈和玉米秸稈均在潮土排放更多的CO2。與小麥秸稈相比,不同氮肥用量條件下潮土添加玉米秸稈后CO2排放累積量降低21%,在砂姜黑土中降低6%,說明不同土壤類型添加玉米秸稈分解釋放的CO2比添加小麥秸稈少。

與CK相比,N0處理添加小麥秸稈和玉米秸稈后全球變暖潛力分別增加53%和71%(表2)。與潮土相比,不同氮肥用量條件下砂姜黑土添加小麥秸稈的全球變暖潛力增加13%,而添加玉米秸稈卻降低44%。說明小麥秸稈在砂姜黑土上對(duì)全球變暖的貢獻(xiàn)高于玉米秸稈,而在潮土上的貢獻(xiàn)低于玉米秸稈。與小麥秸稈相比,不同氮肥用量和土壤類型條件下添加玉米秸稈的全球變暖潛力提高91%。與N0和N2相比,砂姜黑土添加小麥秸稈或玉米秸稈的N1處理N2O排放累積量均降低,其中添加小麥秸稈后的全球變暖潛力降低6%和14%,添加玉米秸稈后的潛力降低4%和11%,說明砂姜黑土添加小麥秸稈或玉米秸稈的同時(shí)配施適量氮肥能夠減弱N2O溫室氣體排放量及其全球變暖潛力。

2.3 秸稈類型、土壤類型和氮肥用量對(duì)秸稈可溶性糖和土壤特性的影響

與N0相比,潮土和砂姜黑土兩個(gè)氮肥處理(N1和N2)的小麥秸稈可溶性糖含量均值分別增加7%和4%,而玉米秸稈的可溶性糖含量分別降低12%和5%(表3)。說明小麥秸稈分解過程中從土壤中固持部分碳素,而玉米秸稈分解釋放出大量碳素。與小麥秸稈相比,不同氮肥用量條件下潮土添加的玉米秸稈的可溶性糖含量提高49%,而砂姜黑土的提高40%。與N0相比,增施氮肥降低土壤脲酶、過氧化氫酶活性。與CK相比,潮土和砂姜黑土添加小麥秸稈的N0處理脲酶活性分別增加9%和26%,而添加玉米秸稈后活性降低。不同氮肥用量條件下,潮土添加小麥秸稈土壤脲酶活性均值比添加玉米秸稈提高38%,而在砂姜黑土則提高50%。

圖3 小麥和玉米秸稈分解過程中土壤CO2排放通量動(dòng)態(tài)變化

與CK相比,潮土N0處理添加小麥秸稈和玉米秸稈后土壤蔗糖酶活性分別增加13%和8%,砂姜黑土酶活性分別增加34%和5%,而過氧化氫酶和氧氣含量均降低(表3和圖4)。與小麥秸稈相比,潮土添加玉米秸稈后土壤脲酶、蛋白酶和蔗糖酶活性分別降低38%、15%和71%,而砂姜黑土的脲酶、過氧化氫酶和蔗糖酶分別降低50%、15%和82%。與潮土相比,砂姜黑土添加小麥秸稈后脲酶、過氧化氫酶和蛋白酶分別降低68%、9%和19%,蔗糖酶和氧氣分別增加16%和10%;而添加玉米秸稈后脲酶、過氧化氫酶和蔗糖酶活性分別降低74%、21%和27%,氧氣含量增加4%。潮土中部分土壤轉(zhuǎn)化酶活性高于砂姜黑土(表3),說明添加秸稈對(duì)不同土壤類型氮素轉(zhuǎn)運(yùn)過程的調(diào)控作用不同,其中對(duì)潮土氮素轉(zhuǎn)化的促進(jìn)作用強(qiáng)于砂姜黑土,這可能是潮土釋放更多N2O的緣故。潮土中CO2排放量顯著高于砂姜黑土(表2),說明潮土中微生物生長(zhǎng)更快、活性更強(qiáng),微生物呼吸產(chǎn)生的厭氧微粒體與秸稈分解增加微生物生長(zhǎng)和活性碳底物的供應(yīng)均促進(jìn)氧的消耗,產(chǎn)生臨時(shí)厭氧微粒體,同時(shí)導(dǎo)致土壤O2含量降低(圖4)。

