冉孟吉,涂兵雄,,劉超,賈金青,蔡燕燕,張麗華
(1.華僑大學(xué) 福建省隧道與城市地下空間工程技術(shù)研究中心,福建 廈門 361021;2.大連理工大學(xué) 海岸和近海工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,遼寧 大連 116024;3.華陽(yáng)國(guó)際設(shè)計(jì)集團(tuán)廣州公司,廣東 廣州 510655;4.華僑大學(xué) 福建省智慧基礎(chǔ)設(shè)施與監(jiān)測(cè)重點(diǎn)實(shí)驗(yàn)室,福建 廈門 361021)
錨桿被廣泛地應(yīng)用于高邊坡錨固[1-2]、深基坑支護(hù)[3-4]及抗浮結(jié)構(gòu)[5-6]等工程中.根據(jù)錨桿灌漿體所受應(yīng)力狀態(tài)的不同,錨桿一般分為拉力型錨桿和壓力型錨桿[7-8].壓力型錨桿的筋體在全長(zhǎng)范圍采用套管包裹而形成全長(zhǎng)無(wú)粘結(jié)狀態(tài),錨桿受到的荷載直接通過無(wú)粘結(jié)筋體傳遞至底端的承載體,承載體擠壓灌漿體后,依靠灌漿體與巖土體界面的側(cè)阻力提供承載力.因此,壓力型錨桿的灌漿體處于受壓狀態(tài),且承載體處的灌漿體受到的壓力最大.由于壓力型錨桿灌漿體處于受壓狀態(tài),可采用在套管內(nèi)充填油脂等防腐措施進(jìn)一步提高防腐性能,故其在永久性邊坡工程中得到廣泛的應(yīng)用[9].近年來(lái),隨著城市地下空間工程的進(jìn)一步開發(fā)和利用,前期工程建設(shè)中超出建筑紅線的基坑支護(hù)錨桿對(duì)地下工程建設(shè)的影響日益突出,促使壓力型可回收錨桿在基坑支護(hù)等臨時(shí)性工程中得到廣泛的應(yīng)用[10-11].壓力型錨桿的破壞模式主要有筋體斷裂破壞、灌漿體與巖土體界面破壞及承載體處灌漿體受壓破壞[12-13].正常情況下,筋體可通過截面積設(shè)計(jì)來(lái)保證強(qiáng)度,極少發(fā)生斷裂破壞,但灌漿體與巖土體界面破壞相對(duì)復(fù)雜,其破壞機(jī)理及界面的剪應(yīng)力分布等受到學(xué)術(shù)界和工程界的較大關(guān)注,已取得較多的研究成果[14-17].在實(shí)際工程中,當(dāng)壓力型錨桿的錨固段較長(zhǎng)或錨固段位于堅(jiān)硬土層或風(fēng)化巖層時(shí),灌漿體因較高的抗拔承載力而難以發(fā)生灌漿體拔出破壞.此時(shí),壓力型錨桿受到的荷載可能大于鉆孔中承載體處灌漿體的受壓承載力,導(dǎo)致灌漿體發(fā)生受壓破壞,繼而危及工程安全[13].
壓力型錨桿承載體處灌漿體的受壓承載力計(jì)算是壓力型錨桿承載力設(shè)計(jì)中極其重要的環(huán)節(jié),文獻(xiàn)[18-19]均引入有側(cè)限錨固段灌漿體強(qiáng)度增大系數(shù),以考慮承載體處灌漿體受壓時(shí),周圍巖土體對(duì)灌漿體的約束效應(yīng)而產(chǎn)生對(duì)灌漿體受壓承載力提高的積極影響.然而,文獻(xiàn)[18-19]要求該強(qiáng)度增大系數(shù)通過試驗(yàn)確定,計(jì)算取值及應(yīng)用有較大困難,此外,還缺少相應(yīng)的承載體處灌漿體破壞模式的分析與說(shuō)明,基于圍限體約束效應(yīng)增強(qiáng)承載體處灌漿體承載力的力學(xué)機(jī)制及量化計(jì)算尚缺乏深入研究.因此,本文開展壓力型錨桿灌漿體室內(nèi)模型試驗(yàn),分析圍限體約束效應(yīng)對(duì)壓力型錨桿受壓承載力的影響規(guī)律,并結(jié)合灌漿體受壓破壞形態(tài),探討壓力型錨桿灌漿體受壓承載力的計(jì)算模型和方法.
