田轍環(huán),薛克敏,李萍
汽車輕量化集成制造專題
新能源汽車4032鋁合金軸承座閉塞式背壓成形工藝數(shù)值模擬和實(shí)驗(yàn)研究
田轍環(huán),薛克敏,李萍
(合肥工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,合肥 230009)
新能源汽車空調(diào)壓縮機(jī)軸承座有著薄壁、多階梯、外形復(fù)雜的特點(diǎn),極易在成形過程中產(chǎn)生充填不滿、折疊和拉裂等質(zhì)量問題,為提高其成形質(zhì)量,對(duì)其成形工藝進(jìn)行仿真和優(yōu)化。對(duì)“T”形和“帽”形兩種預(yù)鍛坯料采用閉塞式背壓成形工藝的成形情況進(jìn)行模擬,依據(jù)所得結(jié)果對(duì)相關(guān)工藝參數(shù)和配套模具進(jìn)行相應(yīng)的優(yōu)化。在有背壓力的情況下,“T”形預(yù)鍛坯料的最大成形載荷由無(wú)背壓時(shí)的927 t降低至78.2 t,并且載荷上升穩(wěn)定,各成形階段過渡平滑,易于調(diào)控?!懊薄毙闻髁显诔尚芜^程中金屬的流動(dòng)更加充分,模具型腔充填得更加飽滿,無(wú)“T”形坯料成形過程中的充不滿等情況。材料的Si顆粒偏聚也得到了改善,晶粒得到細(xì)化。背壓力的存在和預(yù)鍛坯料形狀的調(diào)控,使最終的成形載荷、成形質(zhì)量以及零件的微觀組織有了極大的改善。
軸承座;背壓力;閉塞式成形;數(shù)值模擬;工藝優(yōu)化
近20年來(lái),世界性能源及環(huán)境問題變得越來(lái)越嚴(yán)重,二氧化碳排放量也在逐年上升,碳中和、碳達(dá)峰的“雙碳”政策也已經(jīng)提升到了國(guó)家戰(zhàn)略層面[1],這使減輕汽車自重、降低油耗、減少排放成了各大汽車生產(chǎn)企業(yè)提高競(jìng)爭(zhēng)能力的關(guān)鍵。在各行業(yè)的石油消耗中,汽車工業(yè)是耗油大戶。交通運(yùn)輸?shù)臏厥覛怏w排放量?jī)H次于電力工業(yè)[2-3],因此,汽車工業(yè)節(jié)能減排對(duì)于一個(gè)國(guó)家的能源供應(yīng)、環(huán)境保護(hù)乃至國(guó)家安全都具有重要的意義[4-5]。
新能源汽車行業(yè)的蓬勃發(fā)展對(duì)其核心零部件提出了高性能、輕量化、功能高效化和低成本的要求。軸承座等薄壁變截面異型結(jié)構(gòu)件,是新能源汽車渦旋式空調(diào)壓縮機(jī)的核心部件[6-7],其輕量化要求及配合要求導(dǎo)致其具有表面形狀復(fù)雜、壁厚小、內(nèi)部階梯較多的特點(diǎn),為其成形和加工帶來(lái)了嚴(yán)峻的挑戰(zhàn)。
背壓力的存在可以提高零件難成形部位的成形質(zhì)量,有效改善零件的變形均勻性,減小零件表面的裂紋傾向[8-9]。通過開設(shè)阻流槽和優(yōu)化模具結(jié)構(gòu)等方式控制材料的流變行為[10],同樣可以改善材料流動(dòng)不均衡的問題,使應(yīng)力集中得到緩解,整體變形更加協(xié)調(diào)[11]。根據(jù)數(shù)值模擬結(jié)果,通過反向修正,對(duì)預(yù)制坯進(jìn)行精準(zhǔn)設(shè)計(jì),控制材料在變形過程中的整體流動(dòng)行為,可以有效調(diào)控開裂等缺陷的出現(xiàn)[12],提高成形質(zhì)量。
綜合應(yīng)用背壓力調(diào)控、模具結(jié)構(gòu)優(yōu)化和預(yù)制坯優(yōu)化等多種方法對(duì)軸承座的成形過程進(jìn)行模擬和優(yōu)化,對(duì)于提高軸承座的成形質(zhì)量,達(dá)到整體化、精密化的成形要求,有著十分重要的意義。
