王金生,劉嘉蔚,韓科學(xué),徐東輝,薛鎮(zhèn)坤,李 橋,潘明浩,左 銳
甲苯在毛細(xì)帶中的垂向遷移過(guò)程及其環(huán)境要素響應(yīng)
王金生,劉嘉蔚,韓科學(xué),徐東輝,薛鎮(zhèn)坤,李 橋,潘明浩,左 銳*
(北京師范大學(xué)水科學(xué)研究院,地下水污染控制與修復(fù)教育部工程研究中心,北京 100875)
為探究甲苯在非均質(zhì)毛細(xì)帶中的遷移規(guī)律及環(huán)境要素響應(yīng),采用一維土柱淋濾分層監(jiān)測(cè)實(shí)驗(yàn),模擬瞬時(shí)釋放情境下甲苯從包氣帶進(jìn)入毛細(xì)帶到達(dá)含水層的遷移過(guò)程,同步監(jiān)測(cè)pH值、DO、ORP等環(huán)境要素隨甲苯遷移的變化規(guī)律,利用Pearson方法識(shí)別各環(huán)境要素與甲苯遷移的相關(guān)性.結(jié)果表明:甲苯在毛細(xì)帶中遷移可分為4個(gè)階段,即以重力作用為主導(dǎo)的濃度迅速上升階段, 受毛細(xì)帶頂托作用遷移速度下降、濃度值緩慢上升階段,受吸附作用甲苯濃度值明顯下降階段,穩(wěn)定的污染分布形成階段.pH值、DO和ORP等環(huán)境要素與甲苯遷移過(guò)程正相關(guān)性顯著且呈現(xiàn)明顯的階段性,其中ORP與甲苯遷移規(guī)律最為接近,pH值次之,DO濃度與甲苯遷移規(guī)律偏差最大,尤其是上升階段變化幅度最小.
毛細(xì)帶;甲苯;相關(guān)性分析;垂向遷移;響應(yīng)
以石油烴、苯系物為代表的輕質(zhì)非水相液體(LNAPL)是地下水環(huán)境典型污染源,此類(lèi)污染物溶解度低、難降解、在地下環(huán)境中賦存周期長(zhǎng),難以處理[1].苯系物是土壤和地下水中的優(yōu)先控制污染物,甲苯具有嚴(yán)重的“三致”效應(yīng)[2],是包氣帶和地下水污染研究熱點(diǎn)[3-5].有學(xué)者對(duì)中國(guó)2013與2016年農(nóng)業(yè)土壤污染進(jìn)行調(diào)查,其中41.6%和32.1%污染事件是由甲苯引起的[6].甲苯由于受毛細(xì)帶含水率、介質(zhì)巖性等特征和毛細(xì)作用、吸附作用、微生物作用、水位波動(dòng)等物理化學(xué)作用影響,在毛細(xì)帶中的遷移過(guò)程十分復(fù)雜[7-9].受毛細(xì)作用影響,甲苯的垂向遷移速度減小,又因密度小于水,在地下水位以上形成“透鏡體”.作為地表污染物進(jìn)入地下水的必經(jīng)通道和最后屏障,毛細(xì)帶有一定的阻污作用,但其中形成的污染物“透鏡體”也可能持續(xù)污染土壤與地下水環(huán)境[10-16].
當(dāng)前針對(duì)甲苯等LNAPL在地下水多孔介質(zhì)中遷移轉(zhuǎn)化的研究方法聚焦在室內(nèi)遷移實(shí)驗(yàn)、地球物理探測(cè)、數(shù)值模擬計(jì)算、人工智能算法等方面.多采用探地雷達(dá)、電阻率法、電磁法等[17-18]物探技術(shù)監(jiān)測(cè)污染物遷移轉(zhuǎn)化過(guò)程中的物理參數(shù)、用一維土柱及二維砂槽等室內(nèi)物理模型模擬研究不同介質(zhì)條件下污染物的遷移特征[19-20]以及通過(guò)數(shù)值模擬的方法構(gòu)建三維數(shù)學(xué)模型[12,21]等描述與預(yù)測(cè)污染羽在非飽和帶空間分布與遷移行為.
