国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

渤海灣典型閘控入海河流水體N2O釋放研究

2022-01-21 00:41李肖正岳甫均王欣楚陳賽男李思亮
中國(guó)環(huán)境科學(xué) 2022年1期
關(guān)鍵詞:鹽度通量降雨

李肖正,岳甫均,2*,周 濱,王欣楚,胡 健,陳賽男,李思亮,2

渤海灣典型閘控入海河流水體N2O釋放研究

李肖正1,岳甫均1,2*,周 濱3,王欣楚1,胡 健4,陳賽男1,李思亮1,2

(1.天津大學(xué)地球系統(tǒng)科學(xué)學(xué)院,天津 300072;3. 天津市環(huán)渤海地球關(guān)鍵帶科學(xué)與可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室,天津 300072;2.天津市環(huán)境保護(hù)科學(xué)研究院,天津 300191;4.中國(guó)科學(xué)院生態(tài)與環(huán)境研究中心,北京 100085)

為探究弱水動(dòng)力條件下,典型濱海地區(qū)水體N2O釋放通量及其主控因素,于2019年7月和8月(夏季)和11月(冬季初期)對(duì)以大清河-獨(dú)流減河-北大港濕地為代表的渤海灣弱水動(dòng)力條件河流開(kāi)展水樣采集與分析工作.結(jié)果表明:N2O濃度變化范圍為0.4~184.5nmol/L,N2O飽和度的變化范圍為7.2%~2740%,其中近90%的樣品處于過(guò)飽和狀態(tài),表明該研究區(qū)是潛在的N2O釋放源.N2O水-氣界面釋放通量為-0.3~6.7μmol/(m2·h),夏季水體N2O的釋放通量高于冬季.降雨前后N2O濃度出現(xiàn)明顯波動(dòng),相同點(diǎn)位降雨前后N2O濃度的變化值為-15.2~63.9nmol/L,獨(dú)流減河上游農(nóng)業(yè)區(qū)N2O濃度的平均增加量(22.1nmol/L)顯著高于下游(1.3nmol/L),降雨驅(qū)動(dòng)了流域氮素的運(yùn)移,促進(jìn)了水體N2O釋放.相關(guān)性分析表明,水體N2O的濃度受反應(yīng)物濃度、水體鹽度共同調(diào)控.通過(guò)計(jì)算得到該濱海地區(qū)弱水動(dòng)力條件下河流N2O的排放因子為0.0073,表明氣候變化委員會(huì)(IPCC)默認(rèn)值0.0026可能低估了該地區(qū)間接N2O釋放.

N2O;濱海地區(qū);弱水動(dòng)力河流;渤海灣;排放因子

氧化亞氮(N2O)作為全球氮循環(huán)中重要的活性氮分子,其百年增溫潛勢(shì)是CO2的265倍[1].N2O還會(huì)消耗平流層臭氧,造成臭氧層破壞,危害人體健康[2].因此,大氣中N2O升高對(duì)氣候的影響可能遠(yuǎn)比它的直接溫室效應(yīng)復(fù)雜,探究大氣中N2O產(chǎn)生機(jī)制對(duì)氣候的影響具有深遠(yuǎn)的意義.

自工業(yè)革命以來(lái),人類(lèi)對(duì)全球氮循環(huán)的干擾,顯著增加了陸地和水生生態(tài)系統(tǒng)N2O的釋放[3-4],水生生態(tài)系統(tǒng)作為N2O的重要來(lái)源,其釋放通量約占全球N2O釋放總量的25%~30%[1,5].為估算全球河流N2O的釋放量,政府間氣候變化專(zhuān)門(mén)委員會(huì)(IPCC)提供了地下水和排水渠(EF5-g)、河流(EF5-r)、河口區(qū)(EF5-e)等水生生態(tài)系統(tǒng)N2O釋放系數(shù).盡管IPCC對(duì)排放因子的默認(rèn)值做了多次修改(現(xiàn)行的推薦值為

0.0026)[6],但由于環(huán)境條件的可變性,單個(gè)排放因子默認(rèn)值往往忽視了時(shí)空的差異性,在對(duì)特定河流進(jìn)行評(píng)估時(shí)往往存在一些不確定性[7].如Wang等[8]對(duì)北京城市河流的研究表明,河流N2O排放因子的平均值為0.001,低于IPCC默認(rèn)值.Beaulieu等[2]在對(duì)美國(guó)受農(nóng)村和城市共同影響的河流研究中發(fā)現(xiàn)EF5-r值為0.0075,為IPCC默認(rèn)值的3倍.使用IPCC默認(rèn)值來(lái)預(yù)測(cè)所有河流的N2O釋放顯然是不合適的,需要進(jìn)行更多的研究來(lái)確定EF5-r.

濱海地區(qū)作為陸地和海洋生物地球化學(xué)循環(huán)的關(guān)鍵過(guò)渡地帶,受海陸交互作用影響,形成了復(fù)雜變異的多種環(huán)境梯度.近年來(lái)由于閘壩的修建,導(dǎo)致原有河流連通性被改變,形成相對(duì)封閉的水體環(huán)境,呈現(xiàn)流速較緩的水文特征,改變了原有的水動(dòng)力條件,勢(shì)必對(duì)N2O的形成及轉(zhuǎn)化過(guò)程產(chǎn)生影響[9-12].早期針對(duì)濱海地區(qū)N2O釋放的研究主要集中在歐洲地區(qū)[13-14],且越來(lái)越多的證據(jù)表明,不同的濱海地區(qū)往往會(huì)存在較大的區(qū)域及環(huán)境差異,特別是N2O釋放的主要控制因素往往也有所不同[15-16].隨著人口的增加及工業(yè)化進(jìn)程的加快,亞洲濱海地區(qū)在全球N2O的釋放評(píng)估中扮演著越來(lái)越重要的角色,探究受閘壩影響的弱水動(dòng)力條件下濱海地區(qū)河流及濕地N2O的產(chǎn)生對(duì)全球N2O的評(píng)估具有重要的意義[16].

以往有學(xué)者對(duì)不同人為干擾的河流及濕地開(kāi)展了研究[5,17],發(fā)現(xiàn)水體N2O的產(chǎn)生受到水質(zhì)的強(qiáng)烈影響,農(nóng)村河流N2O的轉(zhuǎn)化過(guò)程比較復(fù)雜,但針對(duì)河流中N2O產(chǎn)生的生物地球化學(xué)過(guò)程與季節(jié)之間的響應(yīng)關(guān)系,及強(qiáng)降雨事件對(duì)河流氮素的運(yùn)移及N2O釋放強(qiáng)度影響的研究還不夠充分.基于此,本研究選取了渤海灣典型閘壩控制型河流,大清河水系下游河段-獨(dú)流減河-北大港濕地區(qū)域,于2019年進(jìn)行了4次樣品采集工作,并對(duì)水體營(yíng)養(yǎng)鹽濃度及N2O濃度開(kāi)展分析,以探究不同季節(jié)N2O的時(shí)空分布及降雨對(duì)N2O釋放的影響,厘清濱海地區(qū)N2O釋放的主控因素,評(píng)估濱海弱水力條件下N2O的釋放系數(shù)及N2O釋放通量的水平,為科學(xué)評(píng)估濱海地區(qū)N2O源匯效應(yīng)提供理論參考.