試驗(yàn)方案,如表1所示.表1中:t為圍限體環(huán)厚;N為試件的數(shù)量;試件組編號(hào)的G表示實(shí)心灌漿體,GH表示置孔灌漿體,數(shù)字表示試件直徑(即圍限體外徑d1);8個(gè)試件組各包含3個(gè)試件,G50組3個(gè)試件的編號(hào)分別為G50-1~G50-3,其他類似.錨固段灌漿體采用水灰比為0.5的水泥凈漿,灌漿體直徑d=50 mm.灌漿體的設(shè)計(jì)有兩種形式,分別為實(shí)心灌漿體(簡(jiǎn)化模型)與置孔灌漿體(實(shí)際漿體內(nèi)包含有無(wú)粘結(jié)的鋼絞線).實(shí)際工程中,常用的鉆孔直徑為130~150 mm,故配置3根直徑為15.2 mm的鋼絞線,按配筋率相等換算的中心置孔直徑約為8.8~10.1 mm,試驗(yàn)取中心置孔直徑為10.0 mm.圍限體采用水灰比為0.4的水泥凈漿進(jìn)行制作,圓環(huán)狀,共設(shè)計(jì)4組不同環(huán)厚的圍限體(環(huán)厚分別為0,1.5d,3.0d,4.5d).試件高度參考前期研究成果的核心影響區(qū)范圍,取3倍灌漿體直徑,即150 mm.
表1 試驗(yàn)方案
試件制作方法如下.1)對(duì)于t=0的無(wú)約束圍限體試件,直接在內(nèi)徑為50 mm的圓柱形管內(nèi)灌注水泥凈漿.2)對(duì)于有圍限體的試件,先將外徑為50 mm的聚氯乙烯(PVC)管插入底部模板的中心孔中,調(diào)整校正垂直度后,再按圍限體厚度分別選用不同直徑的半圓形復(fù)合模板,在兩片對(duì)開半圓形復(fù)合模板外壁套設(shè)緊箍,組裝成圓形模板,置于底模板,調(diào)整位置后固定;先澆筑圍限體,養(yǎng)護(hù)28 d后拆模,緩慢旋轉(zhuǎn)拔除中心的PVC管,再灌注灌漿體的水泥凈漿.3)對(duì)于實(shí)心灌漿體,直接澆筑灌漿體的水泥凈漿;對(duì)于置孔灌漿體,采用孔底托板固定外徑為10.0 mm的PVC管后,再灌注水泥凈漿.
試件的制作過程,如圖1所示.
(a)制模 (b)澆筑 (c)灌漿 (d)拆模
試驗(yàn)前,將灌漿體頂部加載端表面打磨至平整,然后,在圍限體外壁呈180°方向?qū)ΨQ粘貼兩組應(yīng)變片,每組沿試件高度按豎向間距40 mm粘貼3個(gè)應(yīng)變片.加載設(shè)備采用萬(wàn)能試驗(yàn)機(jī),加載前,在灌漿體中心安裝直徑為45 mm的圓柱形鋼柱作為傳力加載構(gòu)件.對(duì)稱布置兩支位移計(jì),測(cè)試加載位移,采用DH3816N型靜態(tài)應(yīng)變測(cè)試系統(tǒng)同步采集加載過程中的荷載、位移及應(yīng)變數(shù)據(jù).加載時(shí),先以50 N·s-1的速率加載至1 kN后,卸載至0 kN,再統(tǒng)一以50 N·s-1的加載速率進(jìn)行全程力控制加載,直至試件破壞.試件加載裝置,如圖2所示.
圖2 試驗(yàn)加載裝置
制作不同規(guī)格的水泥漿試塊,進(jìn)行材料試驗(yàn),用于測(cè)試水泥漿力學(xué)參數(shù).材料試驗(yàn),如圖3所示.軸心抗壓強(qiáng)度試驗(yàn)的試塊尺寸為70.7 mm×70.7 mm×220.0 mm;立方體抗壓強(qiáng)度試驗(yàn)的試塊尺寸為70.7 mm×70.7 mm×70.7 mm;劈裂抗拉強(qiáng)度試驗(yàn)的試塊尺寸為150 mm×150 mm×150 mm;三軸試驗(yàn)的試塊直徑為50 mm,高為100 mm.抗壓、抗拉試驗(yàn)結(jié)果,如表2所示.表2中:fck,ftk,fcu,r分別為圍限體的軸心抗壓強(qiáng)度、劈裂抗拉強(qiáng)度和立方體抗壓強(qiáng)度;fcu,g為灌漿體的立方體抗壓強(qiáng)度.三軸試驗(yàn)共6個(gè)試塊[20-23],其結(jié)果如表3所示.表3中:c為粘聚力;φ為內(nèi)摩擦角.由表3可知:水灰比為0.4,0.5的試塊粘聚力平均值分別為4.1,3.8 MPa;水灰比為0.4,0.5的試塊內(nèi)摩擦角平均值分別為42°,30°.