甲苯在地下環(huán)境中遷移時(shí)會(huì)對(duì)土壤與地下水環(huán)境產(chǎn)生影響,環(huán)境要素變化又作用于污染物環(huán)境行為[22].針對(duì)甲苯在多孔介質(zhì)中的遷移過(guò)程,已有大量研究表明pH值、DO、ORP和有機(jī)質(zhì)含量等環(huán)境要素會(huì)通過(guò)改變吸附-解吸、擴(kuò)散、分配、化學(xué)反應(yīng)和微生物降解速率等,從而影響甲苯在多孔介質(zhì)中的遷移轉(zhuǎn)化過(guò)程[23-24].李盼盼等[25]研究了水位波動(dòng)條件下pH值對(duì)土壤甲苯污染的響應(yīng)規(guī)律,發(fā)現(xiàn)由于甲苯污染的介入使得水環(huán)境 pH值明顯升高.且近期有研究表明,在靜態(tài)吸附實(shí)驗(yàn)中,土壤在吸附甲苯前后,其氧化還原電勢(shì)出現(xiàn)了明顯的電位差,即土壤ORP對(duì)吸附過(guò)程具有一定的響應(yīng)[26].楚偉華[27]等在研究中設(shè)置了外界條件如溫度、濕度、pH 值以及生物降解等因素,發(fā)現(xiàn)其對(duì)影響污染物遷移轉(zhuǎn)化都有所貢獻(xiàn).且由于土壤中的微生物在降解甲苯時(shí)大多會(huì)消耗O2,產(chǎn)生CO2和有機(jī)酸[22],進(jìn)而改變環(huán)境的氧化還原條件和酸堿條件,所以pH值、ORP, 尤其是DO常被用來(lái)指示環(huán)境中微生物代謝活動(dòng)的強(qiáng)弱[28].
本研究通過(guò)建立室內(nèi)一維土柱淋濾實(shí)驗(yàn)來(lái)研究甲苯濃度在毛細(xì)帶中的變化規(guī)律,分析甲苯遷移過(guò)程地下水環(huán)境因素的響應(yīng)特征,探究毛細(xì)帶中甲苯遷移行為及其對(duì)地下水環(huán)境的影響,以期為地下水非均質(zhì)毛細(xì)帶中甲苯污染的監(jiān)測(cè)、控制與修復(fù)提供科學(xué)參考.
實(shí)驗(yàn)所用土樣取自北京市通州區(qū)張家灣地區(qū),該地區(qū)位于潮白河沖洪積扇下部,包氣帶巖性以粉砂和粉細(xì)砂為主,其中,2m以上以粉砂質(zhì)黏土為主, 2.00~5.98m為粉砂質(zhì)黏土,下部粉粒含量高;5.98~ 7.63m為細(xì)砂,砂粒含量高,底部夾有黏性土薄層,地下水位約為6.00m(圖1).
1.2.1 實(shí)驗(yàn)裝置 實(shí)驗(yàn)裝置為直徑10cm,高110cm的有機(jī)玻璃柱,采樣點(diǎn)從下至上依次為1~7號(hào),兩點(diǎn)間距為10cm.柱子底部有一20cm′20cm′20cm的供水槽.水槽右側(cè)距離底部15cm處設(shè)有一個(gè)直徑為1cm的出水口,且裝置柱下部為透水隔板,與外部水槽相連通,用于保持地下水位穩(wěn)定,并通過(guò)毛細(xì)作用達(dá)到持續(xù)補(bǔ)水的效果,且排除了地下水位波動(dòng)對(duì)毛細(xì)上升高度的影響(圖2a).其中1~7號(hào)取樣孔距離地下水面分別為55,45,35,25,15,5,-5cm.
圖1 研究區(qū)位置及第四系地層柱狀圖
★采樣點(diǎn)
1.2.2 實(shí)驗(yàn)步驟 裝填介質(zhì)模擬野外地層分層結(jié)構(gòu),選取3層(1~2.6m,2.6~3.5m,3.5~6.5m)依次裝填土柱,根據(jù)相似理論,按照實(shí)地與實(shí)驗(yàn)?zāi)P?8:1的比例進(jìn)行裝填,總裝填高度為100cm,各層裝填高度及介質(zhì)理化性質(zhì)參數(shù)如表1所示.裝填介質(zhì)時(shí)將土壤溶液取樣器埋入采樣孔中,將取樣器與取樣孔連接處密封.介質(zhì)裝填完畢后,在供水槽中一次性加入去離子水至排水口,隨后通過(guò)馬氏瓶保持地下水位穩(wěn)定,持續(xù)觀察濕潤(rùn)鋒的上升高度至穩(wěn)定狀態(tài).毛細(xì)帶高度為81.50cm.
待毛細(xì)帶穩(wěn)定后,使用錫紙包裹有機(jī)玻璃柱,模擬地下黑暗環(huán)境,實(shí)驗(yàn)溫度為25℃.裝有20mg/L甲苯溶液的玻璃瓶也使用錫紙包裹,以防甲苯光解,其頂部使用橡膠塞和封口膜密封以防逸散,通過(guò)蠕動(dòng)泵將甲苯溶液連續(xù)泵入實(shí)驗(yàn)柱體頂部,模擬淋濾過(guò)程.出水口均與廢液收集裝置相連.