1 材料與方法

1.1 研究區(qū)概況

天津市位于華北平原北部,東臨渤海,北靠燕山,由環(huán)線(xiàn)公路將天津市劃分為市區(qū)和農(nóng)村[5].作為世界上人口最多的沿海城市之一(近1500萬(wàn)人口),伴隨著京津冀一體化建設(shè),經(jīng)濟(jì)的發(fā)展及人口的增加極大地改變了河流水環(huán)境.獨(dú)流減河位于天津市區(qū)南部,是濱海新區(qū)海河水系南部下游地區(qū)最大的河流,全長(zhǎng)67km,是承接大清河泄洪的主要入海通道.天津市北大港濕地自然保護(hù)區(qū)位于渤海灣沿岸,濕地總面積約348.9km2,分為核心區(qū),緩沖區(qū)和實(shí)驗(yàn)區(qū),有湖泊、河流、海岸灘涂、沼澤4種濕地類(lèi)型,是天津市面積最大的“濕地自然保護(hù)區(qū)”.研究區(qū)地處半濕潤(rùn)大陸性季風(fēng)型氣候區(qū),夏季炎熱多雨,冬季寒冷干燥,年平均氣溫為14.8℃,年平均降雨量為520~ 660mm.降水年際變化較大,年內(nèi)分配不均,總降水量的75%發(fā)生在6, 7, 8月份.獨(dú)流減河屬于典型的“閘壩控制型”河流,徑流量小,流速慢,近年來(lái)由于沿岸工農(nóng)業(yè)的影響更是導(dǎo)致水體水質(zhì)變差[18].

1.2 樣品采集與分析

于2019年7月(分別在降雨量67mm事件前后進(jìn)行樣品采集)、8月(高水位期樣品采樣,主要在大清河,獨(dú)流減河上游以及獨(dú)流減河下游加密采集)、和11月(冬季)對(duì)以大清河-獨(dú)流減河-北大港濕地為代表的河流-濱海濕地進(jìn)行了共4次水樣采集工作(圖1).其中,K1~K5為北大港濕地樣品,K6為團(tuán)泊洼水庫(kù)樣品,R1~R11為獨(dú)流減河樣品,R12為大清河樣品.利用分層采水器采集表層樣品(0.5m),并將水樣緩慢加入250mL血清瓶中.為避免氣泡的產(chǎn)生,將水樣持續(xù)溢流約瓶體積的1.5~2倍,并使瓶口形成凸液面,迅速加入0.5mL飽和HgCl2溶液以抑制微生物活動(dòng),然后用帶聚四氟乙烯內(nèi)襯的橡膠塞和鋁蓋壓蓋密封,樣品低溫避光保存,運(yùn)回實(shí)驗(yàn)室后盡快完成測(cè)定[19].利用水質(zhì)參數(shù)儀(德國(guó)wtw: Multi 3630 ),現(xiàn)場(chǎng)測(cè)量水溫()、pH值、溶解氧(DO)、電導(dǎo)率(EC)和鹽度(SAL)[20].使用營(yíng)養(yǎng)鹽連續(xù)流動(dòng)分析儀(SAN++SA5000)測(cè)試硝酸鹽氮(NO3--N)、亞硝酸鹽氮(NO2--N)、銨氮(NH4+-N)、可溶性總氮(DTN).其中NO3--N的測(cè)定方法為鎘柱還原法,檢出限為0.01mg/L;NO2--N的測(cè)定方法為N-(1-萘基)-乙二胺光度法;NH4+-N的測(cè)定方法為次氯酸鈉氧化法,檢出限為0.02mg/L;溶解態(tài)總氮(DTN)經(jīng)過(guò)硫酸鉀紫外消解后利用鎘柱還原法測(cè)定,檢出限為0.02mg/L.可溶性有機(jī)氮(DON)采用計(jì)算公式DON=DTN-NO3--NO2-- NH4+得到[21].

圖1 研究區(qū)域采樣點(diǎn)分布及其土地利用方式

其中樣點(diǎn)在4次采樣期間均采集了水樣,加密樣點(diǎn)僅在8月采集了水樣,圖中不同顏色代表不同土地利用類(lèi)型.R1~R6 (包括K1~K5)之間點(diǎn)位為獨(dú)流減河下游樣品,K6~R11之間樣品為獨(dú)流減河上游樣品,R12為大清河樣品

水中溶解的N2O濃度采用頂空平衡法測(cè)定[22-23],具體步驟為:向裝滿(mǎn)水樣的玻璃瓶中注入40mL高純N2,同時(shí)置換出等體積水樣.將置換完水樣的玻璃瓶置于恒溫振蕩器中振蕩40min,隨后靜置3h,使得玻璃瓶中氣液兩相達(dá)到平衡.抽取液面上方氣體1mL,使用Agilent 7890B氣相色譜儀測(cè)定N2O含量,根據(jù)測(cè)定樣品的色譜峰面積計(jì)算出玻璃瓶頂空中N2O濃度.氣相色譜儀配備電子捕獲檢測(cè)器(ECD檢測(cè)器)和Pompak Q填充柱,進(jìn)樣口、柱溫箱和檢測(cè)器的溫度分別為200, 70和300℃,以高純He為載氣,95% Ar+5% CH4(體積比)為尾吹氣,柱流速和尾吹氣流速分別為25和30mL/min.

1.3 水體N2O濃度、飽和度及釋放通量的計(jì)算

利用Weiss等[24]提供的溶解度數(shù)據(jù)及公式,將氣相中N2O濃度換算成水樣中溶解的N2O濃度,具體計(jì)算方法如下所示:

N2O濃度計(jì)算

1=G·0/(·) (1)

式中:1為頂空中N2O的濃度, μmol/L;G為頂空中N2O的摩爾分壓;0為標(biāo)準(zhǔn)大氣壓, 1.01325′105Pa;是理想氣體常數(shù), 8.314′103Pa·L/(mol·K);為熱力學(xué)溫度, K.

