国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鎳基單晶高溫合金微動(dòng)摩擦磨損特性研究

2021-12-27 07:14:04況偉杰苗情
機(jī)械制造與自動(dòng)化 2021年6期
關(guān)鍵詞:磨痕微動(dòng)單晶

況偉杰,苗情,2

(1.南京航空航天大學(xué),江蘇 南京 210016;2.蘇州科技大學(xué),江蘇 蘇州 215009)

0 引言

鎳基單晶高溫合金因其出色的高溫持久強(qiáng)度、蠕變和熱機(jī)械疲勞性能以及良好的抗氧化與耐熱腐蝕性能,被廣泛應(yīng)用于航空航天和工業(yè)生產(chǎn)等領(lǐng)域,成為航空發(fā)動(dòng)機(jī)常用的核心部件材料[1-2]。航空發(fā)動(dòng)機(jī)鎳基單晶高溫合金渦輪葉片在其工作時(shí)承受很大的交變載荷,與渦輪盤緊密配合的葉片榫齒極易發(fā)生微動(dòng)磨損,誘發(fā)微動(dòng)損傷,進(jìn)而導(dǎo)致渦輪葉片失效,這已成為航空發(fā)動(dòng)機(jī)故障高發(fā)的主要原因之一[3-5]。

微動(dòng)磨損通常存在于微幅振動(dòng)下的機(jī)械配合件之中,它可以直接造成配合件的松動(dòng)、咬合或噪聲增加;并且配合件工作時(shí)疲勞裂紋的萌生及擴(kuò)展與微動(dòng)磨損有直接關(guān)系,大大地減少了配合件的疲勞壽命[6]。目前國內(nèi)外學(xué)者對不同種類的鎳基合金開展了微動(dòng)磨損的研究。徐向陽等[7]研究了在室溫與600 ℃下K417鎳基高溫合金的微動(dòng)磨損行為,并對微動(dòng)磨損的主要階段進(jìn)行了分析。結(jié)果表明,其微動(dòng)磨損過程主要分為開始、過渡和穩(wěn)定三個(gè)階段,其中開始階段主要發(fā)生了黏著磨損,而穩(wěn)定階段主要為材料脫層。辛龍等[8]研究了核電材料Inconel 690合金在20 ℃~320 ℃溫度內(nèi)的微動(dòng)磨損行為和演變機(jī)制,試驗(yàn)結(jié)果表明摩擦系數(shù)和磨損量隨著溫度升高而減?。皇覝叵卤砻婺p主要由剝層引起,而隨著溫度升高,微動(dòng)磨損的主要破壞機(jī)制為疲勞裂紋的萌生和擴(kuò)展。AMANOV A[9]研究了超聲納米晶體表面改性后的Inconel 718合金在室溫與高溫下(400 ℃和600 ℃)的微動(dòng)磨損特性,研究結(jié)果表明,表面改性后的工件具有更好的抗微動(dòng)磨損性能,并且在高溫下其微動(dòng)磨損形式主要為氧化磨損和磨粒磨損。

目前關(guān)于鎳基單晶高溫合金的微動(dòng)磨損特性研究鮮有報(bào)導(dǎo),其微動(dòng)磨損特性的影響機(jī)制也不夠明確,嚴(yán)重制約了高性能鎳基單晶高溫合金葉片榫齒配合型面的獲取。因此,本文以第二代鎳基單晶高溫合金DD6作為試驗(yàn)材料,研究不同試驗(yàn)條件下的DD6微動(dòng)磨損特性,包括微動(dòng)摩擦系數(shù)、磨損體積、微動(dòng)磨損特征及形式等。本研究對深入理解航空發(fā)動(dòng)機(jī)鎳基單晶高溫合金葉片榫齒的微動(dòng)磨損行為具有重要意義。