圖1為新能源汽車空調(diào)壓縮機(jī)軸承座的尺寸和形狀,其基圓直徑為102 mm,最大高度為36.7 mm,最小壁厚為4 mm。此軸承座從上到下由4組階梯組成,其中位于上部的2組階梯為圓臺(tái)狀,第3組階梯截面為類正六邊形,最后一組階梯為直徑102 mm的圓臺(tái)。軸承座側(cè)壁厚度小,頂端存在凹槽,基圓直徑大,這就導(dǎo)致成形過程中金屬流動(dòng)困難,頂部和側(cè)壁不易充填完整,存在折疊和拉裂的傾向[13]。
圖1 軸承座尺寸和外形
為了保證最后零件的成形質(zhì)量,采用閉塞式背壓成形工藝,使坯料在成形過程中處于三向壓應(yīng)力狀態(tài),最大程度上避免充不滿和拉裂等缺陷的出現(xiàn)[14]。圖2為無(wú)背壓和有背壓的閉塞式成形模具示意圖。
圖2 有背壓和無(wú)背壓下閉塞式成形的模具示意
圖3a和b分別為“T”形和“帽”形預(yù)鍛坯料的示意圖,由于坯料形狀也會(huì)影響最終的成形質(zhì)量,因此采用“T”形和“帽”形2種形狀的預(yù)鍛坯料分別進(jìn)行成形模擬和工藝實(shí)驗(yàn),探究不同形狀坯料的成形規(guī)律,明確成形過程中的優(yōu)化方向。
圖3 預(yù)鍛坯料示意
首先利用UG建立如圖3所示的2種預(yù)鍛坯料的非熱力耦合三維模型,再依次建立如圖2所示的上模、下沖頭和背壓體的三維模型,然后采用Deform有限元分析軟件進(jìn)行有限元數(shù)值模擬。模具溫度為20 ℃,坯料溫度為420 ℃。摩擦類型選為剪切摩擦,數(shù)值為0.25。材料為4032鋁合金,本構(gòu)方程如下[15]:
圖4為“T”形預(yù)鍛坯料有背壓和無(wú)背壓時(shí)的成形載荷和模擬示意圖。從圖4a可以看出,有背壓力時(shí)成形載荷上升平穩(wěn),最大載荷為78.2 t,遠(yuǎn)小于無(wú)背壓時(shí)的927 t。有背壓力的存在,金屬在流動(dòng)過程中處于三向壓應(yīng)力的狀態(tài),靜水壓力更大[16],金屬易于流入型腔尖角及末端等難成形的部位,使型腔的充填更加飽滿,相應(yīng)的載荷也更低[17]。無(wú)背壓力的情況下,成形初期金屬流動(dòng)阻力小,成形載荷低,但在成形末期的整形階段,薄壁和型腔末端需很大的載荷才能使金屬充填完全,此階段的載荷也會(huì)發(fā)生急劇的變化。
圖4 “T”形預(yù)鍛坯料有背壓和無(wú)背壓的成形載荷及模擬示意
圖5為“帽”形預(yù)鍛坯料有背壓成形時(shí)的成形載荷和模擬示意圖,圖6為“T”形坯料和“帽”形坯料模擬結(jié)束時(shí)的接觸關(guān)系。從圖5—6可以看出“帽”形坯料的最大成形載荷為86.5 t,略大于“T”形坯料的78.2 t,但“帽”形坯料由于其心部近乎中空,心部難變形的金屬較“T”形坯料更少,其余金屬更容易流動(dòng)且更早接觸模具,并且在最終的成形階段與模具的接觸更加充分,沒有出現(xiàn)“T”形坯料基圓處接觸不足的情況。
綜合對(duì)比有無(wú)背壓及坯料形狀,最終確定成形質(zhì)量良好、載荷合適的”帽”形坯料閉塞式背壓工藝。
圖5 “帽”形預(yù)鍛坯料有背壓時(shí)的成形載荷及模擬示意
a“T”形
b“帽”形
圖6 “T”形和“帽”形預(yù)鍛坯料成形結(jié)束時(shí)的接觸情況
Fig.6 Contact diagram of "T" and "cap" pre-forging blanks at the end of forging process