玻璃瓶液體中N2O的濃度可根據(jù)Weiss等[24]提供的氣體溶解度公式計(jì):

2=G·(2)

式中:2為平衡后玻璃瓶?jī)?nèi)水體中溶存N2O的濃度, μmol/L;G為頂空中N2O的摩爾分壓.其中的計(jì)算公式如下:

ln=1+2(100/)+3ln(/100)+4(/100)2+

[1+2(/100)+3(/100)2] (3)

式中:是溶解系數(shù);表示玻璃瓶?jī)?nèi)的熱力學(xué)溫度, K;是水體的鹽度, ‰;和是關(guān)于計(jì)算的常數(shù),具體如表1.

表1 關(guān)于D計(jì)算的不同參數(shù)值[24]

將頂空氣體和玻璃瓶?jī)?nèi)水體溶存N2O的濃度根據(jù)下列公式換算為平衡前水樣中溫室氣體的濃度:

w=(1·1+2·2)/2(4)

式中:w為水樣中溫室氣體的實(shí)際濃度, μmol/L;1和2分別代表頂空氣體體積和瓶中水樣體積, mL.

N2O飽和度計(jì)算:

=w/eq′100% (5)

式中:為N2O的飽和度, %;w為水樣中溫室氣體的實(shí)際濃度, μmol/L;eq為大氣與自然水體處于水氣平衡時(shí)水中N2O的理論濃度, μmol/L,可根據(jù)實(shí)際的水溫、鹽度和大氣中溫室氣體的年均體積分?jǐn)?shù),利用Weiss等[24]提供的溶解度計(jì)算公式計(jì)算.

N2O釋放通量計(jì)算[25-27]:

=(w-eq) (6)

=600(c/600)-2/3(7)

600=2.07+(0.215101.7) (8)

c=2141.2-152.56+5.89632-0.124113+

0.00106554(9)

式中:為水-氣界面N2O的釋放通量, μmol/(m2·h);為N2O在水體的擴(kuò)散系數(shù), cm/h;c為水中N2O氣體的施密特系數(shù);是水溫,℃,通過(guò)現(xiàn)場(chǎng)測(cè)得,取值范圍為-2~40℃.U為水體上方m處的風(fēng)速,10是水面上方10m風(fēng)速, m/s,采樣期間風(fēng)速在1.8~2.5m/s之間,夏季風(fēng)速為2.2m/s,冬季風(fēng)速為1.8m/s,數(shù)據(jù)由公式10轉(zhuǎn)化.C10為10m時(shí)的阻力系數(shù), 取0.0013,為Von Karman常數(shù),取0.41.

河流N2O釋放系數(shù)[28]:

EF5-r=[N2O-N]/[NO3--N](11)

式中: EF5-r是河流N2O的釋放系數(shù),[N2O-N]是河流溶存N2O的濃度, μg N/L;[NO3--N]是河流NO3-濃度, μg N/L.

1.4 數(shù)據(jù)分析方法

采用SPSS 22.0和Excel 2019進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,采用Origin8.0進(jìn)行圖形繪制,數(shù)據(jù)間的關(guān)系采用Spearman進(jìn)行相關(guān)分析.

2 結(jié)果與分析

2.1 水質(zhì)參數(shù)及氮素形態(tài)特征

表2概述了水樣主要理化性質(zhì)包括水溫、DO、鹽度、pH值以及不同形態(tài)氮素的平均值及變異系數(shù)(CV),、DO、鹽度的季節(jié)變化差異明顯.雖然冬季和夏季水溫的差異性很大,但由各季節(jié)的變異系數(shù)發(fā)現(xiàn),每次采樣期間,水溫在空間上的變化范圍不大.在冬季和夏季降雨前測(cè)得最高和最低DO含量,分別為13.1和9.4mg/L,每次采樣期間DO在空間上的變化較小.受雨季閘壩調(diào)蓄影響,河流水位顯著降低,加速了海水入侵的趨勢(shì),河水在7月降雨前呈現(xiàn)較高鹽度(9.4‰)特征,而降水后由于雨水的稀釋作用,導(dǎo)致鹽度降低(8.4‰).受集中降雨期影響,8月份鹽度較7月份更低(5.6‰).冬季受閘壩關(guān)閉及河道蓄水雙重影響,改變河水與海水間的水位差異性,鹽度表現(xiàn)為最低2.5‰.結(jié)合變異系數(shù)以及圖2a、2b發(fā)現(xiàn),鹽度具有明顯的空間差異性,獨(dú)流減河下游河水具有較高的鹽度,而下游濕地由于閘壩的攔截,河流與濕地之間的連通性較差,濕地水樣中鹽度含量較低;獨(dú)流減河上游以及大清河受渤海的影響較小,鹽度平穩(wěn)且含量較低.雨前、雨后、8月及冬季采樣期間水體pH值分別為8.4, 8.6, 8.4, 8.7,變異系數(shù)為4%、3%、5%、3%,pH值時(shí)空差異不明顯,且降雨對(duì)河水pH值影響不顯著.

不同季節(jié)3種無(wú)機(jī)氮的含量差異顯著, NH4+-N在冬季含量最高為0.21mg/L,而雨前、雨后及8月采樣期間NH4+-N的含量均接近0.1mg/L.水體NO2--N含量在3種無(wú)機(jī)氮中占比最低,采樣期間除8月高于0.05mg/L外,其余3次NO2--N含量均低于0.05mg/L.NO3--N是水體最主要的活性氮賦存形態(tài),在冬季含量最高為0.48mg/L,其余3次采樣期間NO3--N濃度在0.26mg/L左右,基本保持一致. NO3--N在空間上變化差異顯著(表2,圖2c,2d),降雨后大清河和獨(dú)流減河上游部分點(diǎn)位NO3--N濃度出現(xiàn)顯著增高,而獨(dú)流減河下游在降雨后水體NO3--N含量出現(xiàn)了降低.水體中DON的含量高于可溶性無(wú)機(jī)氮(DIN),其中8月采樣期間DON的含量最高.相比于DIN,DON在空間上變化較穩(wěn)定,差異性不明顯.4次采樣期間,DTN波動(dòng)范圍較大,其中冬季采樣期間含量最高為1.38mg/L,降雨前水體DTN含量最低為0.83mg/L.

表2 采樣期間水體理化性質(zhì)變化

注:右上角帶a數(shù)據(jù)為平均值,下方百分?jǐn)?shù)據(jù)為對(duì)應(yīng)采樣期間變異系數(shù)CV.

圖2 鹽度和NO3--N含量的沿程變化

DQR為大清河,UDLR為獨(dú)流減河上游,DDLR為獨(dú)流減河下游

2.2 N2O濃度及飽和度的時(shí)空變化

如圖3所示, N2O的濃度具有明顯的時(shí)空變異性,范圍在0.4~184.5nmol/L之間,平均值為32.5nmol/L.夏季降雨前N2O的平均濃度為18.5nmol/L,降雨后N2O的平均濃度增到27.4nmol/L,相同點(diǎn)位降雨前后N2O的變化值為-15.2~ 63.9nmol/L.8月采樣期間河流N2O的平均濃度為37.8nmol/L,冬季河水具有最高的N2O平均濃度(40.4nmol/L).空間分析發(fā)現(xiàn),除冬季采樣期大清河-獨(dú)流減河上游-獨(dú)流減河下游N2O平均濃度基本一致外,其余3次采樣期間大清河和獨(dú)流減河上游N2O的平均濃度均高于下游.

