江文康 黃國健 雷彬 王彩瑩 羅惠娜 趙明明 樊全寶 阮慧敏 陳勝鋒 王丙云
摘要:【目的】建立馬臍帶間充質(zhì)干細(xì)胞(UC-MSCs)體外分離培養(yǎng)體系,研究其增殖能力、分化能力和生物學(xué)特性,為推廣UC-MSCs在賽馬運(yùn)動損傷治療方面的應(yīng)用提供理論依據(jù)?!痉椒ā坎捎肐型膠原酶消化法從臍帶組織分離馬UC-MSCs,通過繪制生長曲線及計(jì)算群體倍增時(shí)間檢測其體外增殖能力,結(jié)合流式細(xì)胞儀檢測和RT-PCR擴(kuò)增鑒定表面標(biāo)志物(CD29、CD44、CD45、CD73、CD90和CD105),并通過體外成脂成骨誘導(dǎo)分化檢測其分化潛能。【結(jié)果】分離獲得的原代馬UC-MSCs為折光性強(qiáng)的圓形懸浮細(xì)胞,培養(yǎng)10 d后細(xì)胞融合達(dá)90%,且傳代后細(xì)胞增殖速度明顯提高,傳代至P3代,細(xì)胞呈旋渦狀生長,形態(tài)為均一的長梭形,生長趨勢符合Logistic生長曲線規(guī)律,呈典型的S形。流式細(xì)胞儀檢測結(jié)果顯示,馬UC-MSCs高表達(dá)CD29、CD44和CD90,表達(dá)率分別為98.45%、97.08%和96.56%,呈強(qiáng)陽性,但不表達(dá)CD45;RT-PCR擴(kuò)增結(jié)果表明,馬UC-MSCs表達(dá)CD29、CD44、CD73、CD90和CD105等MSCs表面標(biāo)志物基因,但不表達(dá)CD45基因。以胰島素、IBMX、羅格列酮和地塞米松為主要試劑進(jìn)行馬UC-MSCs體外成脂誘導(dǎo),誘導(dǎo)第10 d發(fā)現(xiàn)細(xì)胞內(nèi)有小脂滴形成,至誘導(dǎo)第18 d有大量脂滴形成;選用抗壞血酸、β-甘油磷酸鈉和地塞米松為主要試劑進(jìn)行體外成骨誘導(dǎo),至誘導(dǎo)第7 d可觀察到鈣結(jié)節(jié)形成。【結(jié)論】采用I型膠原酶消化法分離獲得的馬UC-MSCs純度高,且具有良好的體外增殖能力和多向分化潛能;掌握好馬UC-MSCs的有效凍存方式,可為治療賽馬運(yùn)動損傷提供優(yōu)質(zhì)的種子細(xì)胞。
關(guān)鍵詞: 馬;臍帶;間充質(zhì)干細(xì)胞;生物學(xué)特性;I型膠原酶消化法
中圖分類號: S821.91? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2021)07-1998-09
Isolation, culture and biological characterization of horse umbilical cord-derived mesenchymal stem cells
JIANG Wen-kang1, HUANG Guo-jian2, LEI Bin2, WANG Cai-ying2, LUO Hui-na1, ZHAO Ming-ming1, FAN Quan-bao1, RUAN Hui-min3,
CHEN Sheng-feng1*, WANG Bing-yun1*
(1College of Life Science and Engineering, Foshan University of Science and Technology, Foshan, Guangdong? 528231,China; 2Huangcun Sports Training Center of Guangdong,Guangzhou? 510663 , China; 3Guangdong
VetCell Bio-tech Co., Ltd.,F(xiàn)oshan, Guangdong? 528231, China)
Abstract:【Objective】The in vitro isolation and culture system of horse umbilical cord-derived mesenchymal stem cells(UC-MSCs) has been established to study its proliferative ability, differentiation ability and biological characteristics, and provide a theoretical basis for promoting the application of UC-MSCs in the treatment of horse racing sports injury. 【Method】Horse UC-MSCs were obtained by using type I collagenase digestion, and cell proliferation in vitro was determined by drawing growth curve and calculating population doubling time. Cell surface markers(CD29,CD44,CD45, CD73, CD90 and CD105) were identified by flow cytometry and RT-PCR amplification. The differentiation potential was detected by inducing adipose formation and osteogenesis differentiation in vitro. 【Result】The results revealed the isolated primary horse UC-MSCs was a round suspension cell with strong refraction. After 10 d of culture, the cell fusion reached 90%, and the cell proliferation rate increased after passage. After passage to the P3 generation, the cells grew in a vortex shape with a uniform long fusiform shape, and the growth trend was in accordance with the law of Logistic growth curve, showing a typical S shape. The results of flow cytometry showed that horse UC-MSCs highly expressed CD29, CD44 and CD90, and the expression rates were 98.45%, 97.08% and 96.56%, respectively, which were highly positive. But CD45 was not expressed. The results of RT-PCR showed that horse UC-MSCs expressed MSCs surface marker genes such as CD29, CD44, CD73, CD90 and CD105, but did not express CD45 gene. Adipogenesis of horse UC-MSCs was induced in vitro with insulin, IBMX, rosiglitazone and dexamethasone as main reagents. Small lipid droplets were found on the 10th day of induction, and a large number of lipid droplets formed on the 18th d of induction.Ascorbic acid, sodium β-gly-cerophosphate and dexamethasone were used as the main reagents for osteogenic induction in vitro. Calcium nodule formation was observed on the 7th d of induction. 【Conclusion】The results show that the purity of the horse UC-MSCs obtained by I-type collagen enzyme digestion is high and has good in vitro proliferation and multi-directional potential; master the effective freezing mode of horses UC-MSCS, providing quality seed cells in the treatment of horse.