1 試驗(yàn)材料與過程

1.1 試驗(yàn)材料

本研究的上試樣鎢鈷硬質(zhì)合金球直徑為10 mm,表面粗糙度Ra約0.04 μm,硬度約HV950。下試樣為單晶高溫合金DD6,其硬度約HV450(表1)[10]。單晶高溫合金具有優(yōu)越的高溫抗疲勞和扛蠕變性能,在高溫下持久強(qiáng)度良好,其沿[001]方向室溫下的主要材料屬性見表2[11]。首先將DD6原材棒料使用電火花線切割機(jī)加工成6 mm×4 mm×11 mm塊體,塊體長度方向?yàn)镈D6的[001]方向。隨后使用600目、800目、1 000目等不同粒度的砂紙進(jìn)行粗拋,最后將待測試面拋光至Ra約為0.04 μm,并將拋光好的樣塊浸入丙酮中超聲清洗。

表1 DD6合金主要質(zhì)量分?jǐn)?shù) 單位:%

表 2 DD6室溫下主要材料性能([001]方向)

1.2 微動(dòng)摩擦磨損試驗(yàn)條件

本實(shí)驗(yàn)采用德國某公司SRV-IV微振動(dòng)摩擦磨損試驗(yàn)機(jī)進(jìn)行試驗(yàn),摩擦副接觸方式為球/平面接觸。試驗(yàn)時(shí)下試樣固定DD6鎳基單晶高溫合金塊體,上試樣鎢鈷硬質(zhì)合金球進(jìn)行直線往復(fù)運(yùn)動(dòng),在無潤滑條件下采用往復(fù)摩擦磨損方式。試驗(yàn)溫度為室溫25 ℃,振幅為60 μm,頻率為50 Hz,循環(huán)次數(shù)為1×105次,正向載荷分別為50 N、100 N、180 N,試驗(yàn)裝置如圖1所示。

圖1 微動(dòng)摩擦磨損試驗(yàn)裝置圖

微動(dòng)磨損試驗(yàn)完成后,將試樣浸入丙酮中并進(jìn)行超聲清洗,待干燥后先使用掃描顯微鏡(SEM)進(jìn)行磨痕表面形貌觀測及EDS線掃描進(jìn)行元素分析;隨后使用3D共聚焦顯微鏡觀察磨痕二維和三維形貌,獲取相關(guān)形貌數(shù)據(jù),并使用MATLAB處理數(shù)據(jù)獲取磨損體積。

2 試驗(yàn)結(jié)果及討論

2.1 載荷對摩擦系數(shù)和磨損體積的影響

摩擦系數(shù)是指接觸物體表面之間的最大摩擦力和作用在其上正壓力的比值:

(1)

其中:Ff為最大摩擦力;FN為作用在接觸表面的正壓力。摩擦系數(shù)隨循環(huán)次數(shù)的變化曲線能反映整個(gè)微動(dòng)摩擦磨損過程中實(shí)際磨損的劇烈程度。圖2為不同載荷下摩擦系數(shù)μ隨循環(huán)次數(shù)N的變化曲線。為了清晰地顯示微動(dòng)摩擦磨損初期摩擦系數(shù)的變化趨勢,對循環(huán)次數(shù)前10 000次的摩擦系數(shù)變化進(jìn)行了放大(圖2(b))。從圖2中可以看出微動(dòng)磨損主要分為3個(gè)階段:正向載荷為50 N時(shí),階段I,微動(dòng)磨損開始時(shí),循環(huán)次數(shù)從0次到2 000次,摩擦系數(shù)迅速上升達(dá)到最大值1.1。當(dāng)循環(huán)次數(shù)從2 000次增加到3 500次時(shí),摩擦系數(shù)迅速降低至最小值0.7,整個(gè)階段I的時(shí)間十分短暫,約在3 500次微動(dòng)循環(huán)以內(nèi);階段II,循環(huán)次數(shù)從3 500次開始增加,摩擦系數(shù)在降低到最小值后進(jìn)而上升,上升速度隨著循環(huán)次數(shù)增加而降低;階段III,隨著循環(huán)次數(shù)增加至52 000次時(shí),摩擦系數(shù)逐漸趨于穩(wěn)定為1,此時(shí)微動(dòng)磨損達(dá)到穩(wěn)定狀態(tài)。