由于數(shù)值模擬結(jié)果與實(shí)際情況存在一定的誤差,且“帽”形預(yù)鍛坯料和“T”形預(yù)鍛坯料的模擬結(jié)果差距較小,因此對(duì)“帽”形預(yù)鍛坯料和“T”形預(yù)鍛坯料都進(jìn)行了4032鋁合金的工藝試制實(shí)驗(yàn),進(jìn)一步探究?jī)烧咧g的成形規(guī)律,以獲得最優(yōu)的成形方案。
圖7為“T”形坯料試制前后的照片。坯料基圓和頭部的初始尺寸分別為85 mm×10 mm和45 mm× 20 mm。成形過程中背壓體對(duì)基圓金屬的流動(dòng)有限制作用,而“T”形坯料的心部金屬在變形過程中的變形量很大,因此基圓處的金屬會(huì)受到心部變形金屬的拉應(yīng)力作用,當(dāng)拉應(yīng)力超過材料的抗拉極限便出現(xiàn)了開裂的情況,并且基圓底部的圓口成形質(zhì)量不佳,圓口位置偏移,這主要是成形末期側(cè)壁和頭部的金屬難以向基圓底部流動(dòng),加之坯料定位不準(zhǔn)確所致。
圖8為“帽”形坯料試制前后的照片?!懊薄毙闻髁系幕鶊A尺寸為102 mm,由于坯料的基圓直徑跟零件的直徑一致,在成形過程中原始坯料的基圓金屬流動(dòng)困難,導(dǎo)致基圓部分的凸起和頭部充填不滿,同樣在基圓底部的圓口處成形效果不佳。
圖7 “T”形預(yù)鍛坯料及其試制件典型缺陷
圖8 “帽”形預(yù)鍛坯料及其試制件典型缺陷
通過上述實(shí)驗(yàn),可知頭部金屬和基圓金屬之間流動(dòng)困難,基圓尺寸對(duì)最終的成形質(zhì)量也有著一定的影響。由于頭部金屬和基圓金屬之間的流動(dòng)與沖頭形狀有極大的關(guān)系,因此對(duì)原始的沖頭進(jìn)行相應(yīng)的優(yōu)化,將原來(lái)的3組階梯改為2組階梯,并將圓角半徑增大,使金屬受到?jīng)_頭的限制更小,更易于向基圓處流動(dòng),優(yōu)化結(jié)果如圖9所示。制坯時(shí)在基圓底部成形出一個(gè)41 mm×4 mm的圓形槽,此圓形槽既起到了定位的作用,同時(shí)也起到了和“帽”形坯料中空部分同樣用來(lái)減少心部難變形區(qū)域的作用,避免了在背壓作用下基圓開裂以及頭部金屬向基圓流動(dòng)困難的情況?;鶊A尺寸定為90 mm×12 mm,頭部尺寸定為48 mm×16 mm,防止出現(xiàn)基圓直徑過大,基圓處金屬難以流動(dòng),從而導(dǎo)致成形效果差的情況,優(yōu)化后的坯料及其試制件如圖10所示。
由最終試制效果可以看出,軸承座鍛件正面充填飽滿,基圓上的凸起和頭部的6個(gè)棱形狀滿足要求,背部圓口無(wú)偏移和充填完整,基圓背部的凹槽無(wú)開裂問題。
圖9 模具優(yōu)化示意
圖10 優(yōu)化后的“T”形預(yù)鍛坯料及其試制件
軸承座材料為4032鋁合金,其主要元素是Al和Si,其中Si的質(zhì)量分?jǐn)?shù)為11.79%,4032鋁合金中Si大多數(shù)是共晶硅,其伸長(zhǎng)率為5%,塑性較差[18],因此鍛造成形中容易出現(xiàn)開裂缺陷。軸承座擠壓成形后,經(jīng)固溶時(shí)效熱處理,再線切割成若干小試樣,腐蝕后進(jìn)行金相組織觀察。其中熱處理工藝為515 ℃/2.5 h+165 ℃/10 h,腐蝕液為5%的HF+95%酒精(體積分?jǐn)?shù))的混合溶液,選取原始坯料和擠壓后軸承座基圓、側(cè)壁部位進(jìn)行顯微組織觀察。
