【摘要】數(shù)學作為小學教育階段的一門基礎性學科,對小學生的空間想象能力與邏輯思維能力有著較高的要求。掌握數(shù)學知識體系中大量的概念,是學習數(shù)學知識的基礎,也是數(shù)學學習中的一大難點。對此,教師可巧用概念的圖式表達,建構高效數(shù)學課堂。
【關鍵詞】概念;圖式表達;高效;數(shù)學教學
作者簡介:凌輝(1978—),男,江蘇省南通市海門區(qū)正余小學。
數(shù)學概念是從客觀現(xiàn)實中抽象出來的,具有高度的抽象性與概括性特征,是學生需要學習、感知與理解的關鍵內容,更是有助于他們學習其他數(shù)學知識、解題及實際應用的重要內容[1]。圖式表達是將數(shù)學知識以圖的形式來展現(xiàn),小學數(shù)學教師在概念教學中可采用圖式表達引領學生觀察與分析,幫助他們高效地構建數(shù)學概念,為后續(xù)學習夯實根基。
一、借助圖式表達優(yōu)勢,轉變概念呈現(xiàn)形式
(一)運用圖式表達,使抽象概念變得形象化
小學生正處于形象思維占據主導地位的階段,而數(shù)學知識具有顯著的抽象性特征,概念則更加抽象[2]。在概念教學中,小學數(shù)學教師需極力發(fā)揮出學生的形象思維優(yōu)勢,巧用圖式表達,將具體的概念以圖片、圖表或圖文并茂的形式來呈現(xiàn),以此使抽象的數(shù)學概念變得形象化,這樣不僅與學生的認知特點相契合,還能夠激發(fā)他們參與學習的興趣。
例如,在進行“分數(shù)的初步認識(一)”的教學時,教材中對“分數(shù)”概念的解釋為:分數(shù)表示一個數(shù)是另一個數(shù)的幾分之幾,或一個事件與所有事件的比例。把單位“1”平均分成若干份,表示這樣的一份或幾份的數(shù)叫分數(shù)。對于三年級學生來說,文字性介紹是比較難以理解的,因為這樣的描述、用語十分嚴謹,而他們的抽象思維能力恰恰不強。針對這一情況,教師在課堂上運用圖式表達轉變了“分數(shù)”這一概念的呈現(xiàn)形式,在多媒體課件中展示畫有一個圓的圖式(如圖1所示)。圖中的一條虛線將圓分成兩半,一半是灰色,一半是白色。然后,教師詢問:“這個圓被虛線分成的兩份是不是一樣大?每份是不是均為這個圓的一半?可以用什么數(shù)來表示?”學生經過觀察、思考與討論后回答了上述問題。教師結合他們的答案指出:“這個圓被平均分成了2份,每份是這個圓的一半,一半即為1/2?!苯處熗ㄟ^圖式表達形象地引入“分數(shù)”的概念后,要求學生結合圖片說出1/2中的“2”和“1”分別表示什么意思,并在課件中展示其他圖形讓學生進行練習,繼續(xù)辨認1/2。
(二)應用圖式表達,使復雜概念變得簡單化
在小學數(shù)學概念教學中,圖式表達可以讓學生一目了然,便于他們更好地學習、內化與掌握數(shù)學概念,為之后的運用做好準備。在小學數(shù)學課程教學中,當講授到概念類的知識時,教師可以應用圖式表達的方法,將學生僅通過閱讀文字難以明白的內涵,利用圖的形式來展示,使學習內容顯得清晰、明了,使復雜的數(shù)學概念變得簡單化,借此輔助他們深入理解概念的內在意義。