Key words: horse; umbilical cord; mesenchymal stem cells; biological characteristics; I-type collagen enzyme digestion
Foundation item:Guangdong Natural Science Foundation(2017A030313171,2018A030313892); Project of Animal Stem Cell Engineering Technology Research Center of Guangdong Universities(2021GCZX006)
0 引言
【研究意義】馬作為競技類動物,常因長年累月的訓(xùn)練及過度負(fù)荷而造成關(guān)節(jié)嚴(yán)重磨損,進(jìn)而引發(fā)退行性關(guān)節(jié)炎、懸韌帶炎、肌腱炎、骨膜炎、肌肉拉傷和骨折等問題,很大程度上降低其競技水平,加之傳統(tǒng)的抗炎方法治療效果差、恢復(fù)時(shí)間長且存在復(fù)發(fā)的現(xiàn)象,給賽馬業(yè)帶來巨大經(jīng)濟(jì)損失(王冠穎,2015)。間充質(zhì)干細(xì)胞(Mesenchymal stem cells,MSCs)是一種非造血性且具有多向分化潛能的成體干細(xì)胞,可從骨髓、脂肪、臍帶及臍帶血等多種組織中分離獲得(付旭鋒等,2016;羅惠娜等,2020)。MSCs具有強(qiáng)大的免疫調(diào)節(jié)和抗炎作用,能通過細(xì)胞間相互作用及分泌多種因子以調(diào)節(jié)關(guān)節(jié)局部內(nèi)環(huán)境并活化內(nèi)源性祖細(xì)胞,從而修復(fù)受損的軟骨組織(Glenn and Whartenby,2014)。因此,加強(qiáng)馬MSCs生物學(xué)特性及其功能研究可為治療賽馬運(yùn)動損傷提供種子細(xì)胞。【前人研究進(jìn)展】目前,已成功在羊(Czernik et al.,2013)、雞(Wang et al.,2018)、鴨(李婷婷等,2019)、奶牛(羅惠娜等,2020)及豬(馬亞軍等,2020)等動物上分離獲得MSCs,且發(fā)現(xiàn)奶牛脂肪間充質(zhì)干細(xì)胞(Adipose-derived mesenchymal stem cells,AD-MSCs)能促進(jìn)奶牛乳腺上皮細(xì)胞增殖和抑制其凋亡(王立文,2016),對治療因奶牛蹄葉炎引起的跛行具有良好效果(魯文賡等,2020),還能提高牛脂肪細(xì)胞中脂肪酸的合成(岳永莉,2016)。MSCs在馬運(yùn)動損傷上的研究及應(yīng)用已有報(bào)道,Pacini等(2007)通過向馬損傷肌腱定向注射骨髓間充質(zhì)干細(xì)胞(Bone marrow mesenchyml stem cell,BM-MSCs),發(fā)現(xiàn)在BM-MSCs注射6個(gè)月后損傷的肌腱得到修復(fù),馬的競技水平能恢復(fù)到最佳狀態(tài)。Barrachina等(2018)、Mari?as-Pardo等(2018)研究發(fā)現(xiàn),MSCs能有效制止化學(xué)性誘導(dǎo)馬關(guān)節(jié)炎前期的炎癥反應(yīng)和軟骨降解,并改善跛行癥狀。越來越多的研究表明,MSCs能定向遷移至損傷部位釋放各類細(xì)胞因子,通過促進(jìn)血管生成、細(xì)胞增殖及抑制炎癥反應(yīng)和細(xì)胞凋亡,促進(jìn)再生以改善組織功能,具有廣闊的醫(yī)學(xué)應(yīng)用前景。制備BM-MSCs時(shí)易造成機(jī)體感染而存在風(fēng)險(xiǎn),且其增殖分化能力隨供體年齡增長而下降;AD-MSCs雖然采集量多,體外增殖速度快,但采集時(shí)同樣存在入侵性(Shariatzadeh et al.,2019)。相比之下,臍帶間充質(zhì)干細(xì)胞(Umbilical cord mesenchymal stem cells,UC-MSCs)來源于產(chǎn)后臍帶中的華通膠及血管周圍組織,取材廣泛方便,不存在倫理問題,且具有較低的免疫原性和良好的體外增殖能力(Li et al.,2007;Suzdaltseva et al.,2008;劉夢婷等,2020)。UC-MSCs除了具有三系分化能力外,還能誘導(dǎo)分化為心肌細(xì)胞(Qian et al.,2012)、肌細(xì)胞(Xu et al.,2017)和肝細(xì)胞(Yu et al.,2018)等,具有巨大的治療潛能。【本研究切入點(diǎn)】在國內(nèi),有關(guān)馬MSCs的研究僅止步于BM-MSCs和AD-MSCs,針對UC-MSCs的研究至今未見報(bào)道?!緮M解決的關(guān)鍵問題】通過I型膠原酶消化法從馬的臍帶組織中分離獲得UC-MSCs,研究其增殖能力、分化能力及生物學(xué)特性,為推廣UC-MSCs在賽馬運(yùn)動損傷治療過程中的應(yīng)用提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
