劉伊銜, 曾志興, 余文茂
(華僑大學(xué) 土木工程學(xué)院, 福建 廈門(mén) 361021)
近年來(lái),對(duì)裝配式鋼筋混凝土(RC)結(jié)構(gòu)及其構(gòu)件的研究取得較大的進(jìn)展,為我國(guó)的建筑工業(yè)化發(fā)展提供基礎(chǔ).灌漿套筒連接作為裝配式RC結(jié)構(gòu)中有效、可靠的縱筋連接方式,隨著裝配式RC結(jié)構(gòu)的發(fā)展得到推廣和應(yīng)用.與現(xiàn)澆方式相比,全灌漿套筒連接是將需要連接的鋼筋分別插入套筒兩端空腔內(nèi),并通過(guò)灌注高強(qiáng)水泥基灌漿料進(jìn)行連接,在連接部位易形成灌漿后澆拼接縫,導(dǎo)致構(gòu)件整體性較差,在地震作用下容易產(chǎn)生破壞,影響結(jié)構(gòu)的整體抗震性能.此外,新舊混凝土的相互作用在不同軸壓比下,力學(xué)性能更加復(fù)雜且差異明顯[1].
目前,國(guó)內(nèi)外學(xué)者對(duì)裝配式構(gòu)件的研究大都以試驗(yàn)為主,研究的重點(diǎn)主要針對(duì)采用灌漿套筒連接的混凝土方柱[2-3]和梁柱節(jié)點(diǎn)[4],而對(duì)裝配式灌漿套筒連接高強(qiáng)混凝土圓柱的研究較少.實(shí)際上,圓柱因其造型美觀,對(duì)風(fēng)、水流的阻力較小,廣泛應(yīng)用于建筑物、橋梁的設(shè)計(jì).Xiao等[5]研究不同截面RC柱的抗震性能,結(jié)果表明,圓柱的抗震性能最好,其次是方柱和棱柱.李晟等[6]以日本DAIKAI地鐵地下車(chē)站結(jié)構(gòu)為基礎(chǔ),建立相應(yīng)的三維有限元模型,分析圓形和方形截面中柱對(duì)車(chē)站主體結(jié)構(gòu)抗震性能的影響,結(jié)果表明,圓柱能增強(qiáng)結(jié)構(gòu)的抗側(cè)移能力,在地震中損傷較小.可見(jiàn),RC柱采用圓形截面可取得更優(yōu)異的抗震性能.此外,Wang等[7]研究軸壓比對(duì)方鋼管混凝土柱抗震性能影響,結(jié)果表明,軸壓比為0.60~0.80時(shí),方鋼管混凝土柱的滯回循環(huán)次數(shù)逐漸減少,延性性能降低.甘丹等[8]研究圓鋼混凝土柱的抗震性能,結(jié)果表明,試件的承載力隨軸壓比的增加而提高,但延性性能逐漸下降.文獻(xiàn)[1-2,4]研究在不同軸壓比下的灌漿套筒柱,結(jié)果表明,灌漿套筒柱峰值承載力隨軸壓比的增大而增大;延性系數(shù)則隨軸壓比增大而減小,剛度退化也越明顯.唐和生等[9]對(duì)比試驗(yàn)結(jié)果,驗(yàn)證帶缺陷灌漿套筒裝配式混凝土柱的有限元模型可以較好地反映裝配式混凝土柱的承載力、剛度和延性性能等情況.因此,軸壓比對(duì)RC柱的抗震性能影響較大,采用有限元模型可以較好地分析RC柱的抗震性能.
綜上所述,現(xiàn)有研究側(cè)重于對(duì)方形截面裝配式柱的研究,對(duì)裝配式混凝土圓柱在不同軸壓比下的抗震性能研究較少.本文基于文獻(xiàn)[10]的試驗(yàn)結(jié)果,研究不同軸壓比對(duì)裝配式全灌漿套筒連接高強(qiáng)混凝土圓柱抗震性能的影響.