以“小數(shù)的初步認識”的教學為例,教師從小數(shù)的意義切入來描述“小數(shù)”的概念:“將整數(shù)1平均分成十份、一百份等得到的十分之幾、百分之幾等,能用小數(shù)表示。一位小數(shù)表示的是‘十分之幾’,兩位小數(shù)表示的是‘百分之幾’,等等。在小數(shù)中,相鄰兩個計數(shù)單位之間的進率為10?!苯處煱l(fā)現(xiàn),雖然自己費盡心思運用語言來描述,但不少學生仍然未能真正理解,原因是“小數(shù)”的概念從文字視角來看較為復雜,而且這對于學生來說是一個新概念,他們極易把“分數(shù)”“整數(shù)”等概念混淆。于是,教師應用圖式表達,以實物的形式輔助學生重新構建“小數(shù)”概念,先拿出一把標有清晰刻度的直尺和一支長約4厘米的鉛筆,再將鉛筆的一端同直尺的0刻度線對齊,讓學生觀察后說出鉛筆的長度。學生發(fā)現(xiàn)鉛筆的另一端在直尺的4至5刻度之間,這說明鉛筆的長度并非整數(shù),于是紛紛產生“該如何表達鉛筆的長度?”的疑問。這時教師點撥:“大家在進行計算或測量時,假如遇到結果非整數(shù)的情況,就要使用小數(shù)來表示。”這樣不僅可以使復雜概念變得簡單化,還巧妙地穿插了小數(shù)的用法。
(三)利用圖式表達,使零散概念變得系統(tǒng)化
不少學生在學習數(shù)學概念時習慣采用死記硬背這種機械的方式,也就是說,他們把平??赡苡玫降囊恍└拍畋痴b得十分熟練,以此應付作業(yè)與考試。但采用這樣的方式有一定的弊端,即學生往往只掌握了零散的概念,而未學會系統(tǒng)化地運用這些概念。面對這一不利局面,小學數(shù)學教師在概念教學中,可利用圖式表達將零散的數(shù)學概念整合在一起,使其變得系統(tǒng)化,方便學生在后續(xù)解題中綜合運用,提高做題效率。
舉個例子,對于“平行四邊形的面積”這部分內容,教材結合轉化思想歸納出平行四邊形的面積公式。但由于部分小學生的邏輯思維能力和推理能力不強,很難透徹理解這一公式的推導過程及有關概念,因此教師對原有教學內容進行加工,借助圖式表達的方式改進了教學過程。在課堂上,教師未直接給出平行四邊形面積的公式,而列出了式子S=ah,并指出a與h分別表示平行四邊形的底與高,同時展示對應的圖式(如圖2所示)。因為學生已經學習過長方形的面積公式,所以教師就讓他們試著將未知的平行四邊形轉化成已知的長方形。根據這一圖式表達,學生在教師的引導下拿出準備好的平行四邊形紙片,沿著高將平行四邊形剪開,將剪下來的梯形平移至平行四邊形的另外一邊,拼接在一起,使它們構成一個長方形,進而發(fā)現(xiàn)新的長方形的長、寬就是平行四邊形的底、高。教師通過圖式表達的演示,讓學生了解到長方形的面積與平行四邊形的面積相同。如此,教師利用圖式表達,引領學生把平行四邊形的面積公式、概念與長方形的知識相關聯(lián),能夠使他們形成系統(tǒng)化的認知網絡,加深他們對轉化思想的認識,為他們接下來的學習提供更多助力。
二、以圖式表達創(chuàng)設情境,降低概念理解難度
(一)結合生活進行圖式表達,輔助學生學習概念
在小學數(shù)學概念教學中,教學的基礎是引入概念,引入概念以后,教師就需要引領學生感知概念,讓他們真正理解概念的內涵,方便他們之后的運用。在實際生活中,數(shù)學現(xiàn)象與問題可謂隨處可見,小學生平常也積累了一定的生活經驗,因此數(shù)學教師在概念教學中應該緊密結合生活素材,將一些生活化資源融入課堂,運用到概念講解環(huán)節(jié)中,并將其當作學生感知與理解概念的工具,由此降低概念的學習難度,輔助他們更好地掌握數(shù)學概念。