供試動物為廣州奧體馬術(shù)場提供的中年純血騸馬。0.25%胰蛋白酶、I型膠原酶和青鏈霉素雙抗購自美國HYclon公司,DMEM培養(yǎng)液和胎牛血清(FBS)購自以色列Biological Industries(BI)公司,干細(xì)胞成骨和成脂誘導(dǎo)液購自Cyagen公司,CD90、CD45、CD29和CD44抗體購自Abcam公司,RNA提取試劑盒和反轉(zhuǎn)錄試劑盒購自TaKaRa公司。主要儀器設(shè)備:流式細(xì)胞儀(美國BD公司),超凈工作臺(蘇州蘇凈儀器自控設(shè)備有限公司),離心機(jī)(德國Eppendorf公司),倒置顯微鏡(日本Olympus公司),PCR儀(Thermofisher公司)。
1. 2 試驗(yàn)方法
1. 2. 1 馬UC-MSCs分離培養(yǎng) 于馬分娩后立即剪取10 cm臍帶組織,置于裝有10%雙抗PBS的50 mL離心管中浸泡,低溫保存運(yùn)回實(shí)驗(yàn)室,在超凈工作臺中無菌處理臍帶組織,臍帶組織以75%酒精浸泡3 s后用10%雙抗PBS沖洗,洗去表面血細(xì)胞,無菌手術(shù)剪剪開臍帶并剝離血管,剝離后的組織剪碎成1 mm3,置于50 mL離心管中,加入5倍體積的I型膠原酶溶液(1 mg/mL),置于37 ℃培養(yǎng)箱中消化2~3 h,消化液用200目細(xì)胞篩過濾,濾液1200 r/min離心5 min,棄上清液,加入含1% L-谷氨酰胺、1%雙抗和10% FBS的完全培養(yǎng)基重懸細(xì)胞,調(diào)整細(xì)胞密度至1×107 Cells/mL,轉(zhuǎn)移至60 mm培養(yǎng)皿,置于CO2培養(yǎng)箱中培養(yǎng),培養(yǎng)48 h后半量換液去除血細(xì)胞,以后每3 d換液1次,倒置顯微鏡下觀察細(xì)胞形態(tài),當(dāng)細(xì)胞融合70%~80%時(shí)進(jìn)行傳代。
1. 2. 2 細(xì)胞凍存及復(fù)蘇 細(xì)胞凍存:取生長良好的P3代馬UC-MSCs,0.25%胰酶消化后收集細(xì)胞,1000 r/m離心5 min,棄上清液,加入凍存液(60% DMEM+30% FBS+10% DMSO),調(diào)整細(xì)胞密度為1×106~1×107 Cells/mL,分裝至凍存管中(1 mL/管),然后置于程序降溫盒中,-80 ℃過夜后放入液氮罐中保存?zhèn)溆谩<?xì)胞復(fù)蘇:從液氮中取出的馬UC-MSCs在37 ℃恒溫水浴鍋中解凍,1000 r/min離心5 min,棄上清液,加入1.0 mL完全培養(yǎng)基重懸細(xì)胞,取50.0 μL細(xì)胞懸液與4%臺盼藍(lán)染色混合(1∶1),Counstar自動細(xì)胞計(jì)數(shù)儀計(jì)數(shù),分別記錄活細(xì)胞數(shù)和死細(xì)胞數(shù),重復(fù)3次,計(jì)算細(xì)胞存活率。細(xì)胞存活率(%)=活細(xì)胞數(shù)/總細(xì)胞數(shù)×100。
1. 2. 3 生長曲線制作及群體倍增時(shí)間計(jì)算 分別取生長良好的P3、P6和P9代馬UC-MSCs,0.25%胰酶消化制成細(xì)胞懸液,調(diào)整細(xì)胞密度為5×104 Cells/mL,接種至24孔細(xì)胞培養(yǎng)板(0.5 mL/孔),置于37 ℃、5% CO2培養(yǎng)箱中連續(xù)培養(yǎng)8 d,每隔3 d換液1次,每隔24 h隨機(jī)消化3孔,取50.0 μL細(xì)胞懸液與4%臺盼藍(lán)染色混合(1∶1),Counstar自動細(xì)胞計(jì)數(shù)儀計(jì)數(shù),取3孔平均值,以單位細(xì)胞密度為縱坐標(biāo)、時(shí)間為橫坐標(biāo)繪制生長曲線。根據(jù)Patterson公式計(jì)算細(xì)胞對數(shù)期群體倍增時(shí)間(DT):
[DT=t×[lg2/(lgNt-lgNo)]
式中,t為細(xì)胞增殖時(shí)間(h),No為起始細(xì)胞數(shù),Nt為最終細(xì)胞數(shù)。
1. 2. 4 表面標(biāo)志物鑒定 取P3代馬UC-MSCs,0.25%胰酶消化制成細(xì)胞懸液,調(diào)整細(xì)胞密度為2×105 Cells/mL,轉(zhuǎn)移至1.5 mL離心管中,1000 r/min離心5 min,棄上清液,加入PBS清洗2次、重復(fù)離心。分別加入CD29、CD44、CD45和CD90抗體稀釋液50.0 μL孵育30 min,PBS清洗后離心,棄上清液,加入100.0 μL PBS重懸細(xì)胞,1 h內(nèi)采用流式細(xì)胞儀檢測馬UC-MSCs表面標(biāo)志物的表達(dá)情況。