圖1 試件配筋圖(單位:mm)Fig.1 Reinforcement of specimen (unit: mm)
試件箍筋選用HPB300級(jí)鋼筋,縱筋選用HRB400級(jí)鋼筋;套筒直徑為48 mm,長(zhǎng)為310 mm;混凝土強(qiáng)度為C60;用厚度為20 mm的坐漿層連接圓柱和地基梁.鋼材力學(xué)性能參數(shù),如表1所示.材料力學(xué)性能參數(shù),如表2所示.表1中:d為鋼筋直徑;fy為鋼筋屈服強(qiáng)度;fb為鋼筋最大抗拉強(qiáng)度;Es為鋼筋彈性模量;fcu,m為混凝土立方體抗壓強(qiáng)度;fc,m為混凝土軸心抗壓強(qiáng)度.
表1 鋼筋力學(xué)性能參數(shù)Tab.1 Mechanical property parameters of steel
表2 材料力學(xué)性能參數(shù)Tab.2 Material mechanical properties parameters
使用位移加載的方式對(duì)柱施加水平往復(fù)荷載,用柱的位移角θ分級(jí)控制加載位移Δ=θ·H(H=1 350 mm),以柱頂水平方向推出為正,拉為負(fù).在試件的彈性階段內(nèi),采用單次循環(huán)加載;進(jìn)入塑性階段后,每級(jí)加載循環(huán)兩次,直至試件承載力下降至峰值承載力的85%,或破壞,停止加載.加載制度,如圖2所示.圖2中:n為加載循環(huán)次數(shù).
圖2 加載制度Fig.2 Loading institution
試件PC-4,PC-1破壞過(guò)程圖,如圖3,4所示.試件PC-4,PC-1最終均發(fā)生壓彎破壞(圖3(c),圖4(c)),試件的破壞過(guò)程基本相同,但試件PC-1損傷破壞發(fā)展較試件PC-4緩慢,且破壞形態(tài)更為嚴(yán)重,材料性能發(fā)揮更加充分.
(a) Δ=8.10 mm (b) Δ=18.14 mm (c) Δ=67.50 mm圖3 試件PC-4破壞過(guò)程圖Fig.3 Failure process of specimen PC-4
(a) Δ=10.80 mm (b) Δ=27.00 mm (c) Δ=53.82 mm圖4 試件PC-1破壞過(guò)程圖Fig.4 Failure process of specimen PC-1
在加載初期,試件處于彈性階段,水平承載力和加載位移呈線性關(guān)系,柱身無(wú)明顯裂縫,當(dāng)試件PC-4加載位移為8.10 mm時(shí),柱身左側(cè)距柱腳300 mm處和右側(cè)距柱腳250 mm處開(kāi)始出現(xiàn)裂縫;當(dāng)試件PC-1加載位移為10.8 mm時(shí),柱身左側(cè)距柱腳250 mm處開(kāi)始出現(xiàn)裂縫;隨加載位移的增加,這3處裂縫逐漸加寬和延伸,坐漿層處出現(xiàn)受拉裂縫.
當(dāng)試件PC-4加載位移為18.14 mm時(shí),柱腳左右側(cè)保護(hù)層混凝土輕微壓碎,坐漿層和柱底界面處裂縫延伸,試件達(dá)到極限承載力,由于反向加載前試件內(nèi)部累積損傷和受灌漿套筒的影響,正、反向荷載分別為154.89,157.43 kN;當(dāng)試件PC-1加載位移為27.0 mm時(shí),達(dá)到破壞,正、反向的荷載分別為260.51,235.33 kN;繼續(xù)加載,坐漿層和柱底界面處裂縫延伸且變寬,柱腳保護(hù)層混凝土壓碎面積增大,試件水平承載力開(kāi)始不斷下降,試件PC-1承載力下降速度比試件PC-4迅速,當(dāng)試件PC-1 加載位移為53.82 mm時(shí),承載力下載至極限承載力85%,先達(dá)到破壞,而試件PC-4加載位移至67.5 mm達(dá)到破壞, 兩試件保護(hù)層混凝土被壓碎不斷剝離,坐漿層與地基梁受拉脫離,鋼筋和灌漿料之間存在不明顯的相對(duì)滑移,整個(gè)過(guò)程未發(fā)現(xiàn)縱向鋼筋屈曲和套筒破壞.