(a)軸心抗壓強(qiáng)度試驗(yàn) (b)立方體抗壓強(qiáng)度試驗(yàn) (c)劈裂抗拉強(qiáng)度試驗(yàn) (d)三軸試驗(yàn)
表2 抗壓、抗拉試驗(yàn)結(jié)果
表3 三軸試驗(yàn)結(jié)果
表4 壓力型錨桿灌漿體室內(nèi)模型試驗(yàn)結(jié)果
由表4可知:除G200外,其余各組試驗(yàn)結(jié)果破壞荷載的相對(duì)極差最大為15.7%,最小為5.0%,整體離散性相對(duì)較小;G200-2,G200-3的灌漿體破壞荷載明顯偏低,主要原因是在澆筑圍限體時(shí),因養(yǎng)護(hù)疏忽導(dǎo)致圍限體開裂(圖4),裂縫貫通壁環(huán),盡管灌漿體水泥凈漿滲入部分裂縫中,但該處圍限體環(huán)向的抗拉承載力仍顯著降低,導(dǎo)致圍限體在內(nèi)壁處為灌漿體提供的徑向約束力大為減小,故試件破壞荷載明顯偏低.綜合對(duì)比各組數(shù)據(jù),G200試驗(yàn)結(jié)果僅取G200-1為有效數(shù)據(jù),并進(jìn)行后續(xù)數(shù)據(jù)的對(duì)比與分析.
圖4 圍限體開裂 圖5 圍限體的約束效應(yīng)
由表4還可知:置孔灌漿體與實(shí)心灌漿體試件的平均破壞荷載十分接近,表明灌漿體中心預(yù)留孔洞對(duì)灌漿體破壞荷載的影響幾乎可以忽略;各組試件的平均破壞荷載隨著圍限體環(huán)厚的增加而增加.
圍限體的約束效應(yīng),如圖5所示.由圖5可知:G200,GH200的圍限體環(huán)厚僅為75 mm,盡管平均破壞荷載有所提高,但僅分別提高了8%,4%,曲線較為平緩;當(dāng)圍限體環(huán)厚達(dá)到150,225 mm時(shí),實(shí)心(置孔)灌漿體試件的平均破壞荷載分別提高了31%(34%),86%(78%),圍限體的約束效應(yīng)導(dǎo)致灌漿體的受壓承載力顯著提高,這是因?yàn)閮?nèi)壁受徑向應(yīng)力作用的空心圍限體的環(huán)厚越大,在內(nèi)壁產(chǎn)生相同環(huán)向拉應(yīng)力所需的徑向應(yīng)力越大,圍限體內(nèi)壁對(duì)灌漿體的約束作用越強(qiáng),灌漿體的平均破壞荷載越大.
加載過程中,灌漿體的荷載-位移(P-s)曲線,如圖6所示.
(a)G50 (b)GH50
由圖6可知:對(duì)于設(shè)置圍限體的灌漿體而言,荷載-位移曲線整體可分為初始彈性階段、剛度強(qiáng)化階段和破壞階段;在初始彈性階段,荷載隨灌漿體軸向變形的增加近似呈線性增加,此階段的灌漿體受力較小,側(cè)向變形相對(duì)較小,圍限體的約束作用尚未或較少發(fā)揮;在剛度強(qiáng)化階段,荷載加載到一定程度,灌漿體側(cè)向變形增大,圍限體的約束作用得到較大發(fā)揮,灌漿體剛度有所增強(qiáng),荷載-位移曲線的斜率明顯增大;在破壞階段,荷載-位移曲線迅速陡降至接近于零,表現(xiàn)出明顯的脆性破壞特征.
試件的破壞過程極其短暫,破壞前,荷載-位移曲線沒有明顯的征兆,但部分試件的圍限體出現(xiàn)了短暫的微小裂縫擴(kuò)展過程,整體上試件的破壞具有突發(fā)性,屬于脆性破壞.典型破壞現(xiàn)象,如圖7所示.