1. 2. 5 RT-PCR檢測標(biāo)志物基因表達(dá)情況 應(yīng)用RT-PCR檢測馬UC-MSCs標(biāo)志物CD29、CD44、CD45、CD73、CD90和CD105基因的表達(dá)情況。取生長良好的P3代馬UC-MSCs,采用TaKaRa試劑盒提取總RNA,反轉(zhuǎn)錄合成cDNA后進(jìn)行PCR擴(kuò)增。PCR反應(yīng)體系25.0 μL:Premix Ex Taq 12.5 μL,上、下游引物各1.0 μL,cDNA模板1.0 μL,ddH2O 9.5 μL。擴(kuò)增程序:95 ℃預(yù)變性5 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 40 s,進(jìn)行30個(gè)循環(huán);72 ℃延伸5 min。RT-PCR擴(kuò)增產(chǎn)物以1.0%瓊脂糖凝膠電泳進(jìn)行檢測。擴(kuò)增引物委托生工生物工程(上海)股份有限公司合成,引物序列如表1所示。
1. 2. 6 成脂誘導(dǎo) 取生長良好的P3代馬UC-MSCs,0.25%胰酶消化后調(diào)整細(xì)胞密度為5×104 Cells/mL,接種至24孔細(xì)胞培養(yǎng)板(0.5 mL/孔),置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。分別設(shè)對照組和誘導(dǎo)組,每組3個(gè)重復(fù)。誘導(dǎo)組細(xì)胞接種24 h后棄原培養(yǎng)液,PBS清洗,每孔加入0.5 mL成脂誘導(dǎo)A液(含F(xiàn)BS、雙抗、谷氨酰胺、胰島素、3-異丁基-1-甲基黃嘌呤、羅格列酮和地塞米松)誘導(dǎo),3 d后更換為成脂誘導(dǎo)B液(含F(xiàn)BS、青鏈霉素雙抗、谷氨酰胺和胰島素)誘導(dǎo)1 d,再更換為成脂誘導(dǎo)A液,A液和B液交替使用3~5次,當(dāng)細(xì)胞出現(xiàn)較多脂滴且脂滴變大時(shí)進(jìn)行油紅O染色。對照組細(xì)胞每隔3 d換液1次。
1. 2. 7 成骨誘導(dǎo) 取生長良好的P3代馬UC-MSCs,0.25%胰酶消化后調(diào)整細(xì)胞密度為5×104 Cells/mL,接種至24孔細(xì)胞培養(yǎng)板(0.5 mL/孔),置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。分別設(shè)對照組和誘導(dǎo)組,每組3個(gè)重復(fù)。誘導(dǎo)組細(xì)胞接種24 h后棄除原培養(yǎng)液,PBS清洗,每孔加入0.5 mL成骨分化液(含F(xiàn)BS、青鏈霉素雙抗、谷氨酰胺、抗壞血酸、β-甘油磷酸鈉和地塞米松),每隔3 d換液1次,當(dāng)細(xì)胞出現(xiàn)鈣結(jié)節(jié)時(shí)進(jìn)行茜素紅染色。對照組細(xì)胞每隔3 d換液1次。
1. 3 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用SPSS 19.0進(jìn)行統(tǒng)計(jì)分析,以單因素方差分析(One-way ANOVA)進(jìn)行組間差異檢驗(yàn)。
2 結(jié)果與分析
2. 1 細(xì)胞形態(tài)學(xué)觀察結(jié)果
原代(P0)細(xì)胞:在倒置顯微鏡觀察下,剛接種的P0代馬UC-MSCs為折光性強(qiáng)的圓形懸浮細(xì)胞,輪廓清晰;培養(yǎng)48 h后大部分細(xì)胞貼壁,呈圓形或橢圓形,少量細(xì)胞呈多邊形或短梭形,培養(yǎng)基中可見少許未貼壁的血細(xì)胞(圖1),換液去除;培養(yǎng)至第6 d,細(xì)胞融合達(dá)50%,大部分細(xì)胞呈折光性強(qiáng)的多角形或梭形,少量細(xì)胞表現(xiàn)呈扁平樣,折光性較弱;培養(yǎng)第至10 d,細(xì)胞融合達(dá)90%,細(xì)胞呈漩渦狀生長,經(jīng)0.25%胰酶消化后進(jìn)行傳代,傳代細(xì)胞即為P1代馬UC-MSCs。P0代細(xì)胞生長緩慢,細(xì)胞生長不規(guī)則。
傳代細(xì)胞:P1代馬UC-MSCs培養(yǎng)8 h后完全貼壁,生長速度明顯提高,細(xì)胞呈放射狀向外生長,培養(yǎng)3 d其細(xì)胞融合達(dá)80%;傳至P3代,細(xì)胞形態(tài)均一,呈現(xiàn)典型的長梭形;當(dāng)細(xì)胞傳至P9代,部分細(xì)胞胞漿內(nèi)出現(xiàn)空泡,大量細(xì)胞形成較長的纖維狀突起,此時(shí)細(xì)胞折光性消失,細(xì)胞輪廓不明顯,提示細(xì)胞老化(圖1)。
凍存3個(gè)月的P3代馬UC-MSCs復(fù)蘇后,仍保持折光性強(qiáng)的長梭形細(xì)胞形態(tài),存活率高達(dá)93%,復(fù)蘇后的細(xì)胞形態(tài)和生長特性與凍存前基本保持一致(圖2)。
2. 2 生長曲線及群體倍增時(shí)間的確定