圖2 不同載荷下摩擦系數(shù)變化曲線

不同載荷下,微動(dòng)磨損階段基本相近,但是各自到達(dá)相應(yīng)階段的循環(huán)次數(shù)不同。隨著載荷的增加,達(dá)到階段III狀態(tài)時(shí)所需要的微動(dòng)循環(huán)次數(shù)明顯減少。在載荷50 N、100 N和180 N這3種參數(shù)下,到達(dá)階段III分別需要約52 000次、34 000次和8 000次。值得注意的是,在穩(wěn)定階段時(shí),摩擦系數(shù)隨著載荷的增加而明顯減小。在載荷50 N、100 N和180 N這3種參數(shù)下,微動(dòng)循環(huán)穩(wěn)定階段的摩擦系數(shù)分別約為1.0、0.5和0.4。

磨損體積可以反映微動(dòng)磨損的類型,可為微動(dòng)磨損行為的分析提供依據(jù)。圖3顯示了不同載荷下的微動(dòng)磨損體積,隨著載荷的增大,磨損體積逐漸減少。當(dāng)正向載荷從50 N增大到100 N,磨損體積也從1.12×106μm3大幅度減小到0.08×106μm3,約下降了92%。而當(dāng)載荷進(jìn)一步增大至180 N,磨損體積又小幅度增加至0.13×106μm3。這與圖2中在微動(dòng)磨損穩(wěn)定狀態(tài)時(shí)不同載荷間摩擦系數(shù)的變化具有相似的幅值。當(dāng)正向載荷從50 N增大到100 N時(shí),摩擦系數(shù)由1.0顯著降低到0.5,隨后正向載荷增加到180 N,而摩擦系數(shù)輕微下降至0.4。

圖3 不同載荷下微動(dòng)磨損體積

2.2 磨損表面形貌分析

磨損表面形貌可以直觀地反映摩擦磨損情況,圖4為在不同正向載荷下微動(dòng)磨損的磨痕表面形貌SEM圖片。圖4(a)顯示了在50 N的正向載荷下的磨痕表面形貌,可以觀察到大量磨屑在垂直位移方向磨痕的兩側(cè)區(qū)域堆積形成的凸起以及在微動(dòng)磨損的反復(fù)切應(yīng)力的作用下,磨痕邊緣區(qū)域存在大量磨屑脫落后形成的凹坑。脫落后的磨屑一部分在磨痕邊緣處被擠壓引起塑性變形而形成平整擠壓層;另一部分脫離表面的顆粒狀磨屑因往復(fù)作用被合金球帶入磨痕中心區(qū)域,被繼續(xù)研磨產(chǎn)生二次微動(dòng)磨損,最終在磨痕中心區(qū)域形成致密磨屑區(qū)。此時(shí)磨痕中心區(qū)域伴隨著輕微的黏著特征。圖4(b)為在180 N的正向載荷下的磨痕表面形貌圖,可以清楚地看到磨痕中心區(qū)域覆蓋著一層平坦和均勻分布的擠壓層。這是由于大幅度增大正向載荷后,微動(dòng)磨損在初試階段變得更為劇烈,磨痕中心區(qū)域(圖4(a))的磨屑層被反復(fù)擠壓變形所致,而在擠壓層下則為DD6合金的基體材料即基體層。