N2O的飽和度在7.2%~2740%之間,平均值為405.9%,其中90%的樣品處于過(guò)飽和狀態(tài),河流將作為大氣中N2O的源對(duì)大氣N2O的濃度起到升高作用.降雨后水體N2O的飽和度明顯升高(圖3).與N2O濃度變化不同的是,雖然冬季N2O的平均濃度遠(yuǎn)高于夏季,但冬季N2O的平均飽和度(255.9%)卻顯著低于夏季(354.8%).對(duì)N2O飽和度進(jìn)行空間分析發(fā)現(xiàn),與其它點(diǎn)位相比,R8號(hào)點(diǎn)位N2O飽和度出現(xiàn)顯著升高.

2.3 研究區(qū)水體N2O釋放通量的變化

4次采樣期間N2O釋放通量(式6~10)在-0.3~6.7μmol/(m2·h)之間,均值為0.8μmol/(m2·h).無(wú)論在季節(jié)還是空間尺度上,N2O的釋放通量都存在較大的差異(圖3).冬季N2O的平均釋放通量處于最低水平為0.35μmol/(m2·h),8月采樣期間N2O的平均釋放通量達(dá)到最高值為1.07μmol/(m2·h).與降雨前N2O的平均釋放通量(0.48μmol/(m2·h))相比,降雨后N2O的平均釋放通量的(0.84μmol/(m2·h))提高了1.8倍.對(duì)4次采樣期間N2O的釋放通量進(jìn)行空間分析發(fā)現(xiàn),大清河及獨(dú)流減河上游N2O的平均釋放通量為1.37, 1.22μmol/(m2·h),而獨(dú)流減河下游N2O的平均釋放通量為0.47μmol/(m2·h),上游N2O的平均釋放通量遠(yuǎn)高于下游.

圖3 水體N2O濃度(a)和(b)、飽和度及釋放通量(c)和(d)的時(shí)空變化

模向虛線(xiàn)表示飽和度,N2Osat100%即N2O飽和度為100%

3 討論

3.1 研究區(qū)河流N2O排放因子

通過(guò)對(duì)4次采樣期間EF5-r進(jìn)行計(jì)算(式11),得到夏季降雨前EF5-r平均值為0.0014,降雨后EF5-r的平均值為0.0038,8月采樣期間EF5-r的平均值為0.014,冬季EF5-r的平均值為0.0035,這與之前對(duì)不同季節(jié)EF5-r的研究結(jié)果相一致[28-29],表明不同季節(jié)及極端降雨事件的發(fā)生均會(huì)顯著影響對(duì)N2O釋放的預(yù)測(cè).研究區(qū)水體水動(dòng)力條件較弱,水體中NO3--N濃度較低為0.31mg/L,導(dǎo)致4次采樣期間EF5-r的平均值較高,為0.0073,高于IPCC規(guī)定的EF5-r值(0.0026).利用IPCC默認(rèn)值可能會(huì)低估弱水動(dòng)力條件下濱海地區(qū)河流N2O的釋放.

表3 不同研究中c[N2O-N]:c[NO3--N]值的比較

結(jié)合先前的研究結(jié)果發(fā)現(xiàn),不同研究區(qū)域EF5-r值往往是不同的(表3).例如Outram等[30]通過(guò)對(duì)受農(nóng)業(yè)影響的瑟恩河上游研究發(fā)現(xiàn),該區(qū)域河水中N2O的濃度約是本研究中N2O濃度的1.9倍.但該區(qū)域河水中NO3--N濃度是本研究區(qū)(0.31mg/L)的5倍,較高濃度的NO3--N導(dǎo)致瑟恩河上游EF5-r值(0.0011)小于IPCC默認(rèn)值.此外,Wang等[31]對(duì)受城市污染的南淝河的研究表明,區(qū)域主要受NH4+-N (12.54mg/L)污染,河水中N2O的濃度約是本研究區(qū)4.5倍, NO3--N(0.51mg/L)的含量卻與本研究區(qū)相似,兩者間較大的差異倍數(shù),導(dǎo)致該河流N2O的排放因子(0.0745)遠(yuǎn)高于IPCC規(guī)定的默認(rèn)值.綜上,不同河流EF5-r值可能會(huì)存在較大的差異,且與季節(jié)、水動(dòng)力條件、氮污染類(lèi)型、氮素濃度有關(guān).使用一個(gè)排放因子評(píng)估的方法將導(dǎo)致評(píng)估結(jié)果的不確定性變大[28,32-33],需要綜合考慮各因素對(duì)N2O釋放的影響,加深對(duì)河流N2O釋放機(jī)理的研究,降低全球N2O釋放量預(yù)測(cè)的不確定性.

3.2 濱海河流弱水動(dòng)力條件下的低N2O釋放強(qiáng)度

對(duì)4次采樣期間N2O釋放通量分析發(fā)現(xiàn),夏季N2O釋放通量高于冬季.夏季采樣期間水溫較高,風(fēng)速較大,N2O在水體的擴(kuò)散系數(shù)(=3.9)高于冬季(=1.4),從而更有利于N2O的釋放.降雨后N2O釋放通量增加了1.8倍,其中上游水體N2O釋放通量的變化值是下游水體變化值的11倍.強(qiáng)降雨與大量施用農(nóng)業(yè)氮肥的結(jié)合,增加了水體中N2O的含量,進(jìn)而顯著增強(qiáng)了河流N2O的釋放能力.降雨后為河流N2O釋放的關(guān)鍵時(shí)刻,需深入開(kāi)展更多N2O釋放機(jī)制的研究,以降低濱海地區(qū)N2O收支的不確定性.

表4 不同河流水體N2O釋放強(qiáng)度的比較

注:括號(hào)外數(shù)據(jù)代表平均值、括號(hào)內(nèi)數(shù)據(jù)表示范圍(只有平均值無(wú)范圍則不加括號(hào)); -表示無(wú)相關(guān)數(shù)據(jù).