P3代、P6代和P9代馬UC-MSCs的生長曲線趨勢(圖3)均呈S形,存在生長潛伏期、對數(shù)生長期和平臺期。P3代和P6代馬UC-MSCs的生長潛伏期為1 d,第2 d即進(jìn)入對數(shù)生長期,第7 d進(jìn)入平臺期;P9代馬UC-MSCs的生長潛伏期為3 d,第4 d進(jìn)入對數(shù)生長期,第6 d進(jìn)入平臺期。根據(jù)Patterson公式計(jì)算可知,P3代、P6代和P9代馬UC-MSCs群體倍增時(shí)間分別為43.98±0.94、46.67±0.87和52.14±0.58 h。其中,P3代細(xì)胞群體倍增時(shí)間與P6代細(xì)胞群體倍增時(shí)間相比差異顯著(P<0.05),二者與P9代細(xì)胞群體倍增時(shí)間相比差異均達(dá)極顯著水平(P<0.01)(圖4)。
2. 3 馬UC-MSCs表面標(biāo)志物鑒定結(jié)果
采用流式細(xì)胞儀分析P3代馬UC-MSCs表面標(biāo)志物的表達(dá)情況,結(jié)果(圖5)發(fā)現(xiàn)馬UC-MSCs高表達(dá)MSCs的特異性表面抗原CD29、CD44和CD90,表達(dá)率分別為98.45%、97.08%和96.56%,但不表達(dá)白細(xì)胞特異性表面抗原CD45。RT-PCR擴(kuò)增電泳結(jié)果(圖6)也顯示,馬UC-MSCs表達(dá)CD29、CD44、CD73、CD90和CD105等MSCs表面標(biāo)志物基因,但不表達(dá)CD45基因。流式細(xì)胞儀檢測結(jié)果和RT-PCR擴(kuò)增結(jié)果完全吻合,說明P3代馬UC-MSCs具有MSCs的生物學(xué)特性。
2. 4 成脂誘導(dǎo)分化結(jié)果
P3代馬UC-MSCs培養(yǎng)24 h后加入成脂誘導(dǎo)分化液,誘導(dǎo)48 h后細(xì)胞形態(tài)開始發(fā)生變化。至誘導(dǎo)第5 d,細(xì)胞融合達(dá)100%,細(xì)胞由具有折光性的長梭形變成扁平的圓形或多角形,細(xì)胞體積增大;至誘導(dǎo)第10 d,部分細(xì)胞的細(xì)胞質(zhì)中出現(xiàn)折光性小脂滴;至誘導(dǎo)第14 d,細(xì)胞質(zhì)中的小脂滴融合成大脂滴;誘導(dǎo)第18 d有大量指滴形成,經(jīng)油紅O染色,光學(xué)顯微鏡觀察發(fā)現(xiàn)染色后脂滴呈紅色(圖7),且形成脂滴的馬UC-MSCs多聚集在培養(yǎng)皿周邊。對照組P3代馬UC-MSCs在培養(yǎng)過程中未見脂滴形成。
2. 5 成骨誘導(dǎo)分化結(jié)果
P3代馬UC-MSCs培養(yǎng)24 h后加入成骨誘導(dǎo)分化液,誘導(dǎo)24 h后細(xì)胞形態(tài)開始發(fā)生變化。至誘導(dǎo)第3 d,細(xì)胞體積開始增大,細(xì)胞兩端變尖,細(xì)胞形態(tài)變長;至誘導(dǎo)第7 d,細(xì)胞形態(tài)不規(guī)則,細(xì)胞堆積形成鈣結(jié)節(jié),呈鱗片狀,不同結(jié)節(jié)間形成較寬的間隙;至誘導(dǎo)第10 d,鈣結(jié)節(jié)變大,且數(shù)量增多,采用茜素紅進(jìn)行礦化結(jié)節(jié)染色,結(jié)節(jié)被染成明亮的紅色(圖8)。對照組P3代馬UC-MSCs在培養(yǎng)過程中,其細(xì)胞形態(tài)變化不明顯,有少量細(xì)胞死亡,未形成鈣結(jié)節(jié)。
3 討論
臍帶來源于中胚層,是連接母體與胎兒的管狀結(jié)構(gòu),由血管和華通膠組成,外層被羊膜包裹,起營養(yǎng)傳輸作用(Brunelli et al.,2019)。UC-MSCs最早于2003年從臍帶華通膠中分離獲得,并發(fā)現(xiàn)其具有向神經(jīng)細(xì)胞分化的潛力(Mitchell et al.,2003)。UC-MSCs的分離目前尚無統(tǒng)一標(biāo)準(zhǔn),常用組織貼壁法和酶消化法,其中酶消化法能在較短時(shí)間內(nèi)獲得大量原代細(xì)胞(Salehinejad et al.,2012;劉玲英等,2013)。已有研究表明,I型膠原酶消化法分離得到的MSCs活性高且增殖活性好(羅惠娜等,2020)。本研究通過I型膠原酶消化法分離獲得馬UC-MSCs,培養(yǎng)10 d后細(xì)胞融合達(dá)90%,且傳代后細(xì)胞增殖速度明顯提高,傳代至P3代,細(xì)胞呈旋渦狀生長,形態(tài)為均一的長梭形,生長趨勢符合Logistic生長曲線規(guī)律,呈典型的S形。