2.4 土壤N2O和CO2排放通量與其他參數(shù)之間的相關(guān)性

土壤N2O排放通量與土壤無機(jī)氮(小麥秸稈砂姜黑土除外)、過氧化氫酶(小麥秸稈潮土除外)、蔗糖酶(玉米秸稈潮土除外)、土壤氧氣(小麥秸稈潮土除外)含量均顯著相關(guān)(表4)。潮土和砂姜黑土添加小麥秸稈的CO2排放通量與脲酶、過氧化氫酶、蔗糖酶和氧氣含量均顯著相關(guān)。

表3 秸稈類型、土壤類型和氮肥用量對(duì)秸稈可溶性糖含量、土壤酶活性和O2含量的影響

圖4 小麥和玉米秸稈分解過程中土壤O2含量動(dòng)態(tài)變化

表4 土壤N2O和CO2排放累積量與土壤無機(jī)氮、酶活性及其他參數(shù)的相關(guān)性

*,**和***表示0.05,0.01和0.001水平的顯著相關(guān)性

*, ** and*** indicated the significant correlations at 0.05, 0.01 and 0.001 levels, respectively

3 討論

3.1 秸稈分解對(duì)土壤無機(jī)氮和溫室氣體排放的影響

夏志敏等[37]采用室內(nèi)培養(yǎng)發(fā)現(xiàn),玉米秸稈分解過程中土壤礦化氮減少、微生物固持氮素時(shí)間延長(zhǎng)、土壤微生物生物量氮增加。本研究發(fā)現(xiàn)每分解1 g小麥秸稈平均消耗土壤0.8 mg無機(jī)氮,而1 g玉米秸稈消耗0.4 mg無機(jī)氮,按照黃淮海地區(qū)小麥秸稈全量還田8 000 kg·hm-2,需要補(bǔ)充的氮肥用量為6.4 kg·hm-2;而玉米秸稈全量還田9 000 kg·hm-2,需要補(bǔ)充的氮肥用量為3.6 kg N·hm-2。這為依據(jù)秸稈還田量配施適宜的氮肥用量、防止秸稈分解初期生長(zhǎng)作物脫肥提供了參考。

秸稈分解過程中土壤無機(jī)氮含量降低,而N2O排放量增加,一方面是秸稈分解為土壤微生物提供了豐富的碳源[15,37],促進(jìn)微生物生長(zhǎng)、增強(qiáng)微生物活性,土壤微生物固持氮素量增加,降低了土壤無機(jī)氮含量;另一方面土壤N2O排放量與土壤有效氮和氮素轉(zhuǎn)化過程顯著相關(guān)[14,23-24],秸稈分解釋放的小分子態(tài)有機(jī)氮,經(jīng)過土壤礦化形成的土壤無機(jī)氮,為N2O排放提供了充足的底物,也是無機(jī)氮含量降低、N2O排放量增加的主要原因[37]。此外,秸稈分解消耗了大量的氧氣,形成厭氧微環(huán)境,也有利于反硝化過程和N2O排放[22]。本研究發(fā)現(xiàn)作物秸稈分解過程中土壤氧氣含量降低,且氧氣含量與N2O排放量呈顯著負(fù)相關(guān),說明秸稈分解形成的厭氧環(huán)境是促進(jìn)N2O排放的重要原因。