試件的滯回曲線,如圖5(a)所示.由圖5(a)可知:試件屈服前,滯回曲線面積狹窄細(xì)長(zhǎng),耗能能力較弱;達(dá)到屈服后,每一級(jí)加載的峰值荷載點(diǎn)逐漸偏離y軸,滯回環(huán)的面積逐漸增加,耗能能力逐漸增強(qiáng).在同一級(jí)加載的不同循環(huán)中,先加載的循環(huán)包圍的滯回環(huán)面積一般比后加載的滯回環(huán)面積略大.對(duì)比試件PC-4,試件PC-1單個(gè)滯回環(huán)的面積較大,耗能能力較強(qiáng),但卸載段下降的速度明顯加快,達(dá)到破壞時(shí)加載循環(huán)的次數(shù)明顯減少.
采用能量等效法確定骨架曲線的屈服位移和屈服荷載,試件的骨架曲線,如圖5(b)所示.圖5(b)中:FM-1,F(xiàn)M-2為有限元模型.由圖5(b)可知:試件PC-1比試件PC-4的峰值承載力降低39.62%,屈服承載力降低34.05%,延性性能提高37.78%,極限位移增大22.06%.可見(jiàn),裝配式全灌漿套筒連接高強(qiáng)混凝土圓柱的抗震性能指標(biāo)受軸壓比的影響較大,隨軸壓比的增加,承載力有所提高,延性性能降低,極限位移減小.
(a) 滯回曲線 (b) 骨架曲線圖5 試驗(yàn)曲線對(duì)比Fig.5 Comparison of test curves
試件骨架曲線特征點(diǎn)及延性系數(shù),如表3所示.表3中:Pcr為開(kāi)裂時(shí)的承載力;Δy為開(kāi)裂時(shí)的位移;Py為屈服承載力;Δy為屈服位移;Pmax為峰值承載力;Δmax為峰值位移;Pu為極限承載力;Δu為極限位移;k為延性系數(shù).
表3 試件骨架曲線特征點(diǎn)及延性系數(shù)Tab.3 Specimen skeleton curve characteristic points and ductility coefficient
軸力(F)-縱筋應(yīng)變(ε)的滯回曲線,如圖6所示.在加載初期,試件的縱筋應(yīng)變滯回環(huán)狹窄細(xì)長(zhǎng),卸載后殘余變形較??;隨著荷載逐漸增大,縱筋屈服,受拉應(yīng)變曲線斜率隨荷載增加而減小,且變化較快,卸載后的殘余應(yīng)變逐漸增大,達(dá)到峰值荷載Pu時(shí),試件應(yīng)變都低于屈服應(yīng)變(2.32×10-3);隨著加載繼續(xù),縱筋均受拉屈服,當(dāng)試件破壞時(shí),軸壓比較小的試件縱筋應(yīng)變?cè)龇^大,滯回環(huán)面積較小,軸壓比較大的試件的滯回環(huán)面積較飽滿(mǎn).同一級(jí)兩次加載循環(huán)偏差較大,正、反向規(guī)律不一致,可能是鋼筋累積損傷和綁扎位置偏移所致.