實(shí)驗(yàn)開(kāi)始時(shí),打開(kāi)蠕動(dòng)泵從柱子頂部連續(xù)淋濾20mg/L甲苯溶液,待水頭穩(wěn)定在介質(zhì)上方3cm的排水孔處時(shí),將蠕動(dòng)泵流速降至2mL/min,待7號(hào)采樣孔甲苯濃度趨于穩(wěn)定后,停止注入污染物,實(shí)驗(yàn)共進(jìn)行181h.取樣時(shí),用土壤溶液取樣器從1~7號(hào)采樣孔進(jìn)行取樣(圖2),每個(gè)采樣孔每次采集10~15mL樣品,隨后用一次性針頭過(guò)濾器(13mm,0.22μm)取2.5mL至頂空瓶中,用液相色譜儀島津LC-20AT測(cè)定甲苯濃度,剩余樣品立即用臺(tái)式酸度計(jì)雷磁PHS- 25測(cè)定pH值,用便捷式水質(zhì)參數(shù)儀哈希HQ40d測(cè)定ORP及DO.
圖2 實(shí)驗(yàn)裝置示意
表1 實(shí)驗(yàn)柱裝填參數(shù)及介質(zhì)理化性質(zhì)
2.1.1 甲苯濃度時(shí)間變化規(guī)律 在污染場(chǎng)地里,甲苯主要賦存于介質(zhì)孔隙中,本實(shí)驗(yàn)通過(guò)檢測(cè)毛細(xì)帶中甲苯含量分析甲苯的遷移轉(zhuǎn)化過(guò)程.待毛細(xì)帶穩(wěn)定后開(kāi)始實(shí)驗(yàn).
甲苯濃度變化趨勢(shì)如圖3所示,不同層位整體上甲苯隨時(shí)間呈現(xiàn)快速升高-緩慢升高并局部累計(jì)-下降-平穩(wěn)的規(guī)律,具體將其分為4個(gè)階段:第一階段為以重力作用為主導(dǎo)的對(duì)流彌散階段,各采樣點(diǎn)濃度迅速上升,達(dá)3.42~3.80mg/L;第二階段主要受毛細(xì)帶頂托作用,甲苯遷移速度下降,各層位濃度值先后變化,緩慢上升至5.64~8.03mg/L;第三階段受吸附作用影響,甲苯濃度值下降明顯;第四階段,形成穩(wěn)定的污染分布,甲苯濃度達(dá)到穩(wěn)定.其中,第一階段變化主要集中在前22h,在甲苯瞬時(shí)投放后所有觀測(cè)點(diǎn)濃度迅速升高,尤其在7~12h,各觀測(cè)點(diǎn)隨時(shí)間有明顯遞增趨勢(shì),從3~5號(hào)觀測(cè)點(diǎn)甲苯濃度先后達(dá)到3.8mg/L.24~78h為第二個(gè)階段,影響甲苯遷移的主要為穩(wěn)定毛細(xì)帶頂托作用,削弱了部分對(duì)流作用,且對(duì)于各層位介質(zhì),通過(guò)介質(zhì)靜態(tài)吸附實(shí)驗(yàn)得到場(chǎng)地1~2.6m, 2.6~3.5m, 3.5~6.5m介質(zhì)的平衡濃度分別為16.58, 17.94, 19.42mg/L,不同層位介質(zhì)會(huì)因吸附作用損失一定程度甲苯,又因淋濾過(guò)程使毛細(xì)帶溶解氧含量變高,促進(jìn)氧化還原作用的發(fā)生,進(jìn)一步消耗甲苯,從而降低峰值.第三階段(85~96h),因土壤介質(zhì)的吸附作用,甲苯濃度降低.第四階段(96h后)各觀測(cè)點(diǎn)甲苯濃度值基本達(dá)穩(wěn)定狀態(tài).
圖3 淋濾試驗(yàn)甲苯隨時(shí)間變化
2.1.2 甲苯濃度空間變化規(guī)律 從圖4可以看出,可將甲苯空間分布大致分為4個(gè)區(qū)域.實(shí)驗(yàn)初期,泄露的甲苯在濃度梯度和自身重力下,逐漸向下遷移至毛細(xì)帶并開(kāi)始累計(jì),其中在22h已有部分甲苯到達(dá)地下水位處(I區(qū)).在Ⅱ區(qū), 29~35h時(shí)中間層位即3號(hào)采樣點(diǎn)已出現(xiàn)甲苯累積.35h后,由于毛細(xì)力的作用,甲苯垂直方向的遷移速率減小,毛細(xì)帶的頂托作用不斷影響甲苯遷移,在73h時(shí)3~6號(hào)點(diǎn)甲苯濃度先后達(dá)峰值,形成甲苯累計(jì)區(qū),且最接近地下水面的6號(hào)采樣點(diǎn)累計(jì)濃度最高.