不同作物秸稈分解過程中土壤N2O排放的差異,主要是由于秸稈品質(zhì)如C/N比、秸稈可溶性糖含量等的差異所致[18-21]。BAGGS等[13]和LIN等[14]大田研究發(fā)現(xiàn),土壤N2O排放量與秸稈C/N比呈顯著負(fù)相關(guān);低C/N比的作物秸稈往往分解得更快,增加土壤微生物生物量,促進(jìn)凈氮礦化,增加無機(jī)氮和N2O排放量[18-19]。MUHAMMAD等[15]室內(nèi)培養(yǎng)研究認(rèn)為,玉米秸稈分解增加N2O排放主要是土壤礦質(zhì)態(tài)氮增加的緣故。高C/N比的作物秸稈,特別是含有高度不穩(wěn)定性碳的秸稈,會(huì)促進(jìn)土壤微生物生長(zhǎng),導(dǎo)致微生物氮素需求增加,減少N2O的排放[20-21]。YANG等[10]研究認(rèn)為,高C/N比的玫瑰渣分解降低N2O排放,主要是玫瑰渣分解過程中土壤微生物消耗了大量氧氣,形成的厭氧環(huán)境抑制了氮素自養(yǎng)硝化作用。這可能是本研究中C/N比較低的玉米秸稈具有較高的土壤有效氮和N2O排放量,而C/N比較高的小麥秸稈土壤有效氮和N2O排放量較低的原因[8,38-39]。另外,微生物介導(dǎo)的土壤氮素轉(zhuǎn)化過程(如礦化、反硝化和微生物固持)需要秸稈有機(jī)碳作為能量底物[9,14,17],玉米秸稈易分解的可溶性糖含量比小麥秸稈高,這些易分解的碳水化合物有效促進(jìn)了反硝化過程[2,8,26],也是添加玉米秸稈后土壤N2O排放量較高的原因。

3.2 土壤類型和氮肥用量互作條件下秸稈分解對(duì)溫室氣體排放的影響

普遍認(rèn)為,隨氮肥用量增加延長(zhǎng)了秸稈中氮的礦化周期,增加了礦質(zhì)氮的有效性和土壤N2O排放量[12-13,27];然而也有研究認(rèn)為單一施用作物秸稈增加N2O排放,而作物秸稈與氮肥相結(jié)合則顯著減少N2O排放,其原因是土壤反硝化速率在很大程度上取決于有機(jī)碳的有效性[11],作物秸稈和氮肥交互作用下土壤溶解有機(jī)碳含量下降,N2O排放受到抑制[9,24]。本研究發(fā)現(xiàn)砂姜黑土添加小麥或玉米秸稈后配施適量氮肥,能夠降低土壤N2O排放量和全球變暖潛力(表2),這一結(jié)果對(duì)于特定的土壤類型采用適宜的氮肥管理措施,有效減少秸稈分解過程中溫室氣體排放和增溫潛勢(shì)具有重要意義。

不同土壤類型由于質(zhì)地如砂粒、粉粒和黏粒所占比例以及土壤O2有效性等特性的差異,顯著影響N2O的排放量[22]。本研究表明不同氮肥用量條件下潮土添加小麥或玉米秸稈后N2O排放量均高于砂姜黑土,但其土壤氧氣含量均低于砂姜黑土,可能是潮土氧氣含量低所形成的厭氧環(huán)境促進(jìn)了土壤反硝化[38,40],產(chǎn)生更多的N2O的重要原因[14,23-24]。所有這些表明,秸稈在不同土壤類型分解過程中對(duì)氧氣的消耗、形成的厭氧環(huán)境是促進(jìn)N2O排放的根源。生產(chǎn)上應(yīng)據(jù)此采取合理的管理措施,形成適宜的有氧環(huán)境,減少溫室氣體排放量。