(a) PC-1的應(yīng)變片YA5, YC5 (b) PC-1的應(yīng)變片YA6, YC6
采用有限元軟件ABAQUS,以試件PC-4和PC-1的尺寸及材料性能為基礎(chǔ),通過(guò)改變模型的軸力,得到對(duì)應(yīng)的有限元模型FM-1和FM-2,加載方式與試驗(yàn)保持一致.混凝土材料性能采用混凝土塑性損傷(CDP)模型的材料性能,基于Mander[11]本構(gòu)模型及能量法計(jì)算CDP模型材料本構(gòu)關(guān)系及損傷因子,同時(shí)考慮箍筋對(duì)混凝土的約束作用.由于坐漿層和灌漿層沒(méi)有成熟的本構(gòu)模型,且所占比例較少,為便于計(jì)算,采用混凝土本構(gòu)近似代替.有限元軟件ABAQUS自帶的鋼筋本構(gòu)屬于純鋼筋滯回模型,難以如實(shí)模擬鋼筋-混凝土的粘結(jié)滑移,因此,采用文獻(xiàn)[12]修正后的鋼筋模型,并輸入?yún)?shù)Es,F(xiàn)y和Esh/Es(開(kāi)始變形時(shí)的彈性模量與鋼筋彈性模量比值,取0.001[12]).套筒的本構(gòu)采用經(jīng)典的雙折線模型[13].
根據(jù)模型的變形和受力特點(diǎn),混凝土和灌漿料采用C3D8R實(shí)體單元;鋼筋采用T3D2桁架單元;套筒采用S4R殼單元.假設(shè)灌漿料-套筒、套筒-混凝土之間均沒(méi)有相對(duì)滑移,用Embedded region連接將鋼筋和套筒嵌入整個(gè)模型.
實(shí)際加載過(guò)程中,考慮地基梁和裝配式柱間存在的相對(duì)滑移、圓柱的受力破壞特征,對(duì)鋼筋包裹的混凝土采用Tie連接,其余部分采用General Contact接觸(切向接觸為Penalty,參新舊界面摩擦系數(shù)取值為1.0[14],法向接觸為Hard Contact).其他接觸面的連接采用Tie連接.以“等同現(xiàn)澆”為性能目標(biāo)的裝配式結(jié)構(gòu)的建模方式應(yīng)與現(xiàn)澆柱類(lèi)似,坐漿層薄弱處易受剪切影響,造成柱與地基梁連接部位易出現(xiàn)粘結(jié)-滑移.模型的單元?jiǎng)澐挚紤]試件破壞特征,對(duì)坐漿層和灌漿套筒連接區(qū)域劃分更細(xì)密.有限元模型的加載方式和制度與試驗(yàn)相同,地基梁底部設(shè)置固定邊界條件以約束各個(gè)運(yùn)動(dòng)方向,將柱頂截面耦合至形心處,并施加軸力和加載位移.
2.3.1 破壞形態(tài)對(duì)比 通過(guò)對(duì)比有限元模型和試件的破壞模式,驗(yàn)證數(shù)值分析模型的可靠性.試件PC-4,PC-1破壞局部特征對(duì)比,分別如圖7,8所示.圖7(b)和圖8(b)為低周往復(fù)加載結(jié)束后混凝土的局部應(yīng)力云圖.由圖7(b),圖8(b)可知:柱腳灰色和紅色部分為試件受力最大部位,且坐漿層區(qū)域有明顯的鼓脹變形;模擬結(jié)果與實(shí)際試驗(yàn)中試件柱腳混凝土受壓剝落對(duì)應(yīng),可見(jiàn)有限元模擬結(jié)果吻合良好.
