苑兆和,陳立德,張心慧,趙玉潔
(南京林業(yè)大學(xué),南方現(xiàn)代林業(yè)協(xié)同創(chuàng)新中心,南京林業(yè)大學(xué)林學(xué)院,江蘇 南京 210037)
近年來,隨著農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整,果樹產(chǎn)業(yè)迅猛發(fā)展[1],我國已成為果樹產(chǎn)業(yè)第一大國。在我國脫貧攻堅(jiān)進(jìn)程中,以水果、蔬菜、茶葉等園藝作物為主的種植業(yè)成為中西部地區(qū)扶貧的主要產(chǎn)業(yè)[2],是促進(jìn)鄉(xiāng)村振興的重要支柱產(chǎn)業(yè)之一。果樹是一種重要的經(jīng)濟(jì)作物,其根、莖、葉、花、果實(shí)、種子等,可為人類提供所需營養(yǎng)物質(zhì),一些果樹還具有醫(yī)藥保健功能[3]。在我國現(xiàn)代果業(yè)的發(fā)展過程中,果樹育種工作仍面臨巨大挑戰(zhàn):果樹品種單一,果品品質(zhì)降低,砧木育種滯后,全球氣候變化等對果樹產(chǎn)量和品質(zhì)造成嚴(yán)重影響。具體來看:其一,我國消費(fèi)市場上水果種類較為豐富,但品種單一化嚴(yán)重,如我國蘋果產(chǎn)業(yè)中70%是‘富士’品種[4];其二,在追求高產(chǎn)、耐貯藏等品質(zhì)的過程中,部分犧牲了果實(shí)其他品質(zhì)的質(zhì)量,引起水果原有風(fēng)味發(fā)生明顯改變或喪失,如“桃沒有桃味”“葡萄沒葡萄味”[5];其三,與栽培品種選育工作相比,果樹砧木育種評價(jià)難度大、周期長,目前缺乏廣適性強(qiáng)、抗性突出、綜合性狀優(yōu)良的砧木品種;其四,受全球氣候變化的影響,果樹病蟲害危害加劇,柑橘黃龍病、香蕉枯萎病、獼猴桃潰瘍病、梨枯梢病等嚴(yán)重危害果樹產(chǎn)業(yè)持續(xù)健康發(fā)展[2]。因此,培育適應(yīng)市場消費(fèi)需求和全球氣候變化的優(yōu)良果樹品種是目前果樹產(chǎn)業(yè)持續(xù)發(fā)展的首要任務(wù)。
我國果樹種質(zhì)資源豐富,擁有大量優(yōu)異基因資源。特別是蘋果、桃、杏、梨、柑橘、獼猴桃、枇杷、楊梅等原產(chǎn)我國的果樹樹種[4, 6-9]遺傳多樣性十分豐富,是果樹育種的重要材料。在不同生態(tài)地區(qū)栽培的地方品種,經(jīng)過自然選擇和人工選擇,攜帶有較多與品質(zhì)及抗性相關(guān)的優(yōu)異基因[10-12]。隨著現(xiàn)代分子生物學(xué)技術(shù)的發(fā)展,果樹定向育種可行性增強(qiáng),該方法能有效克服傳統(tǒng)育種方法的缺點(diǎn),具有周期短、效率高、定向育種精確度高等優(yōu)勢,還可以打破種間生殖隔離,實(shí)現(xiàn)優(yōu)良基因高效重組[13]。近年來,轉(zhuǎn)基因、基因編輯[14]和分子標(biāo)記輔助育種[15]技術(shù)等分子生物學(xué)技術(shù)發(fā)展迅速,推動(dòng)了果樹育種的現(xiàn)代化發(fā)展。筆者從果樹品質(zhì)育種、抗性育種兩個(gè)方向綜述果樹分子育種進(jìn)展,并在分析現(xiàn)階段不足的基礎(chǔ)上,探討未來果樹育種的發(fā)展方向,以期為未來果樹育種研究提供參考。
果實(shí)品質(zhì)是衡量水果商品性和食用價(jià)值的重要標(biāo)準(zhǔn)。果實(shí)品質(zhì)主要包括外觀品質(zhì)和內(nèi)在品質(zhì),外觀品質(zhì)包括果實(shí)顏色、果型和大小等,內(nèi)在品質(zhì)包括風(fēng)味、質(zhì)地、香味和功能物質(zhì)等[16-17]。果實(shí)品質(zhì)性狀是復(fù)雜的數(shù)量性狀,遺傳機(jī)制復(fù)雜,受多基因及基因間相互作用的復(fù)雜網(wǎng)絡(luò)調(diào)控[16]。