目前,已在多種動物上分離獲得多種不同來源的MSCs,但MSCs缺乏特異性表面抗原,主要通過其表面標(biāo)志物、細(xì)胞形態(tài)及分化能力等進(jìn)行綜合鑒定。大量研究表明,MSCs高表達(dá)CD29、CD44、CD73、CD90和CD105,分別與細(xì)胞的黏附、纖維化調(diào)節(jié)、遷移、免疫反應(yīng)及增殖有關(guān)(de Schauwer et al.,2011;杜志朋等,2019),低表達(dá)或不表達(dá)CD34和CD45。本研究通過流式細(xì)胞術(shù)結(jié)合RT-PCR擴(kuò)增對分離獲得的馬UC-MSCs進(jìn)行鑒定,流式細(xì)胞儀檢測結(jié)果顯示,馬UC-MSCs高表達(dá)CD29、CD44和CD90,表達(dá)率分別為98.45%、97.08%和96.56%,均高于95.00%,呈強(qiáng)陽性,但不表達(dá)CD45;RT-PCR擴(kuò)增結(jié)果表明,馬UC-MSCs表達(dá)CD29、CD44、CD73、CD90和CD105等MSCs表面標(biāo)志物基因,但不表達(dá)CD45基因。說明分離獲得的馬UC-MSCs不摻雜造血細(xì)胞,純度較高,其表面抗原符合MSCs的生物學(xué)特征。除了表面標(biāo)志物外,體外分化能力也是鑒定MSCs的主要標(biāo)準(zhǔn)。劉雪婷等(2016)采用地塞米松和β-甘油磷酸等成功誘導(dǎo)鴨AD-MSCs成骨,在誘導(dǎo)第10 d即有鈣結(jié)節(jié)形成。李捷等(2017)選用地塞米松、維生素C及β-甘油磷酸鈉等試劑成功誘導(dǎo)犬BM-MSCs生成脂滴。本研究以胰島素、IBMX、羅格列酮和地塞米松為主要試劑進(jìn)行馬UC-MSCs體外成脂誘導(dǎo),誘導(dǎo)第10 d發(fā)現(xiàn)細(xì)胞內(nèi)有小脂滴形成,至誘導(dǎo)第18 d有大量脂滴形成;成骨誘導(dǎo)則選用抗壞血酸、β-甘油磷酸鈉和地塞米松為主要試劑,誘導(dǎo)第7 d觀察到鈣結(jié)節(jié)形成。綜合細(xì)胞形態(tài)、表面標(biāo)志物鑒定及成脂成骨誘導(dǎo)結(jié)果,可確定分離獲得的細(xì)胞為馬UC-MSCs。
細(xì)胞凍存問題是MSCs在臨床上使用受限制的主要原因之一,在體外多次培養(yǎng)傳代下MSCs的增殖能力和分化潛能均會下降,因此種子細(xì)胞的有效凍存尤為關(guān)鍵,凍存質(zhì)量直接影響復(fù)蘇后細(xì)胞的活性及其生物學(xué)特性。影響MSCs凍存效率的因素主要包括凍存速率、溫度及冷凍保護(hù)劑選擇等(付旭鋒等,2016)。本研究采用60% DMEM+30% FBS+10% DMSO的凍存液配比,通過程序降溫盒對P3代馬UC-MSCs進(jìn)行凍存,3個(gè)月后復(fù)蘇細(xì)胞,細(xì)胞存活率高達(dá)93%,且復(fù)蘇后的細(xì)胞形態(tài)和生長特性與凍存前基本保持一致,說明該凍存方法能有效降低因凍存而造成的細(xì)胞損傷。
4 結(jié)論
采用I型膠原酶消化法分離獲得的馬UC-MSCs純度高,且具有良好的體外增殖能力和多向分化潛能;掌握好馬UC-MSCs的有效凍存方式,可為治療賽馬運(yùn)動損傷提供優(yōu)質(zhì)的種子細(xì)胞。
參考文獻(xiàn):
杜志朋,殷國田,李苗苗,郭志坤,李瓊. 2019. 不同來源間充質(zhì)干細(xì)胞表面標(biāo)記的比較[J]. 解剖學(xué)報(bào),50(5):589-594. doi:10.16098/j.issn.0529-1356.2019.05.008. [Du Z P,Yin G T,Li M M,Guo Z K,Li Q. 2019. Comparison of surface markers of mesenchymal stem cells from different sources[J]. Acta Anatomica Sinica,50(5):589-594.]
付旭鋒,劉平,陳冰冰,焦揚(yáng),司維,鄭冰蓉. 2016. 間充質(zhì)干細(xì)胞凍存方法的研究進(jìn)展[J]. 云南大學(xué)學(xué)報(bào)(自然科學(xué)版),38(4):652-660. doi:10.7540/j.ynu.20160104. [Fu X F,Liu P,Chen B B,Jiao Y,Si W,Zheng B R. 2016. Review of the progress on the cryopreservation methods of mesenchymal stem cells[J]. Journal of Yunnan University(Natural Sciences Edition),38(4):652-660.]
李捷,白利鵬,陳曦,楊芳,沈留紅,曹隨忠,左之才,任志華,馬曉平,余樹民. 2017. 犬骨髓間充質(zhì)干細(xì)胞的體外分離培養(yǎng)及鑒定[J]. 浙江農(nóng)業(yè)學(xué)報(bào),29(5):751-759. doi:10.3969/j.issn.1004-1524.2017.05.10. [Li J,Bai L P,Chen X,Yang F,Shen L H,Cao S Z,Zuo Z C,Ren Z H,Ma X P,Yu S M. 2017. Isolation,cultivation and identification of canine bone marrow mesenchymal stem cells (BMSCs) in vitro[J]. Acta Agriculturae Zhejiangensis,29(5):751-759.]