(a) 試件破壞圖 (b) 混凝土應(yīng)力云圖 (a) 試件破壞圖 (b) 混凝土應(yīng)力云圖圖7 試件PC-4破壞局部特征對(duì)比 圖8 試件PC-1破壞局部特征對(duì)比Fig.7 Specimen PC-4 damage local feature contrast Fig.8 Specimen PC-1 damage local feature contrast
2.3.2 曲線對(duì)比 有限元建模難以考慮試件的初始缺陷,不能體現(xiàn)混凝土在生產(chǎn)和使用過(guò)程中產(chǎn)生的裂縫.由數(shù)值模型模擬所得的骨架曲線與試驗(yàn)所得的骨架曲線(圖5(b))對(duì)比可知:模擬結(jié)果的初始剛度略高;反向加載的峰值承載力較試驗(yàn)結(jié)果偏低;骨架曲線的下降段的承載力衰減速度與試驗(yàn)結(jié)果基本吻合.有限元模型骨架曲線特征點(diǎn)計(jì)算結(jié)果,如表4所示.
表4 有限元模型骨架曲線特征點(diǎn)計(jì)算結(jié)果Tab.4 Calculation results of skeleton curve characteristic points of finite element model
由表3,4可知:屈服荷載的正向平均誤差為1.94%,反向平均誤差為8.31%;峰值荷載的正向平均誤差為1.98%,反向平均誤差為7.53%.因此,有限元模型得到的骨架曲線與試驗(yàn)曲線基本吻合,且精度較高.
試驗(yàn)的軸壓比僅取0.20和0.35,難以量化軸壓比對(duì)裝配式全灌漿套筒連接高強(qiáng)混凝土圓柱抗震性能指標(biāo)的影響規(guī)律.通過(guò)有限元軟件ABAQUS對(duì)軸壓比進(jìn)行擴(kuò)大參數(shù)分析,在FM-1和FM-2有限元模型的基礎(chǔ)上,通過(guò)改變模型的軸力獲取不同軸壓比的結(jié)果.
根據(jù)國(guó)標(biāo)GB 50011-2010《建筑抗震設(shè)計(jì)規(guī)范》[15]和GB 50010-2010《混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范》[16]對(duì)柱軸壓比限值的規(guī)定,抗震等級(jí)為4級(jí)時(shí),剪跨比大于2且混凝土強(qiáng)度等級(jí)不高于C60的框架-抗震墻、板柱-抗震墻、框架-核心筒、筒中筒結(jié)構(gòu)柱的軸壓比不超過(guò)0.95,F(xiàn)M-1~FM-7有限元模型的μ分別為0.20,0.35,0.50,0.65,0.80,0.90,0.95.
為了研究軸壓比對(duì)混凝土、鋼筋的影響,導(dǎo)出有限元模型在達(dá)到峰值荷載時(shí)混凝土應(yīng)變?cè)茍D和鋼筋應(yīng)力云圖,分別如圖9,10所示.
(a) μ=0.20 (b) μ=0.35 (c) μ=0.50 (d) μ=0.65
由圖9可知:不同試件混凝土的損傷都是從兩側(cè)開(kāi)始,逐漸向前面和背面延伸,柱腳處混凝土應(yīng)變較大,坐漿層部分區(qū)域率先達(dá)到屈服破壞;隨軸壓比的增大,試件整體應(yīng)變?cè)龃?;?dāng)軸壓比為0.95時(shí),圓柱整體應(yīng)變減小,此時(shí)混凝土整體承載力較低.
由圖10可知:鋼筋整體的應(yīng)力隨軸壓比增加逐漸增加,受力范圍增大,但在軸壓比為0.65~0.95時(shí),混凝土的應(yīng)變和套筒區(qū)域的鋼筋應(yīng)力隨軸壓比的增加逐漸降低.因此,軸壓比對(duì)裝配式全灌漿套筒連接高強(qiáng)混凝土圓柱的材料應(yīng)力和應(yīng)變影響較大.
(a) μ=0.20 (b) μ=0.35 (c) μ=0.50 (d) μ=0.65
3.3.1 骨架曲線 有限元模型骨架曲線,如圖11所示.由圖11可知:在彈性階段,F(xiàn)M-1~FM-7的骨架曲線基本一致;進(jìn)入屈服階段后,骨架曲線開(kāi)始分化;在軸壓比不大于0.65時(shí),骨架曲線下降段較平緩;軸壓比高于0.65時(shí),承載力達(dá)到峰值點(diǎn)之后,骨架曲線下降段較陡,這是因?yàn)楦咻S壓比對(duì)混凝土形成較強(qiáng)的約束,從而提高混凝土的強(qiáng)度,達(dá)到峰值后,二階效應(yīng)加快了承載力退化.因此,軸壓比越高,試件承載力隨之提高,但加載后期承載力下降速度也越快.
