孫韜,董瀟瀟
非線性切換系統(tǒng)的異步事件驅(qū)動(dòng)控制
孫韜,董瀟瀟
(沈陽(yáng)工業(yè)大學(xué) 理學(xué)院,遼寧 沈陽(yáng) 110870)
事件驅(qū)動(dòng)控制是一種減少通訊總量并能保持閉環(huán)系統(tǒng)性能的有效控制策略。在事件驅(qū)動(dòng)控制中,由于取樣時(shí)刻與切換時(shí)刻之間的異步會(huì)導(dǎo)致子系統(tǒng)與控制器之間的異步切換,造成切換系統(tǒng)的不穩(wěn)定。因此,考慮非線性切換系統(tǒng)的異步事件驅(qū)動(dòng)控制問(wèn)題顯得尤為重要。為了解決這一問(wèn)題,首先從結(jié)構(gòu)簡(jiǎn)單的線性部分和非線性部分級(jí)聯(lián)的非線性切換系統(tǒng)入手,基于該系統(tǒng)的結(jié)構(gòu)特點(diǎn)構(gòu)造合適的Lyapunov函數(shù)。然后,針對(duì)每個(gè)子系統(tǒng)設(shè)計(jì)系統(tǒng)的切換控制器,并給出切換系統(tǒng)所要滿足的平均駐留時(shí)間,當(dāng)切換系統(tǒng)的切換信號(hào)滿足一定平均駐留時(shí)間時(shí),得到切換系統(tǒng)全局一致指數(shù)穩(wěn)定的充分條件。最后給出數(shù)值算例消除了異步切換所導(dǎo)致的系統(tǒng)的不穩(wěn)定性,說(shuō)明了該方法的有效性。
事件驅(qū)動(dòng)控制; 非線性切換系統(tǒng); 平均駐留時(shí)間; 異步切換
切換系統(tǒng)是一類重要的混雜系統(tǒng),自20世紀(jì)60年代起被引入控制理論中,并在飛行器控制、智能機(jī)器人、交通系統(tǒng)及電力發(fā)電系統(tǒng)得到廣泛的應(yīng)用[1-3]。為了改善系統(tǒng)的暫態(tài)性能,提高系統(tǒng)的控制精度,研究者們建立了切換系統(tǒng)的理論模型。目前切換系統(tǒng)的研究主要包括穩(wěn)定性分析及設(shè)計(jì)問(wèn)題[4-9]、能控及能觀性問(wèn)題[10-11]、無(wú)源性研究[12-13]、監(jiān)督控制[14]等。其中,異步切換對(duì)切換系統(tǒng)影響的研究引起了越來(lái)越多學(xué)者的重視[15-17]。
在實(shí)際系統(tǒng)中,異步切換很容易導(dǎo)致切換系統(tǒng)不穩(wěn)定,為獲得良好的性能和所需的目標(biāo),有必要研究異步切換控制問(wèn)題[18]。文獻(xiàn)[19]研究了隨機(jī)切換非線性系統(tǒng)的魯棒異步切換控制。文獻(xiàn)[20]給出了具有多面體不確定性切換時(shí)滯系統(tǒng)鎮(zhèn)定的充分條件。文獻(xiàn)[21]研究了異步切換非線性系統(tǒng)的魯棒控制,當(dāng)子系統(tǒng)滿足駐留時(shí)間時(shí),設(shè)計(jì)控制器使閉環(huán)系統(tǒng)狀態(tài)呈指數(shù)收斂。事件驅(qū)動(dòng)控制可以減少傳感器、控制器和執(zhí)行器之間大量交互中的系統(tǒng)信息負(fù)載問(wèn)題。目前,越來(lái)越多的學(xué)者開(kāi)始關(guān)注切換系統(tǒng)的事件驅(qū)動(dòng)控制問(wèn)題。M.Wakaiki等[22]提出了采用定期采樣方法研究帶有有限靜態(tài)量化器的線性切換系統(tǒng)的穩(wěn)定性問(wèn)題。文獻(xiàn)[23]將定期采樣控制的研究結(jié)果擴(kuò)展到線性切換中立系統(tǒng)中。現(xiàn)有的研究成果只給出了線性切換系統(tǒng)事件驅(qū)動(dòng)控制問(wèn)題可解的充分條件。然而,非線性切換系統(tǒng)的事件驅(qū)動(dòng)控制研究結(jié)果還未見(jiàn)報(bào)道。
本文研究了異步切換下非線性切換系統(tǒng)的事件驅(qū)動(dòng)控制問(wèn)題。首先,針對(duì)控制器與子系統(tǒng)匹配和不匹配兩種情況,分別構(gòu)造Lyapunov函數(shù)。然后,設(shè)計(jì)子系統(tǒng)的鎮(zhèn)定控制器。最后,切換系統(tǒng)滿足一定平均駐留時(shí)間的切換信號(hào)作用下,得到切換系統(tǒng)全局一致指數(shù)穩(wěn)定的充分條件。
考慮如下級(jí)聯(lián)非線性切換系統(tǒng):
假設(shè)在切換中不產(chǎn)生系統(tǒng)狀態(tài)跳變,則系統(tǒng)(1)的解是連續(xù)的。本文擬研究的系統(tǒng)(1)是非線性控制中一類常見(jiàn)系統(tǒng),其中一個(gè)顯著的優(yōu)勢(shì)是利用系統(tǒng)的部分狀態(tài)進(jìn)行反饋[24]。
引理1[27]給定一個(gè)適當(dāng)維數(shù)的對(duì)稱矩陣:
根據(jù)式(11)可得:
圖1 切換系統(tǒng)狀態(tài)響應(yīng)
圖2 切換系統(tǒng)控制輸入
圖3 事件驅(qū)動(dòng)條件
圖4 事件驅(qū)動(dòng)瞬間
切換信號(hào)如圖5所示。從圖5可以看出,控制器和子系統(tǒng)可發(fā)生異步切換。從仿真結(jié)果可知,系統(tǒng)在采樣條件確定的控制輸入下是穩(wěn)定的。
針對(duì)非線性級(jí)聯(lián)切換系統(tǒng),研究了基于異步切換的事件驅(qū)動(dòng)控制問(wèn)題。設(shè)計(jì)了子系統(tǒng)狀態(tài)反饋控制器獲得閉環(huán)系統(tǒng),針對(duì)子系統(tǒng)與控制器匹配和不匹配的情況,分別構(gòu)造相應(yīng)的Lyapunov函數(shù),根據(jù)適當(dāng)?shù)那袚Q信號(hào),利用平均駐留時(shí)間的方法得出使閉環(huán)系統(tǒng)的全局一致指數(shù)穩(wěn)定的充分條件。最后給出數(shù)值算例,證明了此方法的可行性。
圖5 切換信號(hào)
[1]Gao Y, Wen J W, Peng L. New exponential stability criterion for switched linear systems with average dwell time[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(8): 935-944.
[2]Cheng J, Zhu H, Zhong S, et al. Finite-time filtering for switched linear systems with a mode-dependent average dwell time[J]. Nonlinear Analysis Hybrid Systems, 2015, 15:145-156.
[3]Spandan R, Simone B. On reduced-complexity robust adaptive control of switched Euler–Lagrange systems[J]. Nonlinear Analysis: Hybrid Systems, 2019, 34: 226-237.
[4]Ooba T, Funahashi Y. Two conditions concerning common quadratic Lyapunov functions for linear systems[J]. IEEE Transactions on Automatic Control, 1997, 42(5): 719-721.
[5]Ana C C. Stabilization criteria of a class of switched systems[J]. Mathematical Methods in the Applied Sciences, 2019, 42(17):5827-5833.
[6]Hong S S, Zhang Y. Stability of switched positive linear delay systems with mixed impulses[J]. International Journal of Systems Science, 2019, 50(16):3022-3037.
[7]Cheng D Z, Feng G, Xi Z R. Stabilization of a class of switched nonlinear systems[J]. Journal of Control Theory and Applications, 2006, 31(1): 53-61.
[8]Han M H, Zhang R X, Zhang L X. Asynchronous observer design for switched linear systems: A tube-based approach[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(1): 70-81.
[9]Wang Z C, Sun J, Chen J. Finite‐time stability of switched nonlinear time‐delay systems[J]. International Journal of Robust and Nonlinear Control, 2020, 30(7):2906-2919.
[10] 張嘉恬.異步切換下線性系統(tǒng)的穩(wěn)定性分析[D].沈陽(yáng):沈陽(yáng)師范大學(xué), 2019.
[11] Luo S, Deng F, Zhang B, et al. Almost sure stability of hybrid stochastic systems under asynchronous Markovian switching[J]. Systems & Control Letters, 2019, 133:104556.