由于本試驗(yàn)僅僅是室內(nèi)培養(yǎng)的結(jié)果,還不能完全反映大田條件下秸稈分解的實(shí)際情況。秸稈還田作為保護(hù)性農(nóng)業(yè)的重要措施,其在生產(chǎn)上的作用越來越受到重視,未來應(yīng)該重點(diǎn)開展以下的研究工作:一是利用室內(nèi)培養(yǎng)與大田試驗(yàn)相結(jié)合的優(yōu)勢(shì),探討秸稈還田培肥地力和調(diào)控溫室氣體排放的機(jī)制。室內(nèi)培養(yǎng)具有研究條件可控、外界因素影響小、研究結(jié)果接近最佳狀態(tài)等特點(diǎn),缺點(diǎn)是研究結(jié)果與生產(chǎn)實(shí)際存在差距;大田試驗(yàn)由于自然因素和人為影響變化復(fù)雜,試驗(yàn)結(jié)果再現(xiàn)性差[34,41]。室內(nèi)培養(yǎng)與大田試驗(yàn)相結(jié)合是明確機(jī)制的最佳策略。二是研究秸稈因素的同時(shí),結(jié)合土壤類型、種植制度、施肥和灌溉等因素對(duì)溫室氣體排放的影響,分析不同因素作用下的綜合效果[42-43]。通過開展不同生態(tài)類型區(qū)秸稈還田與栽培管理等措施交互作用下的長(zhǎng)期定量研究,制定合理的秸稈還田管理技術(shù)體系,實(shí)現(xiàn)培肥減排綠色生產(chǎn)。

4 結(jié)論

小麥秸稈和玉米秸稈分解過程中消耗土壤無機(jī)氮,其中潮土和砂姜黑土每分解1 g小麥秸稈消耗約0.8 mg無機(jī)氮,分解玉米秸稈需消耗0.4 mg的無機(jī)氮。小麥和玉米秸稈的分解均促進(jìn)土壤N2O和CO2的排放量;潮土添加小麥或玉米秸稈后N2O或CO2的排放量均比砂姜黑土高。兩種土壤類型添加玉米秸稈比小麥秸稈排放更多的N2O氣體,但CO2排放量小于小麥秸稈。增施氮肥促進(jìn)土壤N2O排放和全球變暖潛力,但砂姜黑土添加小麥或玉米秸稈并配施適量氮肥能夠降低N2O排放量和全球變暖潛力。生產(chǎn)上為了平衡土壤可利用性氮素供應(yīng)和溫室氣體排放,秸稈還田時(shí)應(yīng)要綜合考慮秸稈類型、土壤類型和氮肥用量。

[1] FRENEY J R, DENMEAD O T, SIMPSON J R. Soil as a source or sink for atmospheric nitrous oxide. Nature, 1978, 273: 530-532. doi: 10.1038/273530a0.

[2] CHEN H H, LI X C, HU F, SHI W. Soil nitrous oxide emissions following crop residue addition: a meta-analysis.Global Change Biology, 2013, 19(10): 2956-2964. doi: org/10.1111/gcb.12274.

[3] HARRION R, WEBB J. A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy, 2001, 73: 65-108. doi: 10.1016/S0065-2113(01)73005-2.

[4] LI X G, JIA B, LV J T, MA Q J, KUZYAKOV Y, LI F M. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112: 47-55. doi: org/10.1016/j.soilbio.2017.04.018.

[5] WEI T, ZHANG P, WANG K, DING R X, YANG B P, NIE J F, JIA Z K, HAN Q F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One, 2015, 10(4): e0120994. doi: 10.1371/ journal.pone.0120994.

[6] 李廷亮, 王宇峰, 王嘉豪, 栗麗, 謝鈞宇, 李麗娜, 黃曉磊, 謝英荷. 我國(guó)主要糧食作物秸稈還田養(yǎng)分資源量及其對(duì)小麥化肥減施的啟示. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(23): 4835-4854. doi: 10.3864/j.issn. 0578-1752.2020.23.010.