比如,在開展“倍”的概念教學時,教師先要求學生認真觀察教材中關于“兩、三位數(shù)乘一位數(shù)”這部分內容例3的情境圖,自己動手數(shù)一數(shù)各種不同顏色的花朵數(shù)量,并引出問題:“如何清楚地看出不同顏色的花朵之間的關系?”學生想到逐個對應擺放與排列等方式。教師讓學生結合找到的信息自主提出問題。如學生提問藍花和黃花一共有多少朵,紅花比黃花多多少朵,紅花的朵數(shù)是藍花的多少倍。教師順勢引出新知識,喚起學生的生活經驗,讓他們初步感知倍是兩個數(shù)之間的比較關系。接著,教師鼓勵學生將剛才獲得的信息與說出的問題進行歸納。當有的學生提到將2朵藍花看成1份時,教師讓其簡要說出原因所在,然后講述:“黃花有這樣的3份,也就是有3個2朵。你們數(shù)一數(shù)是不是這樣?”教師在學生數(shù)完后借機指出黃花的朵數(shù)是藍花的3倍。最后,教師提出“紅花的數(shù)量與藍花的數(shù)量相比又是什么關系?”的問題,引導學生進行知識遷移,從而發(fā)現(xiàn)紅花的數(shù)量是藍花的4倍;并使其思考為什么黃花、紅花都是同藍花的數(shù)量相比,倍數(shù)卻不同,旨在讓他們在圖式表達的輔助下建立“倍”的表象,通過對比深入感知“倍”的概念。
(二)運用信息技術手段,以圖式表達模擬情境
小學生年齡比較小,邏輯思維能力還未得到很好的發(fā)展,對數(shù)學概念的感知以形象思維為主,再加上部分學生在學習過程中容易受到外界環(huán)境的影響和干擾,以致注意力很難長時間集中,最終影響他們內化數(shù)學概念。這就要求小學數(shù)學教師在平常教學中緊跟時代步伐,靈活運用信息技術手段進行圖式表達,通過圖片、視頻、動畫等形式模擬情境,使概念的學習內容變得有趣、生動,吸引學生的注意力,讓他們認真觀察與深入思考,促使他們輕松理解數(shù)學概念。
例如,在“垂線”的概念教學實踐中,教師先要求學生觀察教材中關于“垂線與平行線”這部分內容例6中的三幅圖片,并利用信息技術手段分別從每一幅圖中截取兩條相交的直線,在多媒體設備的大屏幕上顯示出來,讓他們基于相交情況對這三組線進行分類。接著,教師指導學生用三角尺的直角分別與三組線形成的角進行比較,使其感知到第一組線相交形成的角不是直角,后兩組線相交形成的角都是直角,并認識到垂直是相交的一種特殊位置關系。然后,教師將第二幅圖放大,閃動其中一個角,提問:“假如這個角是直角,那么你們能知道其他三個角的角度嗎?”學生經過思考、探討后判斷出其他三個角均為直角。教師讓學生討論交流“結合上述圖式,你們認為兩條直線在什么情況下才能被稱作‘互相垂直’?”這個問題。在學生發(fā)言后,教師強調兩條直線要相交成直角才能被稱作“互相垂直”,讓他們用手勢表示“垂直”。最后,教師在多媒體課件中展示幾組相交的線段,讓學生判斷它們是否互相垂直,并說明理由,加深他們對“垂線”等概念的理解。
三、巧妙引入圖式表達,優(yōu)化概念教學形式
(一)應用圖式表達進行整理,深化對概念的理解
抽象性是數(shù)學知識的顯著特點之一,部分小學生自身學習能力一般、理解能力不強或認知水平有限,很難快速發(fā)現(xiàn)知識中所蘊含的數(shù)學概念,這就要求教師在日常教學中應用圖式表達對數(shù)學概念進行整理,優(yōu)化概念教學形式,使隱蔽的關系變得明了,同時積極引導學生觀察、想象與猜測,進而發(fā)掘出知識中所隱含的概念性內容,這樣不僅可以滿足他們的求知欲望,還可以拓展他們的思維空間,深化他們對概念的理解。