[13] 柳碩,龐洪博.非線性切換系統(tǒng)的擬無(wú)源和反饋擬無(wú)源化[J].渤海大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 39(4): 303-308.
[14] 李陽(yáng),趙曉穎,常東超. 一類狀態(tài)受控橢球特性的時(shí)滯系統(tǒng)的魯棒控制[J].遼寧石油化工大學(xué)學(xué)報(bào), 2019, 39(1): 77-81.
[15] Wang Y E, Wu B W, Wu C. Stability and L2-gain analysis of switched input delay systems with unstable modes under asynchronous switching[J]. Journal of the Franklin Institute, 2017, 354(11): 4481-4497.
[16] Fei Z, Shi S, Zhao C, et al. Asynchronous control for 2-D switched systems with mode-dependent average dwell time[J]. Automatic, 2017, 79: 198-206.
[17] Cheng J, Zhu H, Zhong S, et al. Finite-time filtering for switched linear systems with a mode-dependent average dwell time[J]. Nonlinear Analysis Hybrid Systems, 2015, 15:145-156.
[18] 趙亞茹,黃振坤. 時(shí)標(biāo)上切換系統(tǒng)在異步切換下的穩(wěn)定性分析[J]. 集美大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 24(6): 463-470.
[19] Xiang Z, Chen Q. Robust reliable control for uncertain switched nonlinear systems with time delay under asynchronous switching[J]. Applied Mathematics and Computation, 2013, 216(3):800-811.
[20] Wang R, Shi P, Wu Z G, et al. Stabilization of switched delay systems with polytopic uncertainties under asynchronous switching[J]. Journal of the Franklin Institute, 2013, 350(8):2028-2043.
[21] Xiang Z R, Wang R H. Robust control for uncertain switched non-linear systems with time delay under asynchronous switching[J]. IET Control Theory & Applications, 2009, 3(8):1041-1050.
[22] Wakaiki M, Yamamoto Y. Stability analysis of sampled-data switched systems with quantization[J]. Automatica, 2016,69: 157-168.
[23] Fu J, Li T F, Chai T, et al. Sampled-data-based stabilization of switched linear neutral systems[J]. Automatica, 2016, 72:92-99.
[24] Sepulchre P, Jankovic M, Kokotovic P. Constructive nonlinear control [M]. London:Springer-Verlag, 1997.
[25] Li T F, Wang H. Asynchronous switching control for switched delay systems induced by sampling mechanism[J]. IEEE Access, 2017, 56(99):1-10.
[26] Lu A Y. Analysis and control of a class of switching systems with dwell time[D]. Boston:Northeastern University, 2017.
[27] Huang Y L, Lin S R, Yang E . Event-triggered passivity of multi-weighted coupled delayed reaction-diffusion memristive neural networks with fixed and switching topologies[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 89:105292.
Asynchronous Event-Triggered Control of Cascade Nonlinear Switched System
Sun Tao, Dong Xiaoxiao
(College of Science,Shenyang University of Technology,Shenyang Liaoning 110870,China)
In order to obtain good performance and required goals, the existence of asynchronous switching of controllers and subsystems must be considered. The event-triggered control of nonlinear switched system under asynchronous switching is studied. As the switching of the controller lags behind the switching of the subsystem, asynchronous behavior occurs. First, the switched nonlinear systems with linear parts and nonlinear parts are researched and the Laypunov functions are constructed. Then, a switching controller for a cascaded nonlinear switched system to obtain a closed-loop system is designed, and the average dwell time is given to get the sufficient condition for the switched system to be globally uniformly and exponentially stable. Finally, a numerical example is given to illustrate the feasibility of the method.
Event-triggered control; Nonlinear switched system; Average dwell time; Asynchronous switching
TP13
A
10.3969/j.issn.1672-6952.2021.04.015
1672-6952(2021)04-0091-06
http://journal.lnpu.edu.cn
2020-04-29
2020-05-19
國(guó)家自然科學(xué)基金項(xiàng)目(61503254、61673099)。
孫韜(1995-),女,碩士研究生,從事切換系統(tǒng)的分析與控制方面的研究;E-mail: echigen@qq.com。
董瀟瀟(1983-),女,博士,副教授,從事切換系統(tǒng)分析與控制等方面的研究;E-mail:dongxiaoxiao1983@163.com。
(編輯 陳 雷)