圖4 淋濾試驗(yàn)甲苯隨空間變化
Ⅲ區(qū)中,由于克服了頂托作用且吸附作用占主導(dǎo),各采樣點(diǎn)甲苯濃度降低.對(duì)于不同層位采樣點(diǎn),吸附作用有一定差異.介質(zhì)表面對(duì)甲苯的吸附量與含水率有關(guān)[22]且甲苯傾向于與強(qiáng)極性的水分子結(jié)合,從而使吸附點(diǎn)位下降,極性相對(duì)較弱的甲苯便難以吸附在介質(zhì)表面,即含水率越高,介質(zhì)對(duì)甲苯的吸附越弱.在本實(shí)驗(yàn)中1, 2號(hào)點(diǎn)位于2.6~3.5m介質(zhì)中,3~7號(hào)點(diǎn)位于3.5~6.5m介質(zhì)中,2號(hào)點(diǎn)上部總有機(jī)碳含量為1.23g/kg,下部總有機(jī)碳含量為0.85g/kg.有學(xué)者利用不同的孔隙介質(zhì)吸附進(jìn)行甲苯的靜態(tài)批試驗(yàn)[29],結(jié)果表明甲苯吸附受到孔隙介質(zhì)有機(jī)碳含量和溶解性有機(jī)質(zhì)的影響,介質(zhì)有機(jī)碳含量越高,其對(duì)甲苯的吸附越強(qiáng)[30],得到靜態(tài)吸附實(shí)驗(yàn)結(jié)果與上述規(guī)律一致. 1~2.6m,2.6~3.5m, 3.5~6.5m介質(zhì)的平衡濃度分別為16.58, 17.94, 19.42mg/L,最大單位吸附量分別為17.09, 10.31, 2.92μg/g,即吸附濃度分別為3.42, 2.06和0.58mg/L,從而得到甲苯在遷移過(guò)程中吸附平均占比分別為17.1%, 10%, 2.9%.1~2.6m的介質(zhì)對(duì)甲苯的吸附性能最好,阻滯甲苯遷移的能力最強(qiáng),該種介質(zhì)對(duì)甲苯有明顯的凈化和截留作用;而3.5~6.5m的介質(zhì)對(duì)甲苯的吸附以及阻滯作用最差.各層位甲苯濃度達(dá)到平衡后,對(duì)于介質(zhì)分界處的不同觀測(cè)點(diǎn)濃度存在一定差異,在含水率低的上部取樣孔,吸附作用較強(qiáng)烈,平衡濃度較低;且越接近地下水位,吸附作用越弱,平衡濃度越高.
2.2.1 pH值 土柱毛細(xì)帶各點(diǎn)pH值隨時(shí)間變化如圖5所示,且可將pH值空間分布大致分為3個(gè)區(qū)域(圖6), pH值的變化規(guī)律呈現(xiàn)出與甲苯遷移規(guī)律相似的階段性,可分為3個(gè)階段:先在第一階段(0~ 12h)小幅度降低,在第二階段(12~35h)明顯升高,然后在第三階段(35~181h)達(dá)到平衡.
圖5 淋濾試驗(yàn)pH值隨時(shí)間變化
由圖5所示,在實(shí)驗(yàn)剛開(kāi)始的0.67~12h,各層位pH值范圍在7.0~7.2,低于場(chǎng)地介質(zhì)pH值(7.5~7.6),由于實(shí)驗(yàn)用水pH值在7.0~7.1,而土壤介質(zhì)一般都具有一定的緩沖能力[31],使得毛細(xì)帶pH值出現(xiàn)短期的下降.在試驗(yàn)12h之后(Ⅱ區(qū)), pH值緩慢升高至弱堿性,各取樣點(diǎn)上升幅度相似,達(dá)到峰值8.2~8.36.隨后pH值在Ⅲ區(qū)先于甲苯達(dá)到峰值并較快出現(xiàn)下降趨勢(shì),與此對(duì)應(yīng)甲苯濃度仍呈增大趨勢(shì).甲苯在濃度上升階段不僅受到淋濾液中高濃度甲苯的補(bǔ)給以及毛細(xì)帶頂托作用,同時(shí)仍有吸附作用、氧化還原作用等過(guò)程消耗甲苯,而甲苯降解過(guò)程中會(huì)產(chǎn)生的苯甲酸、乙酸等有機(jī)酸,這些酸性物質(zhì)中和了堿性物質(zhì)從而使pH值開(kāi)始降低.Ⅱ、Ⅲ區(qū)顯示隨著毛細(xì)帶高度增大pH值呈現(xiàn)出的升高趨勢(shì)更明顯,出現(xiàn)分層現(xiàn)象,這與毛細(xì)帶的含水率分布相似.且在Ⅲ區(qū)中pH值在短暫上升后于35h后趨于平衡,維持在7.8~8.2.