例如,在實施“梯形”的概念教學時,教師并未急于講授新課,而引入了舊知識,引導學生回顧學習過的“四邊形”這一數(shù)學概念,再提出“梯形、長方形、正方形、平行四邊形的對邊分別有什么特點?它們之間存在著什么樣的聯(lián)系?”的問題,讓他們在小組內自由討論和交流,要求他們將這幾種平面圖形整合在一起,畫出圖式,從而讓他們整理小學階段所學的各種四邊形概念,形成完整的數(shù)學概念網絡,了解這些不同的四邊形之間的關系。有的學生在問題驅動下積極思考和互動,畫出如圖3所示的圖式。如此,學生在圖式表達的輔助下不僅可以更好地理解“梯形”的概念,還可以回顧其他四邊形的概念,掌握它們的區(qū)別與聯(lián)系,培養(yǎng)自身的邏輯思維能力,優(yōu)化自身的知識結構。
(二)運用圖式表達進行歸納,改善對概念的認知
部分小學生在學習數(shù)學概念的過程中會出現(xiàn)這樣一種錯誤,即混淆了相關或者相近的概念,以致在做題時遇到障礙,甚至出現(xiàn)張冠李戴的情況,無法順利解決問題。究其原因主要在于大部分數(shù)學概念是比較抽象難懂的,這些學生對概念的理解還停留在表面,沒有真正掌握概念的內涵。對此,小學數(shù)學教師可運用圖式表達,對相關概念進行歸納,讓學生對概念的感知由模糊變?yōu)榍逦?,改善他們對概念的認知,便于他們后續(xù)應用。
比如,“分數(shù)的意義和性質”一課中出現(xiàn)多個新的概念,包括單位“1”、分數(shù)和分數(shù)單位等,其中單位“1”是建構分數(shù)概念的出發(fā)點。教師在講授的過程中可采用圖式表達輔助教學,要求學生觀察教材的這部分內容例1中的四幅圖片,用分數(shù)表示每幅圖中涂色的部分,寫好以后想一想各個分數(shù)分別表示什么,鼓勵他們大膽說出各自的想法與見解,同時板書“1/4,5/8,3/5,”1/3,帶領他們回顧“平均分”的概念。然后,教師以第四幅圖中的1/3為例,提問:“這里將6個圓看作一個整體,將它們平均分成3份,涂色部分是其中的1份,也就是1/3。那么前三幅圖中的分數(shù)是把什么平均分后得到的呢?第四幅圖和前三幅圖相比有什么不同?”教師順勢引出“單位‘1’”的概念,組織學生在小組內交流,討論這與之前所學的“1”有什么不同,旨在讓他們意識到之前所學的“1”只能表示“1個”,而現(xiàn)在學的“單位‘1’”可以表示許多含義,如表示“1塊餅”“1個長方形”“1條1米長的線段”“由6個圓組成的1個整體”等,進而改善自身對數(shù)學概念的認知。
結語
綜上所述,在小學數(shù)學教學實踐中,教師要將概念教學放在重要地位,巧妙運用概念的圖式表達創(chuàng)新教學方法與形式,以文字解釋為前提,結合幾何圖形、圖表等圖式為數(shù)學概念的學習搭建起具象化的支架,促進學生對概念的理解與內化,并根據不同概念運用不同的圖式表達方法,全力建構高效數(shù)學課堂,使學生對數(shù)學概念形成結構化、系統(tǒng)化的認知。
【參考文獻】
[1] 董興華.讓數(shù)學學習不再“霧里看花”:例談小學數(shù)學概念教學的策略[J].新課程,2021(35):86.
[2]張晶.互聯(lián)網思維下的小學數(shù)學概念教學:以“分數(shù)”的教學為例[J].江蘇教育,2021(61):42-45.