李婷婷,許龍,梁峻. 2019. 北京鴨肝間充質(zhì)干細(xì)胞分離、培養(yǎng)及分化潛能研究[J]. 中國畜牧獸醫(yī),46(10):2882-2889. doi:10.16431/j.cnki.1671-7236.2019.10.009. [Li T T,Xu L,Liang J. 2019. Study on isolation,culture and differentiation potential of liver mesenchymal stem cells in Beijing duck[J]. China Animal Husbandry & Veterinary Me-dicine,46(10):2882-2889.]
劉玲英,柴家科,段紅杰,侯玉森,尹會男,郁永輝,胡泉,郝岱峰,馮光,李濤,杜俊東. 2013. 人臍帶間充質(zhì)干細(xì)胞不同分離方法的效果比較[J]. 中華醫(yī)學(xué)雜志,93(32):2592-2596. doi:10.3760/cma.j.issn.0376-2491.2013.32.016. [Liu L Y,Chai J K,Duan H J,Hou Y S,Yin H N,Yu Y H,Hu Q,Hao D F,F(xiàn)eng G,Li T,Du J D. 2013. Comparison of different methods for the isolation of human umbilical cord mesenchymal stem cells[J]. National Medical Journal of China,93(32):2592-2596.]
劉夢婷,饒巍,韓兵,肖翠紅,武棟成. 2020. 人臍帶間充質(zhì)干細(xì)胞的體外免疫調(diào)節(jié)特性[J]. 中國組織工程研究,24(7):1063-1068. doi:10.3969/j.issn.2095-4344.1862. [Liu M T,Rao W,Hao B,Xiao C H,Wu D C. 2020. Immunomodulatory characteristics of human umbilical cord me-senchymal stem cells in vitro[J]. Chinese Journal of Tissue Engineering Research,24(7):1063-1068.]
劉雪婷,元虹懿,張明海,關(guān)偉軍. 2016. 鴨脂肪間充質(zhì)干細(xì)胞分離培養(yǎng)與生物學(xué)特性[J]. 生物技術(shù)通報(bào),32(8):122-128. doi:10.13560/j.cnki.biotech.bull.1985.2016.08.019. [Liu X T,Yuan H Y,Zhang M H,Guan W J. 2016. Isolation and biological characterization of duck adipose-derived mesenchymal stem cells[J]. Biotechnology Bulletin,32(8):122-128.]
魯文賡,劉慶,徐鄭美,原冬偉,李維龍,毛瑩瑩,馮琳,杜珍珍,曹立明,司琳清,金吉東,劉麗麗,付世新,韓英浩. 2020. 脂肪間充質(zhì)干細(xì)胞對奶牛蹄葉炎的療效[J]. 畜牧與獸醫(yī),52(11):123-127. [Lu W G,Liu Q,Xu Z M,Yuan D W,Li W L,Mao Y Y,F(xiàn)eng L,Du Z Z,Cao L M,Si L M,Qin J D,Liu L L,F(xiàn)u S X,Han Y H. 2020. Therapeutic effect of bovine adipose-derived stem cells on dairy cows with laminitis[J]. Animal Husbandry and Veterinary Medicine,52(11):123-127.]
羅惠娜,樊全寶,江文康,趙明明,王靜靜,羅冬章,王丙云. 2020. 奶牛脂肪來源間充質(zhì)干細(xì)胞的分離培養(yǎng)及其生物學(xué)特性研究[J]. 南方農(nóng)業(yè)學(xué)報(bào),51(6):1462-1469. doi:10.3969/j.issn.2095-1191.2020.06.028. [Luo H N,F(xiàn)an Q B,Jiang W K,Zhao M M,Wang J J,Luo D Z,Wang B Y. 2020. Isolation,culture and biological characteristics of dairy cow adipose-derived mesenchymal stem cells[J]. Journal of Southern Agriculture,51(6):1462-1469.]
馬亞軍,焦智慧,劉笑凝,張千振,王洪斌. 2020. 二次酶消化法原代培養(yǎng)豬脂肪間充質(zhì)干細(xì)胞[J]. 中國獸醫(yī)學(xué)報(bào),40(11):2200-2204. doi:10.16303/j.cnki.1005-4545.2020. 11.20. [Ma Y J,Jiao Z H,Liu X N,Zhang Q Z,Wang H B. 2020. Primary culture of porcine adipose-derived me-senchymal stem cells by secondary enzyme digestion[J]. Chinese Journal of Veterinary Science,40(11):2200-2204.]
王冠穎. 2015. 馬骨關(guān)節(jié)炎關(guān)節(jié)損傷機(jī)制的硏究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué). [Wang G Y. 2015. Research on the joint damage mechanism of equine osteoarthritis[D]. Harbin:Northeast Agricultural University.]
王立文. 2016. 奶牛臍帶間充質(zhì)干細(xì)胞通過激活PI3K/Akt/mTOR信號通路調(diào)控奶牛乳腺上皮細(xì)胞生理功能的研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué). doi:10.7666/d.Y3101367. [Wang L W. 2016. Regulatory effect of umbilical cord mesenchymal stem cells on bovine mammary epithelial cells physiological function mediated by PI3K/AKT/mTOR signaling pathway[D]. Urumqi:Xinjiang Agricultural University.]