變形過程中不同位置對(duì)應(yīng)著不同的應(yīng)變狀態(tài),因此得到的擠壓態(tài)組織有著不同的特點(diǎn)。圖11為原始試樣和成形熱處理后不同部位的光學(xué)顯微組織,其中白色基底為Al,黑色顆粒為Si顆粒[19],可以明顯看到原始材料組織不均勻、偏析嚴(yán)重[20],而擠壓過后,Si顆粒團(tuán)聚現(xiàn)象得到改善,基圓部分由于變形量小,仍保留著原始的鑄態(tài)組織;側(cè)壁變形劇烈,組織狀態(tài)發(fā)生了很大變化,產(chǎn)生了具有明顯方向性的組織[21],同時(shí)晶粒得到了進(jìn)一步的細(xì)化[22]。
圖11 金相顯微組織
通過數(shù)值模擬的方法,探明了有背壓和無(wú)背壓情況下閉塞式成形工藝及坯料形狀對(duì)最終成形質(zhì)量的影響規(guī)律,明確了相關(guān)工藝參數(shù)的優(yōu)化方向,進(jìn)行了實(shí)驗(yàn)驗(yàn)證,并結(jié)合實(shí)驗(yàn)結(jié)果進(jìn)行了進(jìn)一步的優(yōu)化與微觀組織分析,最終獲得了力學(xué)性能優(yōu)良,外形精準(zhǔn),無(wú)折疊、拉裂和充不滿等缺陷的軸承座零件。相關(guān)結(jié)論如下。
1)背壓力的存在,使材料處于三向應(yīng)力的狀態(tài),靜水壓力增加,金屬在變形過程中更易流動(dòng),零件的成形質(zhì)量更佳,“T”形預(yù)鍛坯料的成形載荷由無(wú)背壓的927 t降至有背壓的78.2 t,降低了約91.6%。
2)“帽”形預(yù)鍛坯料的中空結(jié)構(gòu)減少了坯料心部難變形的區(qū)域,避免了變形過程中由于背壓力的限制導(dǎo)致基圓受拉部分發(fā)生開裂的情況。
3)根據(jù)工藝試驗(yàn)結(jié)果將沖頭的三階梯結(jié)構(gòu)優(yōu)化為兩階梯結(jié)構(gòu),并在“T”形坯料基圓的底部開出41 mm×4 mm的圓形槽,這樣有效降低了頭部和側(cè)壁金屬向基圓流動(dòng)的困難程度,同時(shí)減少了坯料心部難變形的區(qū)域,避免了開裂和充不滿等缺陷的出現(xiàn)。
4)變形后材料的初始鑄態(tài)組織得到了改善,基圓和側(cè)壁的Si顆粒團(tuán)聚現(xiàn)象得到改善,晶粒都得到了不同程度的細(xì)化。側(cè)壁由于有著更大的變形量,其組織分布更加均勻,晶粒細(xì)化更加明顯。
[1] 丁輝. 雙碳背景下中國(guó)氣候投融資政策與發(fā)展研究[D]. 合肥: 中國(guó)科學(xué)技術(shù)大學(xué), 2021: 5-7.
DING hui. Research on China's Climate finance Policies and Development in the Context of Carbon Neutrality[D]. Hefei: University of Science and Technology of China, 2021: 5-8.
[2] XIONG Hui-yuan, LIU Huan, ZHANG Rong-hui, et al. An Energy Matching Method for Battery Electric Vehicle and Hydrogen Fuel Cell Vehicle Based on Source Energy Consumption Rate[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29733-29742.
[3] CHEN Zi-yue, NIE Pu-yan. Effects of Carbon Tax on Social Welfare: A Case Study of China[J]. Applied Energy, 2016, 183: 1607-1617.