LI T L, WANG Y F, WANG J H, LI L, XIE J Y, LI L N, HUANG X L, XIE Y H. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010. (in Chinese)

[7] BEGUM N, GUPPY C, HERRIDGE D, SCHWENKE G. Influence of source and quality of plant residues on emissions of N2O and CO2from a fertile, acidic Black Vertisol. Biology and Fertility of Soils, 2014, 50(3): 499-506. doi: 10.1007/s00374-013-0865-8.

[8] WU Y, LIN S, LIU T, WAN T, HU R. Effect of crop residue returns on N2O emissions from red soil in China. Soil Use and Management, 2016, 32(1): 80-88. doi: 10.1111/sum.12220.

[9] HUANG Y, ZOU J W, ZHENG X H, WANG Y S, XU X K. Nitrous oxide emissions as in?uenced by amendments of plant residues with different C: N ratio. Soil Biology and Biochemistry, 2004, 36(6): 973-981. doi: 10.1016/j.soilbio.2004.02.009.

[10] YANG G R, HAO X Y, LI C L, LI Y M. Effects of greenhouse intensive cultivation and organic amendments on greenhouse gas emission according to a soil incubation study. Archives of Agronomy and Soil Science, 2015, 61(1): 89-103. doi: org/10.1080/03650340. 2014.922177.

[11] SHAN J, YAN X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013, 71: 170-175. doi: org/10.1016/j.atmosenv.2013.02.009.

[12] WEITZ A M, LINDER E, FROLKING S, CRILL P M, KELLER M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil Biology and Biochemistry, 2001, 33(7/8): 1077-1093. doi: org/10.1016/S0038-0717 (01) 00013-X.

[13] BAGGS E M, REES R M, SMITH K A, VINTEN A J A. Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management, 2000, 16: 82-87. doi: org/10.1111/j.1475-2743. 2000.tb00179.x.

[14] LIN S, IQBAL J, HU R G, SHAABAN M, CAI J B, CHEN X. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China. Archives of Environmental Contamination and Toxicology, 2013, 65(2): 183-192. doi: 10.1007/s00244-013-9903-7.

[15] MUHAMMAD W, VAUGHAN S M, DALAL R C, MENZIES N W. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biology and Fertility of Soils, 2011, 47(1): 15-23. doi: 10.1007/s00374-010-0497-1.

[16] BASCHE A D, MIGUEZ F E, KASPAR T C, CASTELLANO M J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 2014, 69(6): 471-482. doi: 10.2489/jswc.69.6.471.

[17] GENTILE R, VANLAUWE B, VAN KESSEL C, SIX J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agriculture, Ecosystems and Environment, 2009, 131(3/4): 308-314. doi: 10.1016/j.agee.2009.02. 003.

[18] MCFARLAND J W, RUESS R W, KIELLAND K, DOYLE A P. Cycling dynamics of NH4+and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems, 2002, 5(8): 775-788. doi: 10.1007/s10021-002-0146-0.

[19] GILLIAM F S, LYTTLE N L, THOMAS A, ADAMS M B. Soil variability along a nitrogen mineralization/nitrification gradient in a nitrogen-saturated hardwood forest. Soil Science Society of America Journal, 2005, 69(1): 247-256.

[20] BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 2006, 38(8): 2219-2232. doi: 10.1016/j.soilbio.2006.01.022.

[21] SCHNECKENBERGER K, DEMIN D, STAHR K, KUZYAKOV Y. Microbial utilization and mineralization of [14C]-glucose added in six orders of concentration to soil. Soil Biology and Biochemistry, 2008, 40(8): 1981-1988. doi: 10.1016/j.soilbio.2008.02. 020.

[22] NETT L, SRADNICK A, FU? R, FLESSA H, FINK M. Emissions of nitrous oxide and ammonia after cauliflower harvest are influenced by soil type and crop residue management. Nutrient Cycling in Agroecosystems, 2016, 106(2): 217-231. doi: 10.1007/s10705-016-9801-2.