將河流N2O的釋放情況與之前的研究相比較,結(jié)果如表4所示:不同區(qū)域類(lèi)型河流N2O釋放通量的范圍為-0.4~87.6μmol/(m2·h).與其它河流相比,該研究區(qū)域N2O的釋放略高于一些低營(yíng)養(yǎng)化的河流,如黃河下游[36],而低于一些污染較為嚴(yán)重的城市河流,如珠江口、巢湖流域等[16,37].N2O的釋放受到水體流速、風(fēng)速及N2O飽和度等的影響[28,36].Xiao等[28]通過(guò)對(duì)河流、池塘以及水庫(kù)的研究指出:對(duì)于慢生態(tài)系統(tǒng)(池塘、水庫(kù)),由于水體流動(dòng)的速度較慢,N2O的釋放主要受風(fēng)力作用的影響.與N2O濃度相近的句容河相比,本研究中的濱海地區(qū)由于受到閘壩攔截的影響,水體水動(dòng)力條件較弱,N2O釋放受到水流影響較小,N2O的釋放通量遠(yuǎn)低于句容河[28].總體來(lái)說(shuō),盡管該區(qū)域是大氣中N2O的源,但由于該研究區(qū)河流N2O的飽和度較低,水動(dòng)力條件較弱,與大氣氣體交換能力不強(qiáng)[38],N2O的釋放仍處于一個(gè)較低水平.

3.3 典型濱海地區(qū)河流N2O影響因素及產(chǎn)生機(jī)制

已有研究表明河流中N2O的產(chǎn)生受到多種因素的影響,如氮負(fù)荷、鹽度、降雨、溫度、pH值、DO及水力滯留時(shí)間等,多個(gè)環(huán)境變量可以一起預(yù)測(cè)河流N2O濃度,但當(dāng)單獨(dú)考慮時(shí),它們中沒(méi)有一個(gè)能作為N2O的最佳預(yù)測(cè)因子[41-42].為判斷影響河流N2O產(chǎn)生的主導(dǎo)因素,將各變量與河流中N2O濃度進(jìn)行相關(guān)性分析,結(jié)果如圖4、5所示.無(wú)論考慮季節(jié)變化還是河流類(lèi)型,NO3--N與N2O濃度(=0.53,<0.01)之間均呈現(xiàn)顯著正相關(guān).如具有較高NO3--N濃度的R8,表現(xiàn)出了較強(qiáng)N2O濃度,河流N2O濃度可以通過(guò)NO3--N的動(dòng)態(tài)水平來(lái)預(yù)測(cè)(圖4和圖5).而由于河流中NH4+-N的濃度較低,與N2O濃度之間的相關(guān)性不明顯(=0.10).結(jié)合現(xiàn)有研究結(jié)果,N2O可以在水體及沉積物中通過(guò)硝化和反硝化作用產(chǎn)生[43],DIN作為硝化作用及反硝化作用的底物,其濃度的高低對(duì)水體N2O的產(chǎn)生具有重要的影響[11,28].分析水體氮含量、DO、水動(dòng)力條件以及各變量之間的相關(guān)性關(guān)系,可以對(duì)水體中N2O的主要產(chǎn)生途徑進(jìn)行解析:由DON和DO濃度可知,較高濃度的DON在有氧水體中會(huì)進(jìn)行持續(xù)的礦化作用產(chǎn)生NH4+-N[10,44],產(chǎn)生的NH4+-N又會(huì)在有氧條件進(jìn)行持續(xù)的硝化作用[11-12,45],使河水中NH4+-N減少, NO3--N和N2O濃度增加,再結(jié)合NO3--N與N2O濃度之間的相關(guān)性關(guān)系,可以看出硝化作用在水體N2O產(chǎn)生中占據(jù)重要地位.但值得注意的是,由于閘壩的建立,導(dǎo)致獨(dú)流減河徑流量變小,流速減慢[18],形成弱水動(dòng)力條件.這種弱水動(dòng)力條件,將導(dǎo)致DIN在水體中的滯留時(shí)間延長(zhǎng),表層水體中的DIN更容易向深層轉(zhuǎn)移,在水-沉積物界面由于存在富氧和缺氧區(qū)域的不斷變化[45],有利于耦合硝化-反硝化作用的發(fā)生[7,46],產(chǎn)生更多的N2O.因此,弱水動(dòng)力條件下水-沉積物界面存在的耦合硝化-反硝化作用應(yīng)當(dāng)引起關(guān)注.

鹽度梯度作為濱海地區(qū)水體特有特征,在影響N2O產(chǎn)生中起著重要作用.對(duì)研究區(qū)水體N2O濃度分析發(fā)現(xiàn):上游低鹽度區(qū)域N2O濃度較高,而下游高鹽度區(qū)域N2O濃度較低,相關(guān)性分析結(jié)果表明水體N2O的濃度與鹽度之間呈現(xiàn)顯著負(fù)相關(guān)(=-0.44,<0.01),這與之前的研究相一致[16,47].鹽度作為影響硝化和反硝化作用的因素之一,當(dāng)鹽度升高時(shí)會(huì)抑制河流中相關(guān)微生物的活性[16],導(dǎo)致N2O的產(chǎn)生速率降低,從而使河流中N2O的濃度下降[48].降雨作為影響河流氮含量及水動(dòng)力條件的重要因素,對(duì)水體N2O濃度的影響是不容忽視的.如圖3所示,降雨后大清河-獨(dú)流減河上游河水中N2O的濃度出現(xiàn)顯著增高,這與先前的研究相一致[28,42].結(jié)合土地利用類(lèi)型發(fā)現(xiàn)(圖1),該區(qū)域農(nóng)業(yè)土壤分布較廣,雨水會(huì)沖刷農(nóng)業(yè)區(qū)土壤NO3--N進(jìn)入河流,造成河流NO3--N含量的升高[42,49-50],高濃度的NO3--N會(huì)刺激反硝化作用及相關(guān)N2O的產(chǎn)生[40,42].降雨的發(fā)生也會(huì)導(dǎo)致地下水位改變,高水位使土壤和地下水等其它來(lái)源的N2O直接輸入到河流導(dǎo)致水體中N2O濃度的升高[2,51],8月較7月水體測(cè)得更高N2O濃度可能受到降雨的強(qiáng)烈影響(7月降雨后到8月采樣前累計(jì)降雨量為299.5mm).降雨可以通過(guò)促進(jìn)水體擾動(dòng),增強(qiáng)水動(dòng)力條件,從而促進(jìn)河流N2O的排放[28].與獨(dú)流減河上游(平均增加22.1nmol/L)相比,由于雨水的稀釋作用,獨(dú)流減河下游水體中N2O濃度(平均增加1.3nmol/L)的增加量較小,R4、R6點(diǎn)位在降雨后還出現(xiàn)了N2O濃度降低的情況.結(jié)合水體DIN含量分析發(fā)現(xiàn),在降雨后R4、R6點(diǎn)位NO3--N含量出現(xiàn)了顯著的降低,NO3--N含量的變化可能是引起水體N2O濃度減小的原因[31].由此看出,降雨事件驅(qū)動(dòng)了流域氮素的運(yùn)移,為N2O的產(chǎn)生提供反應(yīng)物,導(dǎo)致水體N2O濃度的升高.