圖6 淋濾試驗(yàn)pH值隨空間變化
2.2.2 DO DO呈小幅上升后下降再趨于平穩(wěn)的趨勢(shì)(圖7),濃度變化范圍為4.2~8.5mg/L,53h附近各層位點(diǎn)DO達(dá)最大值.試驗(yàn)開(kāi)始時(shí)地下水位附近DO含量偏低,位于毛細(xì)帶上部受淋濾液補(bǔ)給層位DO較高.將其空間分布大致分為3個(gè)區(qū)域(圖8),從Ⅰ區(qū)可以看出,從上至下DO含量有所差異,主要體現(xiàn)在各層位變化趨勢(shì)不同,在淋濾初期,DO的變化受淋濾作用控制,污染物入滲驅(qū)替多孔介質(zhì)中的氣體,加快大氣中氧溶解進(jìn)程,且同時(shí)淋濾液在淋濾過(guò)程中也有氧氣不斷溶解,使得DO呈不穩(wěn)定升高趨勢(shì).在Ⅱ區(qū)中,1~7號(hào)點(diǎn)變化趨勢(shì)一致,均逐漸上升,垂向上有明顯隨深度增加DO減小的規(guī)律,且在53h,各取樣點(diǎn)的DO達(dá)到峰值,推測(cè)其原因?yàn)槭芰転V補(bǔ)給溶解氧含量高;對(duì)于Ⅲ區(qū)各層位DO值,可看出變化趨勢(shì)變緩,在實(shí)驗(yàn)結(jié)束時(shí)基本達(dá)到穩(wěn)定,其中接近地下水位處DO值較小.
圖7 淋濾試驗(yàn)DO隨時(shí)間變化
2.2.3 ORP ORP指征毛細(xì)帶環(huán)境中總體的氧化還原條件,在本實(shí)驗(yàn)中主要受土壤介質(zhì)吸附作用影響與DO同趨勢(shì)變化,整體變化范圍為100~160mV,具體可分為3個(gè)階段(圖9):第一階段0~12h ORP有明顯漲幅,22~73h為第二階段,此時(shí)ORP有明顯的分層位增長(zhǎng)的趨勢(shì),73h以后ORP維持穩(wěn)定,為第三階段.
圖8 淋濾試驗(yàn)DO隨空間變化
圖9 淋濾試驗(yàn)ORP隨時(shí)間變化
圖10 淋濾試驗(yàn)ORP隨空間變化
ORP垂向分布規(guī)律可分為3個(gè)區(qū)域(圖10),在Ⅰ區(qū)內(nèi),1~5號(hào)點(diǎn)上升,6號(hào)點(diǎn)甲苯含量較低,該點(diǎn)含水率最大,無(wú)氧氣補(bǔ)給,其氧化性較弱;在Ⅱ區(qū)(22~73h),隨著淋濾作用的進(jìn)行,吸附作用和揮發(fā)作用逐漸平衡,甲苯逐漸累積導(dǎo)致各層的濃度逐漸增大,使得水樣的ORP值向甲苯溶液的ORP值變化,且位置越靠近地下水面附近的觀測(cè)點(diǎn)越晚達(dá)到峰值;78~181h各點(diǎn)的ORP值相差不大.6號(hào)點(diǎn)的DO和ORP在同一時(shí)間均呈現(xiàn)較低值,因該點(diǎn)距離水面最近,溶解氧含量最低,氧化性最弱.
此外,在Ⅲ區(qū),甲苯濃度降低主要由于對(duì)甲苯的降解作用引起,這一過(guò)程消耗了毛細(xì)帶中的溶解氧,使DO明顯隨甲苯降解大幅降低,同時(shí)降解作用產(chǎn)生了苯甲醛或苯甲酸等酸性物質(zhì),這些產(chǎn)物引起的pH值降低間接作用于ORP,使氧化還原電位升高.受到氧分壓值、吸附作用以及pH值多種因素影響, ORP在此階段與DO濃度值水平呈現(xiàn)出一定差異; DO與ORP的濃度變化仍呈現(xiàn)出一定的協(xié)同趨勢(shì),當(dāng)土壤腐殖質(zhì)中氧化還原基團(tuán)醌基活性降低,發(fā)生氧化還原反應(yīng)形成半醌,繼續(xù)生成超氧離子,而超氧離子會(huì)進(jìn)一步氧化甲苯,這一過(guò)程不僅消耗氧氣減低DO,同時(shí)使氧化還原電位降低[31-32].
從圖11和表2可以看出,pH值、DO和ORP等環(huán)境因子表現(xiàn)出隨甲苯濃度相應(yīng)的變化規(guī)律, Pearson相關(guān)性分析證實(shí)了甲苯與上述3個(gè)因子的顯著相關(guān)性,但變化程度不同,其中ORP與甲苯濃度變化規(guī)律最為接近,pH值次之,DO的變化規(guī)律偏差最大,不同層位甲苯與各環(huán)境要素的變化規(guī)律呈現(xiàn)峰值的不同步性.