[23] FRIMPONG K A, BAGGS E M. Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? Soil Use and Management, 2010, 26(4): 412-424. doi: 10.1111/j.1475- 2743.2010.00293.x.

[24] LIU C Y, WANG K, MENG S X, ZHENG X H, ZHOU Z X, HAN S H, CHEN D L, YANG Z P. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China.Agriculture Ecosystems and Environment, 2011, 140(1/2): 226-233. doi: 10.1016/j.agee.2010. 12.009.

[25] GAILLARD R, DUVAL B D, OSTERHOLZ W R, KUCHARIK C J. Simulated effects of soil texture on nitrous oxide emission factors from corn and soybean agroecosystems in Wisconsin. Journal of Environmental Quality, 2016, 45: 1540-1548. doi: 10.2134/jeq2016. 03.0112.

[26] TOMA Y, HATANO R. Effect of crop residue C:N ratio on N2O emissions from gray lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53(2): 198-205. doi: org/10.1111/j. 1747-0765.2007.00125.x.

[27] BLAGODATSKAYA E V, BLAGODATSKY S A, ANDERSON T H, KUZYAKOV Y. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal of Soil Science, 2009, 60(2): 186-197. doi: org/ 10.1111/j.1365-2389.2008.01103.x.

[28] GU J X, NICOULLAUD B, ROCHETTE P, GROSSEL A, HENAULT C, CELLIER P, RICHARD G. A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biology and Biochemistry, 2013, 60: 134-141. doi: 10.1016/j.soilbio. 2013.01.029.

[29] STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207-228. doi: 10.1007/ s10705-006-9000-7.

[30] VAN GROENIGEN J W, KASPER G J, VELTHOF G L, VAN Den Pol-van DASSELAAR A, KUIKMAN P J. Nitrous oxide emissions from silage maize ?elds under different mineral nitrogen fertilizer and slurry applications. Plant and Soil, 2004, 263: 101-111. doi: 10.1023/ B:PLSO.0000047729.43185.46.

[31] LESSCHEN J P, VELTHOF G L, DE VRIES W, KROS J. Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution, 2011, 159(11): 3215-3222. doi: org/10.1016/j. envpol.2011.04.001.

[32] JIAN S Y, LI J W, CHEN J, WANG G S, MAYES M A, DZANTOR K E, HUI D F, LUO Y Q. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 2016, 101: 32-43. doi: org/10.1016/j.soilbio.2016.07.003.

[33] 徐華, 邢光熹, 蔡祖聰, 鶴田治雄. 土壤水分狀況和質(zhì)地對(duì)稻田N2O排放的影響. 土壤學(xué)報(bào), 2000, 37(4): 499-505.

XU H, XING G X, CAI Z C, HETIAN Z X. Effects of soil water regime and soil texture on N2O emission from rice paddy field. Acta Pedologica Sinica, 2000, 37(4): 499-505. (in Chinese)

[34] 張學(xué)林, 周亞男, 李曉立, 侯小畔, 安婷婷, 王群.氮肥對(duì)室內(nèi)和大田條件下作物秸稈分解和養(yǎng)分釋放的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(10): 1746-1760. doi: 10.3864/j.issn.0578-1752.2019.10.008.

ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760. doi: 10.3864/j.issn. 0578-1752.2019.10.008. (in Chinese)

[35] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 2000.

LU R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science of Technology Press, 2000. (in Chinese)

[36] 關(guān)松蔭. 土壤酶及其研究法. 北京: 農(nóng)業(yè)出版社, 1986.

GUAN S Y. Soil Enzymes and Their Research Methods. Beijing: Agricultural Press, 1986. (in Chinese)

[37] 夏志敏, 周建斌, 梅沛沛, 王平, 桂林國(guó), 李隆. 玉米與蠶豆秸稈配施對(duì)秸稈分解及土壤養(yǎng)分含量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23 (1): 103-108. doi: 10.13287/j.1001-9332.2012.0014.