[4] YANG Dong-xiao, QIU Lin-shu, YAN Jian-jun, et al. The Government Regulation and Market Behavior of the New Energy Automotive Industry[J]. Journal of Cleaner Production, 2019, 210: 1281-1288.
[5] ZHANG Hao, CAI Gui-xin. Subsidy Strategy on New-Energy Vehicle Based on Incomplete Information: A Case in China[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 541: 123370.
[6] TAN Si-lei, ZHONG Lei. Research on the Survival and Development of New Energy Vehicles in China[J]. IOP Conference Series: Earth and Environmental Science, 2018, 153(2): 022039.
[7] 陳江艷, 楊誠(chéng). 旋葉式汽車空調(diào)壓縮機(jī)聲品質(zhì)分析與評(píng)價(jià)[J]. 噪聲與振動(dòng)控制, 2020, 40(5): 164-168.
CHEN Jiang-yan, YANG Cheng. Analysis and Evaluation of Sound Quality for Rotary Vane Air-Conditioning Compressors[J]. Noise and Vibration Control, 2020, 40(5): 164-168.
[8] HAN Xiong-wei, CHEN Zu-hong. Effects of Back Pressure Factors on Titanium Alloy by Equal Channel Angular Extrusion[J]. Special Casting & Nonferrous Alloys, 2015, 35(8): 810-812.
[9] FRINT P, HOCKAUF M, HALLE T. The Role of Backpressure during Large Scale Equal-Channel Angular Pressingt[J]. Materialwissenschaft und Werkstofftechnik, 2012, 43(7): 668-672.
[10] 胡福泰, 汪飛雪. 復(fù)雜腔體直壁扇形筋板精密擠壓成形缺陷控制[J]. 塑性工程學(xué)報(bào), 2021, 28(3): 1-6.
HU Fu-tai, WANG Fei-xue. Defect Control of Precision Extrusion Forming of Complex Cavity Straight Fan-Shaped Rib Plate[J]. Journal of Plasticity Engineering, 2021, 28(3): 1-6.
[11] 徐虹, 劉猛, 國(guó)志鵬, 等. 動(dòng)車組變曲率L型截面鋁合金門立柱拉彎精度控制[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2021, 53(2): 77-83.
XU Hong, LIU Meng, GUO Zhi-peng, et al. Accuracy Control of Stretch Bending for Variable Curvature L-Section Aluminum Alloy Door Column of EMU[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 77-83.
[12] 張陽(yáng), 董定乾, 朱洪洋, 等. 基于預(yù)制坯精準(zhǔn)設(shè)計(jì)的水室封頭熱沖成形新工藝[J]. 塑性工程學(xué)報(bào), 2020, 27(5): 58-65.
ZHANG Yang, DONG Ding-qian, ZHU Hong-yang, et al. New Hot Pressing Process of Water Chamber Head Based on Precise Design of Preform[J]. Journal of Plasticity Engineering, 2020, 27(5): 58-65.
[13] XU Feng, GONG Dong-mei, CHEN Ke, et al. Isothermal Forming of Aluminum Alloy Control Arm[J]. IOP Conference Series: Materials Science and Engineering, 2018, 394(3): 032036.
[14] Hawryluk Marek, Ziemba Jacek, Janik Marta. Wear Analysis of Forging Tools Used in an Industrial Production Process—Hot Forging in Closed Dies of the “Head-Disk” of an Engine Valve Forging[J]. Materials, 2021, 14(22): 7063.
[15] 陳強(qiáng), 陳拂曉, 楊永順, 等. 4032鋁合金的高溫壓縮變形行為及本構(gòu)方程[J]. 熱加工工藝, 2013, 42(7): 37-39.
CHEN Qiang, CHEN Fu-xiao, Yang Yong-shun, et al. Hot Deformation Behavior in Compression and Constitutive Equation of 4032 Aluminium Alloy[J]. Hot Working Technology, 2013, 42(7): 37-39.