圖11 甲苯濃度變化過(guò)程環(huán)境要素響應(yīng)
a~g依次為1~7號(hào)取樣孔結(jié)果
對(duì)應(yīng)甲苯在毛細(xì)帶中遷移的4個(gè)階段分析,可以看出pH值、DO與ORP隨著甲苯垂向遷移也呈現(xiàn)明顯的階段性,初始階段隨甲苯遷移不斷升高,在甲苯濃度值達(dá)峰值前后達(dá)最大值,并經(jīng)歷緩慢降低過(guò)程直至穩(wěn)定.從上至下的不同層位pH值對(duì)甲苯變化的響應(yīng)逐漸減弱,且均高于土壤介質(zhì)的背景pH值.DO與ORP與甲苯累計(jì)至最高值的時(shí)間點(diǎn)基本一致,這可能因?yàn)橥寥缹?duì)溶解相甲苯的吸附主要靠腐殖質(zhì)上的氧化還原活性基團(tuán)(主要是醌基)通過(guò)電子轉(zhuǎn)移,發(fā)生氧化還原反應(yīng)來(lái)完成[33].當(dāng)吸附作用達(dá)到平衡,甲苯濃度穩(wěn)定,此時(shí)pH值、DO和ORP均有不同程度下降,推測(cè)為微生物作用主導(dǎo),主要由于微生物降解單位質(zhì)量的甲苯所需的氧氣要高于降解單位質(zhì)量的腐殖質(zhì)所需的氧氣,在產(chǎn)生CO2的同時(shí)還會(huì)產(chǎn)生有機(jī)酸,這一過(guò)程消耗溶解氧,并使pH值在一定程度內(nèi)有所降低[34],在這一階段DO與ORP對(duì)甲苯濃度變化的響應(yīng)有明顯趨同效應(yīng).
表2 甲苯濃度與環(huán)境因子的Pearson相關(guān)性分析
注:**在0.01級(jí)別(雙尾),相關(guān)性顯著.*在0.05級(jí)別(雙尾),相關(guān)性次顯著.
3.1 甲苯在毛細(xì)帶中的垂向遷移規(guī)律可分為4個(gè)階段:第一階段為以重力作用為主導(dǎo)的對(duì)流彌散階段,濃度迅速上升,達(dá)3.42~3.80mg/L;第二階段主要受毛細(xì)帶頂托作用,甲苯遷移速度下降,濃度值緩慢上升至5.64~8.03mg/L;第三階段受吸附作用甲苯濃度值下降明顯;第四階段,形成穩(wěn)定的污染分布,甲苯濃度達(dá)到穩(wěn)定.
3.2 pH值、DO和ORP對(duì)甲苯遷移的響應(yīng)均可分為3個(gè)階段.pH值由實(shí)驗(yàn)剛開(kāi)始的小幅下降再上升至最大值8.2左右,隨后略有降低并保持穩(wěn)定; DO濃度上升分為2個(gè)階段,第一階段迅速升高至7.61mg/ L,隨后緩慢升高至8.4mg/L左右,且上部高于下部,分層效果明顯;ORP變化規(guī)律整體與DO有趨同,且呈現(xiàn)由上至下增大的規(guī)律.
3.3 通過(guò)對(duì)甲苯濃度與pH值、DO、ORP的進(jìn)行Pearson分析可知,3種環(huán)境要素均與甲苯遷移相關(guān)性顯著,但變化程度不同,其中ORP與甲苯濃度變化規(guī)律最為接近,pH值次之,DO的變化規(guī)律偏差最大,不同層位甲苯與各環(huán)境要素的變化規(guī)律呈現(xiàn)峰值的不同步性.
[1] Borden R C, Gomez C A, Becker M T. Geochemical indicators of intrinsic bioremediation [J]. Groundwater, 1995,33(2):180-189.
[2] Zhang Y, Wei C, Yan B. Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant [J]. Science of the Total Environment, 2019,693:133417.
[3] 楊明星.石油有機(jī)污染組分在水位波動(dòng)帶中的分異演化機(jī)理研究[D]. 長(zhǎng)春:吉林大學(xué), 2014.
Yang M X. Organic fractions and their environmental implications of petroleum contaminated groundwater [D]. Changchun: Jilin University, 2014.
[4] Gholami F, Mosmeri H, Shavandi M, et al. Application of encapsulated magnesium peroxide (MgO2) nanoparticles in permeable reactive barrier (PRB) for naphthalene and toluene bioremediation from groundwater [J]. Science of the Total Environment, 2019,655: 633-640.