岳永莉. 2016. 牛脂肪間充質(zhì)干細(xì)胞的分離鑒定及過表達(dá)SCD1基因的研究[D]. 呼和浩特:內(nèi)蒙古大學(xué). doi:10. 7666/d.Y3374521. [Yue Y L. 2016. The study of isolation and identification of bovine adipose derived stem cells and the effect of SCD1 gene overexpression[D]. Hohhot:Inner Mongolia University.]
Barrachina L,Remacha A R,Romero A,Vitoria A,Albareda J,Prades M,Roca M,Zaragoza P,Vázquez F J,Rodellar C. 2018. Assessment of effectiveness and safety of repeat administration of proinflammatory primed allogeneic me-senchymal stem cells in an equine model of chemically induced osteoarthritis[J]. BMC Veterinary Research,14(1):241. doi:10.1186/s12917-018-1556-3.
Brunelli R,de Spirito M,Giancotti A,Palmieri V,Parasassi T,Di Mascio D,F(xiàn)lammini G,D'Ambrosio V,Monti M,Boccaccio A,Pappalettere C,F(xiàn)icarella E,Papi M,Lamberti L. 2019. The biomechanics of the umbilical cord Wharton Jelly:Roles in hemodynamic proficiency and resistance to compression[J]. Journal of the Mechanical Behavior of Biomedical Materials,100:103377. doi:10.1016/ j.jmbbm.2019.103377.
Czernik M,F(xiàn)idanza A,Sardi M,Galli C,Brunetti D,Malatesta D,Salda L D,Matsukawa K,Ptak G E,Loi P. 2013. Differentiation potential and GFP labeling of sheep bone marrow-derived mesenchymal stem cells[J]. Journal of Cellular Biochemistry,114(1):134-143. doi:10.1002/jcb. 24310.
de Schauwer C,Meyer E,van de Walle G R,van Soom A. 2011. Markers of stemness in equine mesenchymal stem cells:A plea for uniformity[J]. Theriogenology,75(8):1431-1443. doi:10.1016/j.theriogenology.2010.11.008.
Glenn J D,Whartenby K A. 2014. Mesenchymal stem cells:Emerging mechanisms of immunomodulation and therapy[J]. World Journal of Stem Cells,6(5):526-539. doi:10. 4252/wjsc.v6.i5.526.
Li C D,Zhang W Y,Jiang X X,Mao N. 2007. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells[J]. Cell and Ti-ssue Research,330(3):437-446. doi:10.1007/s00441-007-0504-5.
Mari?as-Pardo L,García-Castro J,Rodríguez-Hurtado I,Rodríguez-Garcia M I,Nú?ez-Naveira L,Hermida-Prieto M. 2018. Allogeneic adipose-derived mesenchymal stem cells(Horse Allo 20) for the treatment of osteoarthritis-associa-ted lameness in horses:Characterization,safety,and efficacy of intra-articular treatment[J]. Stem Cells and Development,27(17):1147-1160. doi:10.1089/scd.2018.0074.
Mitchell K E,Weiss M L,Mitchell B M,Martin P,Davis D,Morales L,Helwig B,Beerenstrauch M,Abou-Easa K,Hildreth T,Troyer D,Medicetty S. 2003. Matrix cells from Wharton?s jelly form neurons and glia[J]. Stem Cells,21(1):50-60. doi:10.1634/stemcells.21-1-50.
Pacini S,Spinabella S,Trombi L,F(xiàn)azzi R,Galimberti S,Dini F,Carlucci F,Petrini M. 2007. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for? repair of superficial digital flexor tendon in race hor-ses[J]. Tissue Engineering,13(12):2949-2955. doi:10. 1089/ten.2007.0108.
Qian Q,Qian H,Zhang X,Zhu W,Yan Y M,Ye S Q,Peng X J,Li W,Xu Z,Sun L Y,Xu W R. 2012. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase[J]. Stem Cells and Development,21(1):67-75. doi:10.1089/scd.2010.0519.
Salehinejad P,Alitheen N B,Ali A M,Omar A R,Mohit M,Janzamin E,Samani F S,Torshizi Z,Nematollahi-Mahani S N. 2012. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton?s jelly[J]. In Vitro Cellular & Development Biology. Animal,48(2):75-83. doi:10.1007/s11626-011-9480-x.
Shariatzadeh M,Song J N,Wilson S L. 2019. The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis[J]. Cell and Tissue Research,378(3):399-410. doi:10.1007/s00441-019-03069-9.
Suzdaltseva Y G,Burunova V V,Vakhrushev I V,Cheglakov I B,Yarygin K N. 2008. In vitro comparison of immunological properties of cultured human mesenchymal cells from various sources[J]. Bulletin of Experimental Bio-logy and Medicine,145(2):228-231. doi:10.1007/s10517- 008-0057-y.
Wang X S,C F H,Wang J J,Ji H D,Guan W J,Zhao Y H. 2018. Isolation,culture,and characterization of chicken lung-derived mesenchymal stem cells[J]. Canadian Journal of Veterinary Research,82(3):225-235.
Xu J J,Sun M Y,Tan Y,Wang H W,Wang H P,Li P D,Xu Z R,Xia Y H,Li L S,Li Y L. 2017. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells[J]. Differentiation,96:30-39. doi:10.1016/j.diff.2017.07.001.
Yu Y B,Song Y,Chen Y,Zhang F,Qi F Z. 2018. Differentiation of umbilical cord mesenchymal stem cells into hepatocytes in comparison with bone marrow mesenchymal stem cells[J]. Molecular Medicine Reports,18(2):2009-2016. doi:10.3892/mmr. 2018.9181.
(責(zé)任編輯 蘭宗寶)