[16] 時(shí)迎賓, 薛世博, 段園培, 等. 新能源汽車4032鋁合金渦旋件背壓成形數(shù)值模擬與實(shí)驗(yàn)研究[J]. 精密成形工程, 2020, 12(5): 88-92.
SHI Ying-bin, XUE Shi-bo, DUAN Yuan-pei, et al. Numerical Simulation and Experimental Study on Back Pressure Forming of New Energy Vehicle 4032 Aluminum Alloy Scroll[J]. Journal of Netshaoe Forming Engineering, 2020, 12(5): 88-92.
[17] 吳進(jìn), 王成勇, 何大宏, 等. 背壓加載方式對(duì)輕量化壓縮機(jī)渦旋盤成形質(zhì)量的影響[J]. 塑性工程學(xué)報(bào), 2021, 28(1): 77-84.
WU Jin, WANG Cheng-yong, HE Da-hong, et al. Influence of Back Pressure Loading Mode on Forming Quality of Lightweight Compressor Scroll[J]. Journal of Plasticity Engineering, 2021, 28(1): 77-84.
[18] NUR C F, SOEGIJONO B. Effect of Solution Heat Treatment of Aluminum Alloy 4032 on the Structure and Corrosion Resistance in 3.5% and 10.5% NaCl Solution[J]. IOP Conference Series: Materials Science and Engineering, 2019, 694: 012043.
[19] Zhang Ming-shan, Wang Jun-sheng, Wang Bing, et al. Quantifying the Effects of Sc and Ag on the Microstructure and Mechanical Properties of Al–Cu Alloys[J]. Materials Science & Engineering A, 2022, 831: 142355.
[20] KAREEM A, QUDEIRI J, ABDUDEEN A, et al. A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting[J]. Materials, 2021, 14(1): 175.
[21] WANG An-heng, XUE Hong-qian, BAYRAKTAR E, et al. Analysis and Control of Twist Defects of Aluminum Profiles with Large Z-Section in Roll Bending Process[J]. Metals, 2019, 10(1): 31.
[22] WU Yong-fu, ZHU Guang-lei, ZHONG Gu, et al. Effect of Cooling Rate on Modification and Grain Refinement of 4032 Aluminum Alloy[J]. Materials Science Forum, 2016, 877: 20-26.
Numerical Simulation and Experimental Investigation on Enclosed Die Forging with Back Pressure for 4032 Aluminum Alloy Bearing Pedestal of New Energy Vehicle
TIAN Zhe-huan, XUE Ke-min, LI Ping
(School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)
The work aims to simulate and optimize the forging technology so as to improve the forging quality aiming at the problems of that A/C compressor bearing pedestal of new energy vehicle has the characteristics of thin wall, multi steps and complex shape and forging defects such as filling dissatisfaction, folding and cracking are easy to occur in the forging. The forging situation of "T" shaped and "cap" shaped pre-forging blanks by enclosed die forging with back pressure was simulated, and the related process parameters and matching dies were optimized according to the obtained results. Under the condition of back pressure, the maximum forging load of "T" shaped pre-forging blank was reduced from 927 t without back pressure to 78.2 t, and the load rose steadily, and the transition of each forging stage was smooth and easy to control. The metal flow of "cap" shaped blank was more sufficient in the forging process, the die cavity was fully filled, and there was no insufficient filling in the forging process of "T" shaped blank. The segregation of Si particles of the material was also improved and the grains were refined. The existence of back pressure and the regulation of pre-forging shape have greatly improved the final forging load, forging quality and microstructure of parts.
bearing pedestal; back pressure; enclosed die forging; numerical simulation; process optimization
10.3969/j.issn.1674-6457.2022.02.001
TG376
A
1674-6457(2022)02-0001-06
2021-12-20
安徽省重點(diǎn)研究和開發(fā)計(jì)劃(面上攻關(guān))(201904a05020062);安徽省科技重大專項(xiàng)(201903a05020045)
田轍環(huán)(1998—),男,博士生,主要研究方向?yàn)榇笏苄宰冃闻c精密成形。
薛克敏(1963—),男,博士,教授,主要研究方向?yàn)榫芩苄猿尚喂に嚰胺抡妗?/p>