從圖4(b)中還可發(fā)現(xiàn)擠壓層剝離脫層及基體層產(chǎn)生微動(dòng)疲勞裂紋等現(xiàn)象。這說明當(dāng)正向載荷增大后,DD6合金表面的微動(dòng)磨損形式逐漸由磨粒磨損和輕微的黏著磨損進(jìn)一步轉(zhuǎn)化為疲勞磨損。這是由于在增大載荷后,樣品表面在經(jīng)歷了微動(dòng)磨損初試磨合階段后,會(huì)產(chǎn)生更為平整及均勻的擠壓層,平整的磨痕表面會(huì)導(dǎo)致微動(dòng)摩擦系數(shù)減小,摩擦力降低。這與圖2中隨著正向載荷的增大,摩擦系數(shù)隨之大幅減小的結(jié)果相互印證。

圖4 不同載荷下微動(dòng)磨損表面SEM圖

圖5給出了在不同載荷下微動(dòng)磨損表面的三維形貌以及二維輪廓。圖5(a)為在50 N的載荷下的微動(dòng)磨損表面形貌,可以看出磨屑會(huì)在磨痕邊緣區(qū)域堆積形成凸起,凸起的高度大約在1~4 μm,而由于合金球的擠壓以及磨屑的堆積作用,在由里到外的磨痕區(qū)域出現(xiàn)梯度分布的塑性變形。由于劇烈的微動(dòng)磨損作用,并且作用的正向載荷較小,未能形成擠壓層,使得大量的磨屑被排出磨痕區(qū)域,形成深度很大且非常粗糙的凹坑。從圖5(a)的磨痕二維輪廓圖中可以看出凹坑的深度大約在16 μm,并且在磨痕邊緣看到高度約為4 μm的凸起。這也解釋了在50 N載荷下的微動(dòng)磨損摩擦系數(shù)遠(yuǎn)遠(yuǎn)高于其他正向載荷的現(xiàn)象。從圖5(a)中的EDS線掃描元素分析圖可以看出,在磨痕的中心氧元素的含量急劇上升,而鎳元素的含量大幅度下降。這說明磨痕中心區(qū)域發(fā)生了嚴(yán)重的氧化磨損,而大量減少的鎳元素也證實(shí)了基體材料鎳基單晶高溫合金DD6在微動(dòng)磨損試驗(yàn)中成為磨屑而被排出磨痕區(qū)域。

圖5(b)為在180 N的正向載荷下的微動(dòng)磨損表面的三維形貌以及二維輪廓。由于此時(shí)的正向載荷較大,使得磨屑在排除磨損區(qū)域之前就被擠壓形成了平坦、均勻分布的擠壓層。這解釋了在180 N正向載荷下的微動(dòng)摩擦系數(shù)最小的現(xiàn)象。然而由于在圖4(b)中觀察到的剝離脫層以及疲勞裂紋導(dǎo)致了擠壓層發(fā)生了大塊的脫落,裸露出了DD6合金基體。這種擠壓層的脫落是由疲勞磨損引起的,而圖3中在180 N載荷下的磨損體積為0.13×106μm3,略大于100 N時(shí)的磨損體積正是由于這種疲勞磨損導(dǎo)致的大塊脫落的擠壓層導(dǎo)致的。從圖5(b)的二維輪廓可以看到,脫落坑的深度約為2 μm,而在此參數(shù)下磨痕邊緣區(qū)域同樣會(huì)因磨屑的堆積以及擠壓作用形成高度約為0.5 μm的凸起。從圖5(b)中的EDS線掃描元素分析圖可以看出,在磨痕的邊緣區(qū)域,氧元素的含量大幅度上升,即在磨痕邊緣區(qū)域發(fā)生了氧化磨損。這是由于鎢鈷硬質(zhì)合金球與鎳基高溫合金DD6在磨損中心區(qū)域因載荷上升而緊密接觸,導(dǎo)致磨損中心區(qū)域與空氣隔離,而在磨損邊緣區(qū)域與空氣充分接觸,易發(fā)生氧化磨損。在凹坑區(qū)域可以看到氧元素的輕微上升和鎳元素的輕微下降,這說明致密擠壓層脫落后形成空隙在微動(dòng)磨損的后階段也發(fā)生了氧化磨損。