XIA Z M, ZHOU J B, MEI P P, WANG P, GUI L G, LI L. Effects of combined application of maize-and horsebean straws on the straws decomposition and soil nutrient contents. Chinese Journal of Applied Ecology, 2012, 23(1): 103-108. doi: 10.13287/j. 1001-9332.2012. 0014. (in Chinese)

[38] MILLAR N, NDUFA J K, CADISCH G, BAGGS E M. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochemical Cycles,2004, 18(1): GB1032. doi: 10.1029/2003gb002114.

[39] MANZONI S, JACKSON R B, TROFYMOW J A, PORPORATO A. The global stoichiometry of litter nitrogen mineralization. Science, 2008, 321: 684-686. doi: 10.1126/science.1159792.

[40] QIU Q Y, WU L F, OUYANG Z, LI B B, XU Y Y, WU S S, GREGORICH E G. Effects of plant-derived dissolved organic matter (DOM) on soil CO2and N2O emissions and soil carbon and nitrogen sequestrations. Applied Soil Ecology, 2015, 96: 122-130. doi: 10.1016/j.apsoil.2015.07.016.

[41] 馬小婷, 隋玉柱, 朱振林, 王勇, 李新華. 秸稈還田對(duì)農(nóng)田土壤碳庫和溫室氣體排放的影響研究進(jìn)展. 江蘇農(nóng)業(yè)科學(xué), 2017, 45(6): 14-20. doi: 10.15889 /j.issn. 1002-1302. 2017. 06.003.

MA X T, SUI Y Z, ZHU Z L, WANG Y, LI X H. Effects of straw returning on soil carbon pool and greenhouse gas emissions. Jiangsu Agricultural Sciences. 2017, 45(6): 14-20. doi: 10.15889 /j.issn. 1002-1302. 2017. 06.003. (in Chinese)

[42] 李英臣, 侯翠翠, 李勇, 過治軍. 免耕和秸稈覆蓋對(duì)農(nóng)田土壤溫室氣體排放的影響. 生態(tài)環(huán)境學(xué)報(bào), 2014, 23(6): 1076-1083. doi: 10.16258/j.cnki.1674-5906.2014.06.020.

LI Y C, HOU C C, LI Y, GUO Z J. Effects of no-till and straw mulch on greenhouse gas emission from farmland: A review. Ecology and Environmental Sciences, 2014, 23(6): 1076-1083. doi: 10.16258/ j.cnki.1674-5906.2014.06.020. (in Chinese)

[43] 王淑穎, 李小紅, 程娜, 付時(shí)豐, 李雙異, 孫良杰, 安婷婷, 汪景寬. 地膜覆蓋與施肥對(duì)秸稈碳氮在土壤中固存的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010.

WANG S Y, LI X H, CHENG N, FU S F, LI S Y, SUN L J, AN T T, WANG J K. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578- 1752.2021.02.010. (in Chinese)

Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil

ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai

AgronomyCollege, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops for 2011, Zhengzhou 450002