圖5 各變量之間相關(guān)性分析

為消除底物濃度的影響,將與[N2O-N: NO3--N]進(jìn)行相關(guān)性分析,結(jié)果表明與[N2O-N: NO3--N]之間呈較弱的負(fù)相關(guān)(=-0.09),這與之前的研究有所不同[52].一般認(rèn)為溫度對(duì)水體N2O濃度的影響是雙向的,溫度升高會(huì)增強(qiáng)微生物的活性,使水體N2O的產(chǎn)生量增加[53].但隨著溫度的升高,N2O在水體中的飽和溶解度會(huì)隨之降低,有利于水體N2O向大氣中釋放,從而導(dǎo)致河流N2O濃度的降低[54].4次采樣期間水溫在空間上的差異性較小,但N2O濃度在空間上的差異性較大(表2),因此水溫可能不是該研究區(qū)驅(qū)動(dòng)水體N2O濃度變化的主要原因,N2O濃度的季節(jié)性變化可能受其它因素的影響[49].研究區(qū)冬季水體中測(cè)得DIN的含量高于夏季,進(jìn)而為N2O的產(chǎn)生提供充足的反應(yīng)物,從而促進(jìn)了N2O產(chǎn)生和低溫條件下的溶解[11,28],高DIN含量可能是促使河流N2O產(chǎn)生的更重要原因[28,31].N2O的濃度與DO含量之間呈顯著正相關(guān)(=0.49,<0.11),進(jìn)一步說(shuō)明了硝化作用在水體N2O的產(chǎn)生過(guò)程中起著重要作用[5,11].由DO與pH值之間的相關(guān)性發(fā)現(xiàn),DO和pH值之間呈現(xiàn)顯著的正相關(guān),這可能是由于DO和pH值都會(huì)隨著藻類(lèi)光合作用的進(jìn)行而逐漸增加[55].河流中N2O的產(chǎn)生受多因素的影響,總體來(lái)說(shuō)該濱海地區(qū)N2O的產(chǎn)生主要與河流NO3--N和鹽度的含量息息相關(guān),河流中N2O的生成受硝化作用的影響強(qiáng)烈.

4 結(jié)論

4.1 本研究以我國(guó)北方典型受閘壩控制河流-濕地水生生態(tài)系統(tǒng)為研究對(duì)象,通過(guò)對(duì)水化學(xué)參數(shù)及氮素濃度分析發(fā)現(xiàn),該區(qū)域水體溶存N2O濃度處于過(guò)飽和狀態(tài),表現(xiàn)為大氣的源,N2O濃度呈現(xiàn)明顯空間和季節(jié)性差異,上游水體中N2O的平均濃度是下游水體的1.9倍.

4.2 對(duì)N2O產(chǎn)生機(jī)制及影響因素分析發(fā)現(xiàn),該區(qū)域河流N2O的產(chǎn)生受到反應(yīng)物濃度、水體鹽度的共同調(diào)控,硝化作用在水體N2O產(chǎn)生中占據(jù)重要作用.夏季受強(qiáng)降雨的影響,驅(qū)動(dòng)氮素向水生生態(tài)系統(tǒng)的運(yùn)移,河流N2O的濃度較高,誘發(fā)N2O的快速釋放,是研究區(qū)N2O釋放的熱點(diǎn)時(shí)刻.

4.3 通過(guò)計(jì)算得到EF5-r的平均值為0.0073,高于IPCC默認(rèn)的N2O排放因子,使用IPCC默認(rèn)值會(huì)低估該類(lèi)型濱海河流水體N2O釋放.

[1] IPCC. Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2014:86-87.

[2] Beaulieu J J, Tank J L, Hamilton S K, et al. Nitrous oxide emission from denitrification in stream and river networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(1):214-219.

[3] Garnier J, Cébron A, Tallec G, et al. Nitrogen behavior and nitrous oxide emission in the Tidal Seine River Estuary (France) as influenced by human activities in the upstream watershed [J]. Biogeochemistry, 2006,77(3):305-326.

[4] Ivens W P, Tysmans D J, Kroeze C, et al. Modeling global N2O emissions from aquatic systems [J]. Current Opinion in Environmental Sustainability, 2011,3(5):350-358.

[5] Liu X L, Bai L, Wang Z L, et al. Nitrous oxide emissions from river network with variable nitrogen loading in Tianjin, China [J]. Journal of Geochemical Exploration, 2015,157:153-161.

[6] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 11: N2O Emissions from Managed Soils, and CO2Emissions from Lime and Urea Application [M]. IPCC, Switzerland, 2019:35-37.

[7] Hinshaw S E, Dahlgren R A. Dissolved nitrous oxide concentrations and fluxes from the eutrophic San Joaquin River, California [J]. Environmental Science & Technology, 2013,47(3):1313-1322.

[8] Wang G Q, Xia X H, Liu S D, et al. Distinctive patterns and controls of nitrous oxide concentrations and fluxes from urban inland waters [J]. Environmental Science & Technology, 2021,55(12):8422-8431.

[9] Crump B C, Hopkinson C S, Sogin M L, et al. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time [J]. Applied and Environmental Microbiology, 2004,70(3):1494-1505.

[10] Beaulieu J J, Nietch C T, Young J L. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin [J]. Journal of Geophysical Research: Biogeosciences, 2015,120(10): 1995-2010.

[11] Liang X, Xing T, Li J X, et al. Control of the hydraulic load on nitrous oxide emissions from cascade reservoirs [J]. Environmental Science and Technology, 2019,53(20):11745-11754.

[12] Maavara T, Lauerwald R, Laruelle G G, et al. Nitrous oxide emissions from inland waters: Are IPCC estimates too high? [J]. Global Change Biology, 2019,25(2):473-488.

[13] Bange H W, Rapsomanikis S, Andreae M O. Nitrous oxide in coastal waters [J]. Global Biogeochemical Cycles, 1996,10(1):197-207.

[14] Barnes J, Upstill-Goddard R C. N2O seasonal distributions and air-sea exchange in UK estuaries: Implications for the tropospheric N2O source from European coastal waters [J]. Journal of Geophysical Research:Biogeosciences, 2011,116:G01006.

[15] Harley J F, Carvalho L, Dudley B, et al. Spatial and seasonal fluxes of the greenhouse gases N2O, CO2and CH4in a UK macrotidal estuary [J]. Estuarine Coastal and Shelf Science, 2015,153:62-73.

[16] Lin H, Dai M H, Kao S J, et al. Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China [J]. Marine Chemistry, 2016,182:14-24.

[17] 胡蓓蓓,譚永潔,王東啟,等.冬季平原河網(wǎng)水體溶存甲烷和氧化亞氮濃度特征及排放通量[J]. 中國(guó)科學(xué):化學(xué), 2013,43(7):919-929.