(a)灌漿體 (b)圍限體
灌漿體破壞時(shí),圓柱形鋼柱底部出現(xiàn)一個(gè)倒圓錐形的壓密錐,壓密錐的錐面有明顯的破裂痕跡,小心取出灌漿體并剝離部分破碎體,在倒圓錐下方近似出現(xiàn)一個(gè)正圓錐,正圓錐與倒圓錐的母線近似連接成直線,且正圓錐及其底部灌漿體相對(duì)較為完好,而上部倒圓錐和下部正圓錐的錐面夾持部分沿軸向分裂成多個(gè)塊體(圖7(a)).由于鋼柱底并不是光滑的面(實(shí)際工程中,承載體的板底也不是光滑的面),灌漿體受壓后,在鋼柱底部摩擦力的約束作用下,底部呈倒立的壓密錐(核)形態(tài),錐頂角為55.4°~63.8°.當(dāng)荷載繼續(xù)增加,隨著軸向位移的增加,壓密錐的錐面對(duì)四周的灌漿體產(chǎn)生剪切和擠壓作用力,當(dāng)圍限體對(duì)灌漿體約束力及底部正圓錐表面的作用力無(wú)法與其平衡時(shí),圍限體開裂,灌漿體破壞.
試驗(yàn)過程中,荷載加載到一定值后,圍限體內(nèi)壁先出現(xiàn)數(shù)條微小裂縫,當(dāng)荷載繼續(xù)增大時(shí),裂縫進(jìn)一步擴(kuò)展,直至出現(xiàn)“砰”的聲響,試件迅速破壞,圍限體裂縫貫穿外壁.圍限體典型破壞主要表現(xiàn)為圍限體被3條徑向貫通裂縫分割為3塊,相鄰裂縫夾角近似呈120°(圖7(b)).依據(jù)試驗(yàn)觀測(cè)的現(xiàn)象,圍限體破壞時(shí)并非沿環(huán)厚呈單純的受拉破壞,而是在近內(nèi)壁一定范圍先出現(xiàn)受拉開裂,然后,在灌漿體對(duì)圍限體內(nèi)壁的徑向壓力作用下,對(duì)未開裂的圍限體產(chǎn)生較大的劈裂作用,引發(fā)瞬間的劈裂破壞.
結(jié)合試驗(yàn)中灌漿體的破壞現(xiàn)象,采用壓錐模型計(jì)算壓力型錨桿承載體底部灌漿體的受壓承載力.當(dāng)灌漿體破壞時(shí),底部灌漿體可劃分為壓密錐(Ⅰ區(qū))、破壞區(qū)(Ⅱ區(qū))及彈性區(qū)(Ⅲ區(qū)),壓錐模型圖,如圖8所示.圖8中:σ為承載體作用在灌漿體上的壓應(yīng)力(即受壓承載力計(jì)算值);σa為灌漿體受壓后,受到圍限體約束的壓應(yīng)力(內(nèi)孔受均勻壓應(yīng)力);d0為為承載體直徑;FG為承載體作用于灌漿體的界面;AB為灌漿體底面;AE,BD均為破裂面;點(diǎn)C為Ⅰ~Ⅲ區(qū)的交匯點(diǎn).
圖8 壓錐模型圖 圖9 Ⅰ區(qū)受力圖 圖10 Ⅱ區(qū)微單元受力圖
為了簡(jiǎn)化理論推導(dǎo)過程,對(duì)壓錐模型做以下4個(gè)假定.1)Ⅰ,Ⅲ區(qū)均為剛性體,錐面上服從莫爾-庫(kù)倫強(qiáng)度準(zhǔn)則.2)Ⅱ區(qū)破裂前、后均為剛體,忽略破裂塊體間的相互作用.3)Ⅱ區(qū)灌漿體與圍限體界面間的切向應(yīng)力為零,法向應(yīng)力沿高度均勻分布.4)Ⅰ區(qū)壓密錐的錐角為主動(dòng)破裂角.
?、駞^(qū)進(jìn)行受力分析,其受力圖如圖9所示.圖9中:τ1為灌漿體Ⅰ區(qū)錐面上的切向應(yīng)力;α為Ⅰ區(qū)壓密錐的錐角,α=45°+φg/2,φg為灌漿體的內(nèi)摩擦角;σ1為灌漿體Ⅰ區(qū)錐面上的法向應(yīng)力.