[5] Hunt L J, Duca D, Dan T, et al. Petroleum hydrocarbon (PHC) uptake in plants: A literature review [J]. Environmental Pollution, 2019,245: 472-484.
[6] Xu C, Lin X, Yin S, et al. Spatio-vertical characterization of the BTEXS group of VOCs in Chinese agricultural soils [J]. Science of the Total Environment, 2019,694:133631.
[7] 楊明星,楊?lèi)傛i,杜新強(qiáng),等.石油污染地下水有機(jī)污染組分特征及其環(huán)境指示效應(yīng)[J]. 中國(guó)環(huán)境科學(xué), 2013,33(6):1025-1032.
Yang M X, Yang Y S, Du X Q, et al. Organic fractions and their environmental implications of petroleum contaminated groundwater [J]. China Environmental Science, 2013,33(6):1025-1032.
[8] 林廣宇.地下水位變動(dòng)帶石油烴污染物的遷移轉(zhuǎn)化規(guī)律研究[D]. 長(zhǎng)春:吉林大學(xué), 2014.
Lin G Y. Study on the Migration and Transformation of Petroleum Hydrocarbon Pollutants in the Fluctuation Zone of Groundwater Level [D].Changchun: Jilin University, 2014.
[9] Chiu H Y, Verpoort F, Liu J K, et al. Using intrinsic bioremediation for petroleum–hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,72:53-61.
[10] 胡黎明,郝榮福,殷昆亭,等.BTEX在非飽和土和地下水系統(tǒng)中遷移的試驗(yàn)研究[J]. 清華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2003,43(11):1546- 1549,1553.
Hu L M, Hao R F, Yin K T, et al. Experimental study of BTEX transport in an unsaturated soil and groundwater system [J]. Journal of Tsinghua University (Natural Science Edition), 2003,43(11):1546- 1549,1553.
[11] 陳余道,朱學(xué)愚,劉建立,等.淄博市乙烯廠區(qū)包氣帶中石油物質(zhì)的分布特征及歸宿[J]. 南京大學(xué)學(xué)報(bào)(自然科學(xué)版), 1998,(3):120-124.
Chen Y D, Zhu X Y, Liu J L, et al. The Distribution Characteristics and Fate of Petroleum Substances in the Vadose Zone of Zibo Ethylene Plant [J].Journal of Nanjing University (Natural Science Edition), 1998,(3):120-124.
[12] Kacem M, Esrael D, Boeije C S, et al. Multiphase flow model for NAPL infiltration in both the unsaturated and saturated zones [J]. Journal of Environmental Engineering, 2019,145(11):04019072.
[13] Long A, Zhang H, Lei Y. Surfactant flushing remediation of toluene contaminated soil: Optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals [J]. Separation and purification technology, 2013,118:612-619.
[14] Powers S E, Abriola L M, Dunkin J S, et al. Phenomenological models for transient NAPL-water mass-transfer processes [J]. Journal of Contaminant Hydrology, 1994,16(1):1-33.
[15] Powers S E, Abriola L M, Weber Jr W J. An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates [J]. Water Resources Research, 1992, 28(10):2691-2705.
[16] 王志強(qiáng),廖 媛,顧 栩,等.毛細(xì)水帶對(duì)Cr(Ⅵ)的阻污性能試驗(yàn)研究[J]. 水文地質(zhì)工程地質(zhì), 2016,43(2):126-133.
Wang Z Q, Liao Y, Gu X, et al. Experimental study on the antifouling performance of capillary water belt to Cr(Ⅵ) [J]. Hydrogeology & Engineering Geology, 2016,43(2):126-133.
[17] Gatsios E, García-Rincón J, Rayner J L, et al. LNAPL transmissivity as a remediation metric in complex sites under water table fluctuations [J]. Journal of environmental management, 2018,215:40-48.
[18] 李洪麗,鹿 琪.探地雷達(dá)在LNAPL污染土壤探測(cè)中的應(yīng)用進(jìn)展研究[J]. 地球物理學(xué)進(jìn)展, 2020,35(3):1141-1148.
Li H L, Lu Q. Progress in application of ground penetrating radar in LNAPL contaminated soil detection of LNAPL [J]. Progress in Geophysics, 2020,35(3):1141-1148.
[19] Huang Y, Wang P, Fu Z, et al. Experimental and numerical research on migration of LNAPL contaminants in fractured porous media [J]. Hydrogeology Journal, 2020,28(4):1269-1284.
[20] Halihan T, Sefa V, Sale T, et al. Mechanism for detecting NAPL using electrical resistivity imaging [J]. Journal of contaminant hydrology, 2017,205:57-69.
[21] Kim J, Corapcioglu M Y. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table [J]. Journal of Contaminant Hydrology, 2003,65(1/2):137-158.