Hu B B, Tan Y J, Wang D Q, et al. Methane and nitrous oxide dissolved concentration and emission flux of plain river network in winter [J]. Science China: Chemistry, 2013,43(7):919-929.

[18] Han Z L, Xiao M, Yue F J, et al. Seasonal variations of dissolved organic matter by fluorescent analysis in a typical river catchment in Northern China [J]. Water, 2021,13(4):494-513.

[19] 程 芳,丁 帥,劉素美,等.三峽庫(kù)區(qū)及其下游溶解氧化亞氮(N2O)分布和釋放[J]. 環(huán)境科學(xué), 2019,40(9):4230-4237.

Cheng F, Ding S, Liu S M, et al. Distribution and emission of nitrous oxide (N2O) in Three Gorges Reservoir and downstream river [J]. Environmental Science, 2019,40(9):4230-4237.

[20] Yan W J, Yang L B, Fang W, et al. Riverine N2O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads [J]. Global Biogeochemical Cycles, 2012,26:GB4006.

[21] 田琳琳,王 正,胡 磊,等.長(zhǎng)江上游典型農(nóng)業(yè)源溪流溶存氧化亞氮(N2O)濃度特征及影響因素[J]. 環(huán)境科學(xué), 2019,40(4):421-431.

Tian L L, Wang Z, Hu L, et al. Characteristics of the dissolved nitrous oxide(N2O) concentrations and influencing factors in a representative agricultural headwater stream in the upper reach of the Yangtze River [J]. Environmental Science, 2019,40(4):421-431.

[22] Manjrekar S, Uskaikar H, Morajkar S. Seasonal production of nitrous oxide in a tropical estuary, off western India [J]. Regional Studies in Marine Science, 2020,39:101418.

[23] Wang R, Zhang H, Zhang W, et al. An urban polluted river as a significant hotspot for water–atmosphere exchange of CH4and N2O [J]. Environmental Pollution, 2020,264:114770.

[24] Weiss R F, Price B A. Nitrous oxide solubility in water and seawater [J]. Marine Chemistry, 1980,8(4):347-359.

[25] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited [J]. Limnology and Oceanography: Methods, 2014,12(6):351-362.

[26] Cole J J, Caraco N F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 [J]. Limnology and Oceanography, 1998,43(4):647-656.

[27] 唐 晨,楊 平,展鵬飛,等.河口區(qū)養(yǎng)殖塘水-氣界面N2O擴(kuò)散通量比較 [J]. 中國(guó)環(huán)境科學(xué), 2021,41(3):1074-1085.

Tang C, Yang P, Zhan P F, et al. Comparison of floating chamber and diffusion model methods in determining diffusive N2O fluxes across water-atmosphere interface in estuary aquaculture ponds [J]. China Environmental Science, 2021,41(3):1074-1085.

[28] Xiao Q T, Hu Z H, Fu C S, et al. Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China [J]. Environmental Pollution, 2019,251:185-192.

[29] Hiscock K M, Cooper R J, Hama-Aziz Q. Indirect nitrous oxide emission factors for agricultural field drains and headwater streams [J]. Environmental Science & Technology,2017,51(1):301-307.

[30] Outram F N, Hiscock K M. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?[J]. Environmental Science & Technology, 2012,46(15):8156-8163.

[31] Wang J N, Chen N W, Yan W J, et al. Effect of dissolved oxygen and nitrogen on emission of N2O from rivers in China [J]. Atmospheric Environment, 2015,103:347-356.

[32] Tian L L, Zhu B, Akiyama H. Seasonal variations in indirect N2O emissions from an agricultural headwater ditch [J]. Biology and Fertility of Soils, 2017,53(6):651-662.

[33] Beaulieu J J, Arango C P, Hamilton S K, et al. The production and emission of nitrous oxide from headwater streams in the Midwestern United States [J]. 2008,14(4):878-894.

[34] Liu X L, Li S L, Wang Z L, et al. Nitrous oxide (N2O) emissions from a mesotrophic reservoir on the Wujiang River, southwest China [J]. Acta Geochimica, 2017,36(4):1-13.

[35] Yu Z J, Deng H G, Wang D Q, et al. Nitrous oxide emissions in the Shanghai river network: implications for the effects of urban sewage and IPCC methodology [J]. Global Change Biology, 2013,19(10): 2999-3010.

[36] Cheng F, Zhang H M, Zhang G L, et al. Distribution and emission of N2O in the largest river-reservoir system along the Yellow River [J]. Science of the Total Environment, 2019,666:1209-1219.

[37] Yang L B, Lei K. Effects of land use on the concentration and emission of nitrous oxide in nitrogen-enriched rivers [J]. Environmental Pollution, 2018,238:379-388.

[38] 譚永潔,王東啟,周立旻,等.河流氧化亞氮產(chǎn)生和排放研究綜述[J]. 地球與環(huán)境, 2015,43(1):123-132.

Tan Y J, Wang D Q, Zhou L M, et al. Review on the production and emission of nitrous oxide from rivers [J]. Earth and Environment, 2015,43(1):123-132.

[39] Xia Y Q, Li Y F, Li X B, et al. Diurnal pattern in nitrous oxide emissions from a sewage-enriched river [J]. Chemosphere, 2013,92(4):421-428.

[40] Mwanake R M, Gettel G M, Aho K S, et al. Land use, not stream order, controls N2O concentration and flux in the upper Mara River basin, Kenya [J]. Journal of Geophysical Research: Biogeosciences, 2019,124(11):3491-3506.

[41] Harrison J, Matson P. Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley [J]. Global Biogeochemical Cycles, 2003,17:1080.

[42] Zhao Y Q, Yong Q, Xia B L, et al. Influence of environmental factors on net N2and N2O production in sediment of freshwater rivers [J]. Environmental Science & Pollution Research, 2014,21(16):9973-9982.

[43] Kuypers M, Marchant H K, Kartal B. The microbial nitrogen-cycling network [J]. Nature Reviews Microbiology, 2018,16(5):263-276.

[44] 趙彥龍,李心清,丁文慈,等.水中有機(jī)質(zhì)礦化作用的生物地球化學(xué)室內(nèi)模擬研究[J]. 地球與環(huán)境, 2007,35(3):233-238.

Zhao Y L, Li X Q, Ding W C, et al. Laboratory biogeochemical study on mineralization of organic matter in water [J]. Earth and Environment, 2007,35(3):233-238.

[45] 夏星輝,楊 騰,楊 萌,等.中國(guó)江河氧化亞氮的排放及其影響因素[J]. 環(huán)境科學(xué)學(xué)報(bào), 2020,40(8):2679-2689.

Xia X H, Yang T, Yang M, et al. A review of nitrous oxide efflux and associated controls in China’s streams and rivers [J]. Acta Scientiae Circumstantiae, 2020,40(8):2679-2689.