Ⅰ區(qū)豎向受力平衡方程為
σS1=σ1S2·cosα+τ1S2·sinα,
(1)
τ1=σ1tanφg+cg.
(2)
聯(lián)立式(1),(2),可得
σ=cgtanα+(1+tanφgtanα)σ1.
(3)
取Ⅱ區(qū)微單元進(jìn)行受力分析,受力圖如圖10所示.圖10中:面BGG′B′為灌漿體底面微單元,過點(diǎn)C做面HCH′,面HCH′∥面BGG′B′;σ2為面ECE′上的法向應(yīng)力;τ2為面ECE′上的切向應(yīng)力;令∠HCH′=dθ.
面BCB′上法向應(yīng)力σ1總合F1、切向應(yīng)力τ1總合T1分別為
(4)
(5)
式(4),(5)中:r為線CH上的點(diǎn)到點(diǎn)C的距離.
面ECE′上法向應(yīng)力σ2總合F2、切向應(yīng)力τ2總合T2分別為
(6)
(7)
由Ⅱ區(qū)豎向受力平衡條件,可得
F1cosα+T1sinα-F2cosα-T2sinα=0.
(8)
令d0/d=m,聯(lián)立式(4)~(7),并代入式(8),可得
(9)
Ⅱ區(qū)微單元面GG′E′E的法向應(yīng)力產(chǎn)生的合力Fa為
(10)
由Ⅱ區(qū)水平向受力平衡條件,可得
T1cosα+T2cosα+Fa-F1sinα-F2sinα=0.
(11)
聯(lián)立式(4)~(7)和(10),代入式(11),可得
(12)
聯(lián)立式(9),(12),可得
(13)
將式(13)代入式(3),可得
(14)
取圓環(huán)狀圍限體,其內(nèi)徑(即灌漿體直徑)為d,外徑為d1,內(nèi)孔受均勻壓應(yīng)力σa.由于假定Ⅱ區(qū)灌漿體與圍限體界面間法向應(yīng)力沿高度均勻分布,可簡(jiǎn)化為內(nèi)孔受均勻壓應(yīng)力σa的圓筒.基于特定的極限狀態(tài),求得σa,將其代入式(14),即可求得灌漿體破壞時(shí),承載體作用在灌漿體上的壓應(yīng)力.以下通過應(yīng)變解法和應(yīng)力解法對(duì)σa進(jìn)行求解.
1)應(yīng)變解法.對(duì)于內(nèi)徑為d,外徑為d1,內(nèi)孔受均勻壓力σa的圓筒,依據(jù)彈性力學(xué)軸對(duì)稱平面應(yīng)力問題的極坐標(biāo)解[24],有
εφ=uρ/ρ,
(15)
(16)
式(15),(16)中:εφ為環(huán)向應(yīng)變;uρ為徑向位移;ρ是以圓環(huán)圍限體幾何中心做極坐標(biāo)系的極徑;E,μ分別為圍限體的彈性模量、泊松比.
將式(16)代入式(15),可得
(17)
當(dāng)ρ=d1/2時(shí),式(17)可變換為
(18)
將式(18)代入式(14),并令d1/d=n,可得
(19)
2)應(yīng)力解法.依據(jù)彈性力學(xué)中內(nèi)孔受均勻壓應(yīng)力σa的圓筒平面應(yīng)力問題解答[24],在圓筒內(nèi)壁處,環(huán)向應(yīng)力與內(nèi)孔壓力的關(guān)系為
(20)
式(20)中:σφ為環(huán)向應(yīng)力.
偏安全地,按圍限體內(nèi)壁環(huán)向應(yīng)力達(dá)到圍限體抗拉強(qiáng)度時(shí),圍限體破壞,同時(shí)灌漿體破壞.將式(20)代入式(14),可得
(21)
式(21)中:σt為灌漿體的抗拉強(qiáng)度.