[22] Song J, Zhao Q, Guo J, et al. The microbial community responsible for dechlorination and benzene ring opening during anaerobic degradation of 2, 4, 6?trichlorophenol [J]. Science of the Total Environment, 2019, 651:1368-1376.
[23] Herzyk A, Fillinger L, Larentis M, et al. Response and recovery of a pristine groundwater ecosystem impacted by toluene contamination–a meso-scale indoor aquifer experiment [J]. Journal of Contaminant Hydrology, 2017,207:17-30.
[24] Shi J, Yang Y, Lu H, et al. Effect of water-level fluctuation on the removal of benzene from soil by SVE [J]. Chemosphere, 2021,274: 129796.
[25] 李盼盼,楊?lèi)傛i,路 瑩,等.水位波動(dòng)對(duì)土壤苯系物的污染運(yùn)移和水化學(xué)影響[J]. 環(huán)境化學(xué), 2017,36(8):1842-1848.
Li P P, Yang Y S, Lu Y, et al. Impact of water level fluctuation on BTEX migration and hydrochemistry in soils [J]. Environmental Chemistry, 2017,36(8):1842-1848.
[26] Li Y, Wei M, Liu L, et al. Adsorption of toluene on various natural soils: Influences of soil properties, mechanisms, and model [J]. Science of the Total Environment, 2020,740:140104.
[27] 楚偉華.石油污染物在土壤中遷移及轉(zhuǎn)化研究[D]. 大慶:大慶石油學(xué)院, 2006.
Chu W H. Study on the migration and transformation of oil- contaminants in the soil [D]. Daqing: Daqing Petroleum Institute, 2006.
[28] Dobson R, Schroth M H, Zeyer J. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid [J]. Journal of Contaminant Hydrology, 2007, 94(3/4):235-248.
[29] You J, Chen H, Xu L, et al. Anodic-potential-tuned bioanode for efficient gaseous toluene removal in an MFC [J]. Electrochimica Acta, 2021,375:137992.
[30] 朱志如.典型汽油組分在不同性質(zhì)孔隙介質(zhì)中的吸附與運(yùn)移研究[D]. 北京:中國(guó)地質(zhì)大學(xué)(北京), 2014.
Zhu Z R. Study on Sorption and Transport of Typical Gasoline Components in Porous Media of Different Properties [D]. Beijing: China University of Geosciences (Beijing), 2014.
[31] Stack A G, Eggleston C M, Engelhard M H. Reaction of hydroquinone with hematite: I. Study of adsorption by electrochemical-scanning tunneling microscopy and X-ray photoelectron spectroscopy [J]. Journal of Colloid and Interface Science, 2004,274(2):433-441.
[32] Struyk Z, Sposito G. Redox properties of standard humic acids [J]. Geoderma, 2001,102(3/4):329-346.
[33] Yao W, Rehman S W U, Wang H, et al. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process [J]. Water Research, 2018,138:106-117.
[34] Hong S, Gan P, Chen A. Environmental controls on soil pH in planted forest and its response to nitrogen deposition [J]. Environmental Research, 2019,172:159-265.
The vertical migration process of toluene in capillary zone and its response to environmental factors.
WANG Jin-sheng, LIU Jia-wei, HAN Ke-xue, XU Dong-hui, XUE Zhen-kun, LI Qiao, PAN Ming-hao, ZUO Rui*
(Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China)., 2022,42(1):68~75
In order to explore the migration law of toluene in heterogeneous capillary zone and the response of environmental factors, a one-dimensional soil column leaching experiment with multi-layered monitoring was used. This study simulated the migration process of toluene from the vadose zone to the aquifer under the instantaneous release situation, and the changes of pH, DO, ORP and other environmental factors with the migration of toluene were monitored synchronously. Through Pearson correlation analysis, the relationship between environmental factors and toluene migration was noticeable. The results showed that the migration of toluene in the capillary zone can be divided into four stages, namely, the rapid increase of concentration dominated by gravity; the migration rate decreased and the concentration increased slowly under the action of capillary zone jacking; the concentration of toluene decreased significantly under adsorption and the formation stage of stable pollution distribution. The environmental factors such as pH, DO and ORP were positively correlated with the migration process of toluene and showed obvious stages. Among them, the migration law of ORP was the closest to that of toluene, followed by pH, and the deviation between DO and migration law of toluene was the most obvious, especially in the ascending stage.
capillary;toluene;correlation analysis;vertical migration;response
X523
A
1000-6923(2022)01-0068-08
王金生(1957-),男,河南太康人,教授,主要從事水文地質(zhì)及地下水污染控制與修復(fù)研究等.發(fā)表論文260余篇.
2021-05-18
國(guó)家自然科學(xué)基金資助項(xiàng)目(41877181,41831283);111引智項(xiàng)目(B18006)
* 責(zé)任作者, 教授級(jí)高工, zr@bnu.edu.cn