[46] Xia X H, Jia Z M, Liu T, et al. Coupled nitrification-denitrification caused by suspended sediment (sps) in rivers: importance of sps size and composition [J]. Environmental Science & Technology, 2016, 51(1):212-221.

[47] Mueller D, Bange H W, Warneke T, et al. Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo [J]. Biogeosciences, 2016,13(8):2415-2428.

[48] Jia J, Bai J H, Wang W, et al. Salt stress alters the short-term responses of nitrous oxide emissions to the nitrogen addition in salt-affected coastal soils [J]. Science of the Total Environment, 2020,742:140124.

[49] Yang L B, Yan W J, Ma P, et al. Seasonal and diurnal variations in N2O concentrations and fluxes from three eutrophic rivers in Southeast China [J]. Journal of Geographical Sciences, 2011,21(5):820-832.

[50] 夏妍夢(mèng),李 彩,李思亮,等.天津海河氮?jiǎng)討B(tài)變化對(duì)夏季強(qiáng)降雨的響應(yīng)過(guò)程[J]. 生態(tài)學(xué)雜志, 2018,37(3):743-750.

Xia Y M, Li C, Li S L, et al. Response of nitrogen dynamic change to heavy rainfall events during summer in Haihe River of Tianjin City [J]. Chinese Journal of Ecology, 2018,37(3):743-750.

[51] Garnier J, Billen G, Vilain G, et al. Nitrous oxide (N2O) in the Seine river and basin: Observations and budgets [J]. Agriculture Ecosystems & Environment, 2009,133(3):223-233.

[52] Beaulieu J J, Shuster W D, Rebholz J A. Nitrous oxide emissions from a large, impounded river: the ohio river [J]. Environmental Science & Technology, 2010,44(19):7527-7533.

[53] Harold F, Hemond A P, Du R. Fluxes of N2O at the sediment-water and water-atmosphere boundaries of a nitrogen-rich river [J]. Water Resources Research, 1989,25(5):839-846.

[54] 韓 洋,鄭有飛,吳榮軍,等.南京典型水體春季溫室氣體排放特征研究[J]. 中國(guó)環(huán)境科學(xué), 2013,33(8):1360-1371.

Han Y, Zheng Y F, Wu R J, et al. Greenhouse gases emission characteristics of Nanjing typical waters in Spring [J]. China Environmental Science, 2013,33(8):1360-1371.

[55] Mishima I, Masuda S, Kakimoto T, et al. Assessment of nitrous oxide production in eutrophicated rivers with inflow of treated wastewater based on investigation and statistical analysis [J]. Environmental Monitoring and Assessment, 2021,193(2):1-13.

N2O release from the water bodies of typical gate controlling tributaries of Bohai Bay.

LI Xiao-zheng1, YUE Fu-jun1,2*, ZHOU Bin3, WANG Xin-chu1, HU Jian4, CHEN Sai-nan1, LI Si-liang1,2

(1.School of Earth System Science, Tianjin University, Tianjin 300072, China;3.Tianjin Key Laboratory of Earth’s Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin 300072, China;2.Tianjin Academy of Environmental Protection Sciences, Tianjin 300191, China;4.Research Center for Ecology and Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)., 2022,42(1):356~366

To explore the spatiotemporal variation in N2O in typical coastal zone and its main controlling factors under weak hydrodynamic conditions, water samples were collected from coastal rivers and wetlands (Daqing River-Duliujian River-Beidagang wetland) in July and August (Summer) and November (the beginning of Winter) in 2019. The results show that the concentration of N2O varied between 0.4~184.5nmol/L. The saturation of N2O ranged from 7.2%~2740%, and 90% of the samples were oversaturated, indicating that the study area was a potential source of N2O. The N2O release flux at the water-gas interface ranged from -0.3~6.7μmol/(m2·h), while the N2O exchange flux in summer was higher than that in winter. The study also found that the N2O concentration fluctuated significantly before and after rainfall, and the variation in N2O ranged from -15.2~63.9nmol/L at same sites before and after rainfall. The average increase in N2O concentration was significantly higher in the upper reaches (22.1nmol/L) than in the downstream (1.3nmol/L), indicating that rainfall drove the transportation of nitrogen species and accelerated N2O release. The salinity and NO3--N concentration had significant effect on N2O concentration. The N2O emission factor of the tributaties under the weak hydrodynamic conditions in coastal zone was estimated to be 0.0073, higher than the default value of 0.0026 defined by IPCC. Therefore, the N2O budget in the coastal zone may underestimate the indirect N2O emissions by using the IPCC threshold value.

N2O;coastal zone;weak hydrodynamic river;Bohai Bay;emission factor

X16

A

1000-6923(2022)01-0356-11

李肖正(1997-),男,山東聊城人,天津大學(xué)碩士研究生,主要研究方向?yàn)榱饔蛩h(huán)境質(zhì)量監(jiān)測(cè)與評(píng)估.

2021-05-28

國(guó)家自然科學(xué)基金資助項(xiàng)目(42073076,41925002);國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFC1805805);天津市科技計(jì)劃項(xiàng)目(18ZXSZSF00130);天津大學(xué)創(chuàng)新基金(2021XYF-0037)

* 責(zé)任作者, 副教授, fujun_yue@tju.edu.cn

猜你喜歡
鹽度通量降雨
基于特征分析的設(shè)計(jì)降雨過(guò)程分析與計(jì)算
望虞河出入太湖磷通量計(jì)算分析
渤海灣連片開(kāi)發(fā)對(duì)灣內(nèi)水沙通量的影響研究
冬小麥田N2O通量研究
降雨型滑坡經(jīng)驗(yàn)性降雨型閾值研究(以樂(lè)清市為例)
重慶山地通量觀測(cè)及其不同時(shí)間尺度變化特征分析
不同鹽度下脊尾白蝦proPO 和SOD 基因表達(dá)及其酶活力分析
不同鹽度對(duì)生物絮團(tuán)、對(duì)蝦生長(zhǎng)以及酶活性的影響
泥石流
千里巖附近海域鹽度變化趨勢(shì)性研究
抚顺县| 永定县| 舞钢市| 泽库县| 米林县| 五常市| 庆城县| 沽源县| 虞城县| 崇阳县| 石棉县| 神池县| 甘南县| 万荣县| 丹阳市| 宁国市| 土默特右旗| 西和县| 威信县| 道孚县| 营山县| 乐平市| 临西县| 慈利县| 奈曼旗| 弥勒县| 鄂尔多斯市| 民乐县| 徐闻县| 综艺| 鸡西市| 毕节市| 乌鲁木齐市| 浮梁县| 沭阳县| 桂东县| 宜君县| 含山县| 通辽市| 星座| 旬阳县|