【】The purpose of this study was to examine the effects of crop residue decomposition on soil available nitrogen (N) and nitrous oxide (N2O) emissions, and provide a theoretical basis for reasonable N fertilizer rate in agricultural soils to promote residue decomposition, to increase soil available nutrients, and to reduce N2O emissions.【】The indoor soil incubations with nylon decomposition bag were conducted to study the effects of crop residue types (wheat and maize), soil types (fluvo-aquic soil: AS and Shajiang black soil: LS) and N fertilizer rates (N0: 0; N1: 180 kg N·hm-2; N2: 360 kg N·hm-2) on soil N2O emission. A control (CK) without residue addition and N fertilizer input was also established for the two soil types. Inorganic N content, N2O and CO2flux, and soil enzyme activity were measured in incubated soil.【】Compared with CK, soil inorganic N content under N0 decreased significantly, which was decreased by 0.8 mg·g-1for 1 g wheat residue addition or 0.4 mg·g-1for 1 g maize residue addition. Compared with AS, soil inorganic N content in LS reduced by 16% with wheat residue addition, by 41% with maize residue addition. Compared with wheat residue addition, soil inorganic N content in AS and LS increased by 111% and 252% with maize residue addition, respectively. Compared with CK, both soil N2O and CO2flux increased with wheat residue or maize residue addition, and the total accumulation of soil N2O flux under N0 treatment increased by 70% and 47% with wheat residue and maize residue addition, by 346% and 154% for CO2accumulation, and by 53% and 71% for global warming potential, respectively. Compared with AS, soil N2O flux in LS reduced by 38% and 61% with wheat residue and maize residue addition, by 12% and 51% for the accumulation of N2O flux, and by 28% and 16% for the accumulation of CO2flux, respectively. And the global warming potential in LS increased by 13% with the wheat residue addition in comparison with that in AS, while declined by 44% with maize residue addition. Compared with wheat residue addition, the accumulation of soil N2O flux with maize residue addition increased by 88% in AS, and by 6% in LS, and reduced by 21% and 6% for the accumulation of soil CO2flux in AS and LS, respectively. And the global warming potential with maize residue addition was 91% higher than that of wheat residue addition under the conditions of different N fertilizer rates and soil types. Compared with N0 and N2, soil N2O flux and their global warming potential under N1 treatment reduced significantly with wheat residue or maize residue addition in LS. Compared with CK, soil invertase activity increased with wheat residue or maize residue addition in both AS and LS, while which declined for soil Catalase and O2content. Compared with wheat residue addition, soil urease activity, Catalase, and invertase activities declined with maize residue addition. Compared with AS, soil urease and catalase activities in LS reduced with wheat residue or maize residue addition, while soil O2content increased. The catalase activities and O2content was significantly and negatively related with soil N2O flux. 【】The decomposition of wheat residue and maize residue reduced soil inorganic N content while increasing soil N2O flux. Soil inorganic N content and N2O flux with maize residue addition were higher than that of wheat residue. Emissions of N2O from Fluvo-aquic soil with wheat or maize residue addition was higher than that from Shajiang black soil. When combined with suitable N fertilizer rate, neither residues additions in Shajiang black soil increased N2O flux and global warming potential. These results suggested that, in the field, comprehensive management methods by returning residue to soil should consider the residue type, soil type and rate of N fertilization.

crop residue; fluvo-aquic soil; Shajiang black soil; greenhouse gas; soil nitrogen mineralization; global warming potential

10.3864/j.issn.0578-1752.2022.04.009

2021-01-11;

2021-03-11

國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2018YFD0200605)、河南省自然科學(xué)基金(182300410013)、河南農(nóng)業(yè)大學(xué)科技創(chuàng)新基金(30500712)

張學(xué)林,Tel:13643867669;E-mail:xuelinzhang1998@163.com,zxl1998@henau.edu.cn

(責(zé)任編輯 李云霞)

猜你喜歡
黑土無機(jī)氮肥
我國(guó)將對(duì)黑土耕地“建檔保護(hù)”
氮肥追施量及追施間隔對(duì)設(shè)施黃瓜生長(zhǎng)的影響
自然資源部:加強(qiáng)黑土耕地保護(hù) 嚴(yán)格耕地用途管制
新時(shí)期海產(chǎn)品無機(jī)砷檢測(cè)與含量控制策略
長(zhǎng)期有機(jī)無機(jī)配施下烤煙-玉米輪作優(yōu)化土壤微生物活化無機(jī)磷*
如何打擊盜土
長(zhǎng)期施肥對(duì)砂姜黑土可溶性碳淋溶的影響
論水稻生產(chǎn)中氮肥追施技術(shù)
朝陽縣大白菜裸地栽培配方施肥效應(yīng)探討
基于不同添加劑的阻燃纖維專利技術(shù)綜述