表5 受壓承載力計(jì)算結(jié)果與試驗(yàn)結(jié)果的對(duì)比
由表5可知:G200,G350,G500應(yīng)變解法計(jì)算值與試驗(yàn)值吻合較好;G200,G350,G500應(yīng)力解法計(jì)算值中,G200的計(jì)算值偏大,G500的計(jì)算值明顯偏低,G350的計(jì)算值與試驗(yàn)值吻合最好,表明圍限體外徑越大,應(yīng)力解法計(jì)算值越低于試驗(yàn)值,理論計(jì)算結(jié)果偏于保守.應(yīng)力解法與應(yīng)變解法的結(jié)果存在差異的原因在于應(yīng)變解法是基于實(shí)測(cè)圍限體外壁環(huán)向應(yīng)變進(jìn)行求解,而應(yīng)力解法是假定圍限體內(nèi)壁環(huán)向應(yīng)力達(dá)到抗拉強(qiáng)度,對(duì)于內(nèi)壁內(nèi)孔受均勻壓應(yīng)力的空心圓柱圍限體,G200,G350,G500在內(nèi)壁處的內(nèi)孔壓力與環(huán)向應(yīng)力比值分別為0.88,0.96,0.98.因此,應(yīng)力解法分別求解的內(nèi)孔壓應(yīng)力相差不大,計(jì)算的受壓承載力變化不大,導(dǎo)致圍限體直徑越大,計(jì)算偏差越大.
在實(shí)際工程中,錨桿錨固段設(shè)置于地層中,灌漿體周圍巖體可視為無(wú)限體,巖體不會(huì)出現(xiàn)試驗(yàn)中有限厚度圍限體開裂的現(xiàn)象.因此,基于圍限體開裂破壞的應(yīng)變解法僅適用于室內(nèi)模型試驗(yàn),且能有效驗(yàn)證試驗(yàn)結(jié)果與應(yīng)變解法結(jié)果的良好吻合性.應(yīng)力解法是基于鉆孔孔壁巖體的環(huán)向應(yīng)力達(dá)到巖體抗拉強(qiáng)度(即內(nèi)壁處于開裂的臨界狀態(tài)),所得到的灌漿體受壓承載力,應(yīng)力解法可同時(shí)適用于室內(nèi)模型試驗(yàn)與工程實(shí)際情況.
受壓承載力計(jì)算值與試驗(yàn)值,如圖11所示.圖11中:f為受壓承載力.由圖11可知:當(dāng)圍限體外徑為350 mm時(shí),應(yīng)力解法計(jì)算值、應(yīng)變解法計(jì)算值和與試驗(yàn)值十分吻合;當(dāng)圍限體外徑為500 mm(圍限體直徑與鉆孔孔徑比為10)時(shí),應(yīng)力解法計(jì)算值比試驗(yàn)值、應(yīng)變解法計(jì)算值偏低約29%,其主要原因是應(yīng)力解法基于彈性理論厚壁圓筒理論,內(nèi)壁環(huán)向應(yīng)力隨壁厚的增加存在臨界現(xiàn)象.在實(shí)際工程中,綜合考慮錨桿間距與鉆孔直徑的關(guān)系(錨桿間距一般約2.0 m,鉆孔直徑約為150~250 mm),以及巖體中包含節(jié)理和裂隙導(dǎo)致抗拉強(qiáng)度(漿液充填)一般低于相應(yīng)巖石的抗拉強(qiáng)度,采用應(yīng)力解法計(jì)算壓力型錨桿灌漿體受壓承載力仍是可行的.
圖11 受壓承載力計(jì)算值與試驗(yàn)值
1)壓力型錨桿灌漿體的受壓承載力隨圍限體直徑的增大而明顯增加,圍限體對(duì)灌漿體的約束效應(yīng)較為明顯.灌漿體中心預(yù)留單孔洞對(duì)灌漿體的受壓承載力影響很小,幾乎可以忽略.
2)壓力型錨桿灌漿體受壓破壞時(shí),灌漿體底部呈倒圓錐形破壞形態(tài),圍限體主要被3條徑向貫通裂縫分割為3塊,相鄰裂縫夾角近似呈120°.
3)基于壓力型錨桿灌漿體試驗(yàn)破壞形態(tài),建立灌漿體受壓承載力的壓錐模型,應(yīng)變解法的受壓承載力計(jì)算值與試驗(yàn)值吻合較好;應(yīng)力解法的受壓承載力計(jì)算值隨圍限體直徑的增大而低于試驗(yàn)值,但整體計(jì)算結(jié)果較為吻合,驗(yàn)證了壓錐模型的合理性.
4)考慮錨桿實(shí)際施工工藝參數(shù)及巖體節(jié)理和裂隙的影響,基于應(yīng)力解法的計(jì)算公式可用于估算實(shí)際工程中巖質(zhì)地層壓力型錨桿灌漿體的受壓承載力.