整體上,當(dāng)軸壓比由0.50增加至0.90時(shí),試件的峰值承載能力增加25.10%,極限位移由67.50 mm降至31.76 mm,降低52.94%;FM-1~FM-7的峰值荷載隨著軸壓比的增大峰值承載力增幅較小,當(dāng)軸壓比由0.90增加至0.95時(shí),峰值承載力隨軸壓比的增大而減小,且極限位移降低15.40%.這是因?yàn)檩S壓比過(guò)大,試件水平承載力在達(dá)到峰值前,部分混凝土受壓先損傷.
3.3.2 剛度退化 采用割線剛度K表示剛度退化的特征,有限元?jiǎng)偠韧嘶€,如圖12所示.由圖12可知:試件的初始剛度為41.22~47.19 kN·mm-1,加載結(jié)束后,剛度下降至4.72~7.97 kN·mm-1,各試件的剛度退化明顯;當(dāng)軸壓比為0.20~0.50時(shí),試件豎向約束隨軸壓比增大而增大,初始剛度明顯增大,提高75.95%,當(dāng)軸壓比為0.50~0.95時(shí),初始剛度隨軸壓比增大增幅減??;當(dāng)軸壓比較高時(shí),試件破壞過(guò)程加快,試件的極限位移明顯減小;試件達(dá)到屈服之后,剛度退化均較為緩慢.
圖11 有限元模型骨架曲線 圖12 有限元?jiǎng)偠韧嘶€ Fig.11 Skeleton curve of Fig.12 Stiffness degradation curves of finite element model finite element model
3.3.3 延性性能 采用延性系數(shù)分析軸壓比對(duì)試件延性性能的影響,GB 50011-2010《建筑抗震設(shè)計(jì)規(guī)范》[15]規(guī)定鋼筋混凝土框架在大震作用下,彈性層間位移角不應(yīng)超過(guò)1/50,有限元模型的層間位移角均滿(mǎn)足規(guī)范要求.隨著軸壓比的增加,平均延性系數(shù)從試件FM-1的9.63降低至FM-7的3.16,降低了67.13%,層間位移角降低了53%,說(shuō)明軸壓比越高,試件的延性性能越低.
基于有限元軟件ABAQUS對(duì)裝配式混凝土圓柱的非線性行為進(jìn)行數(shù)值模擬研究,通過(guò)對(duì)比試驗(yàn)結(jié)果和模擬結(jié)果,可得到以下3個(gè)主要結(jié)論.
1) 由于裂縫延伸,混凝土柱與地基梁存在較小的相對(duì)滑移,采用Tie連接和General Contact接觸相結(jié)合的方法,能夠較好地模擬裝配式全灌漿套筒連接高強(qiáng)混凝土圓柱在水平往復(fù)荷載作用下的破壞過(guò)程及各部分組成材料的受力特征.
2) 試件的破壞模式為壓彎破壞,初始裂縫位置一般位于柱腳兩側(cè),隨加載位移的增大,裂縫逐漸向柱前面和背面延伸.
3) 軸壓比對(duì)試件的抗震性能有顯著的影響.在低軸壓比下,試件的峰值承載力隨軸壓比的增大而增大;當(dāng)軸壓比超過(guò)一定范圍時(shí),試件水平承載力略有下降,且隨著軸壓比的增加,試件的延性性能也逐漸下降,剛度退化過(guò)程縮短,極限位移減小,但試件的層間位移角均能滿(mǎn)足規(guī)范限值的要求.