圖5 載荷對微動(dòng)磨損表面光學(xué)形貌的影響

綜上所述,在試驗(yàn)溫度為室溫25 ℃、振幅為60 μm、頻率為50 Hz、循環(huán)次數(shù)為1×105次、正向載荷為50 N的條件下,鎳基單晶合金表面主要發(fā)生了嚴(yán)重的氧化磨損和磨粒磨損,并且大量的磨屑被擠出磨損區(qū)域,導(dǎo)致磨損區(qū)域深度不斷增大,深度最終達(dá)到約16 μm,這時(shí)的微動(dòng)磨損是極為劇烈的。而當(dāng)其他條件相同,正向載荷增大至180 N時(shí),摩擦系數(shù)及磨損體積大幅度減小。這是因?yàn)樵诤辖鹎虻臄D壓作用下,在鎳基單晶合金的表面形成了一層致密的擠壓層,起到減緩磨損的作用。而微動(dòng)磨損形式主要為發(fā)生在磨損中心區(qū)域的疲勞磨損,造成部分?jǐn)D壓層的脫落以及引起疲勞裂紋;其次為發(fā)生在磨痕邊緣區(qū)域的氧化磨損,主要是因?yàn)檫吘墔^(qū)域與空氣接觸引起的。

3 結(jié)語

1)隨著正向載荷的增大,鎳基單晶高溫合金表面微動(dòng)摩擦系數(shù)逐漸降低,載荷由50 N增大至100 N時(shí),摩擦系數(shù)由1.0大幅度降低至0.5。這是由于正向載荷增大時(shí),會(huì)在磨損表面形成一層擠壓層,限制磨屑排除的同時(shí)減小摩擦力。

2)隨著正向載荷的增大,即載荷由50 N增大至100 N時(shí),鎳基單晶高溫合金表面微動(dòng)磨損體積逐漸降低(磨損體積1.12×106μm3大幅度減小到0.08×106μm3)。這是由于正向載荷增大從磨損區(qū)域排出的磨屑大量減少而在表面形成擠壓層。

3)在微動(dòng)磨痕邊緣區(qū)域均會(huì)形成塑性變形及擠壓引起的凸起特征;微動(dòng)磨損形式主要由磨粒磨損、黏著磨損以及嚴(yán)重的氧化磨損逐漸轉(zhuǎn)化為疲勞磨損,磨損中心區(qū)域出現(xiàn)部分的脫落、剝層以及疲勞裂紋等現(xiàn)象。

猜你喜歡
磨痕微動(dòng)單晶
關(guān)于J.Warburton方法的鋼絲交叉磨痕體積計(jì)算及誤差分析
水介質(zhì)下打磨磨痕對鋼軌疲勞損傷的影響
基于RID序列的微動(dòng)目標(biāo)高分辨三維成像方法
基于稀疏時(shí)頻分解的空中目標(biāo)微動(dòng)特征分析
減少GDX2包裝機(jī)組“磨痕”煙包的數(shù)量
大尺寸低阻ZnO單晶襯弟
大尺寸低阻ZnO單晶襯底
從輪胎磨痕準(zhǔn)確判斷裝備輪胎損傷
微動(dòng)橋橋足距離對微動(dòng)裂紋萌生特性的影響
大尺寸低阻ZnO 單晶襯底
固原市| 汨罗市| 呼图壁县| 宁都县| 方山县| 固原市| 卢氏县| 天气| 昭平县| 新闻| 宣恩县| 南岸区| 霍州市| 大方县| 礼泉县| 子长县| 措勤县| 景洪市| 华池县| 平罗县| 太保市| 鹤山市| 大丰市| 台北县| 五华县| 吕梁市| 松潘县| 娄底市| 明光市| 哈巴河县| 大渡口区| 新干县| 汽车| 申扎县| 和顺县| 永州市| 阿拉尔市| 高邮市| 桐乡市| 淮南市| 太仓市|