1.1.1 果實(shí)色澤
果皮顏色是決定水果品質(zhì)的關(guān)鍵因素?;ㄇ嗨厥怯绊懝麑?shí)顏色最重要的色素,花青素種類和含量的不同使植物呈現(xiàn)紅色、紫色和藍(lán)色等外觀[18-19]。花青素生物合成相關(guān)基因的表達(dá)受到R2R3-MYB與bHLH和WD40-repeat共同調(diào)控[19]。通過調(diào)控花青素合成途徑中的轉(zhuǎn)錄因子,人們已初步了解了影響果皮和果實(shí)顏色的關(guān)鍵轉(zhuǎn)錄因子(表1)。近年來,在蘋果中已分離并鑒定了MdMYB10、MdMYB1和MdMYBA等轉(zhuǎn)錄因子,其中MdMYB10是調(diào)控蘋果紅肉的關(guān)鍵基因,MdMYB1和MdMYBA是調(diào)控果皮變紅的關(guān)鍵基因[20-22]。此外,研究表明,在VvMYBA1中插入反轉(zhuǎn)錄轉(zhuǎn)座子是引起白葡萄品種色素丟失的原因[23]。研究發(fā)現(xiàn),VvMYB5a主要在葡萄果皮、果肉和種子發(fā)育早期表達(dá),VvMYB5a在煙草中過表達(dá)誘導(dǎo)了青酶苷和槲皮素等多種酚類化合物的大量積累,這些酚類化合物是花青素和黃酮醇類化合物合成的主要成分[24]。而VvMYB5b在煙草中過表達(dá)則會(huì)引起類黃酮途徑酶基因上調(diào),影響花青素和原花青素等衍生化合物的積累[25]。桃中MYB10.1和bHLH3雙基因過表達(dá)(或MYB10.3和bHLH3雙基因過表達(dá))通過上調(diào)NtCHS、NtDFR和NtUFGT來激活花青素合成,使黃色果肉中出現(xiàn)紅色斑塊[26]。Yao等[27]通過QTL定位和物理圖譜定位鑒定了與紅皮梨花青素生物合成相關(guān)的關(guān)鍵轉(zhuǎn)錄因子PyMYB114,并在煙草和梨中進(jìn)行了瞬時(shí)轉(zhuǎn)化實(shí)驗(yàn),結(jié)果表明,該轉(zhuǎn)錄因子能夠促進(jìn)花青素的生物合成。
表1 果實(shí)色澤改良分子育種方法
1.1.2 果型
桃、甜瓜等多數(shù)果實(shí)的形狀受多基因控制。桃果型分為扁平型(S)和非扁平型(s)兩大類,顯性的扁平型被稱為蟠桃。Dirlewanger等[32]檢測到1個(gè)限制性片段長度標(biāo)記(RFLP)PC2和1個(gè)擴(kuò)增片段長度多態(tài)性(AFLP)標(biāo)記與S基因共標(biāo)記。桃第2代遺傳圖譜將S基因定位在第6個(gè)連鎖群,與2個(gè)SSR標(biāo)記MA040a和MA014a以及1個(gè)RFLP標(biāo)記FG25共分離。Dirlewanger等[33]首次報(bào)道了1種新的孟德爾性狀,表現(xiàn)為開花但果實(shí)敗育,該性狀由隱性等位基因Af控制,與控制果實(shí)扁平形狀的顯性等位基因有關(guān)。
1.1.3 果實(shí)大小
引起果實(shí)大小差異的原因有很多,包括遺傳差異、內(nèi)源激素的調(diào)控和環(huán)境因素等[34-35]。目前,與果實(shí)大小相關(guān)的遺傳調(diào)控網(wǎng)絡(luò)尚未有詳細(xì)研究。細(xì)胞色素P450(CYP)家族是最大的植物蛋白家族之一,對果實(shí)大小具有一定的影響。在甜櫻桃中,過表達(dá)PaCYP78A9通過影響中果皮細(xì)胞的增殖和擴(kuò)張來增加果實(shí)大小[36]。NY 54×Emperor Francis和Regina×Lapins圖譜共鑒定到4個(gè)控制櫻桃果實(shí)大小的數(shù)量性狀位點(diǎn)(LG1、LG2、LG3和LG6)[37],兩個(gè)CNR基因(PavCNR12和PavCNR20)位于LG2和LG6區(qū)間內(nèi),它們的高表達(dá)抑制了果實(shí)發(fā)育早期的細(xì)胞分裂,特別是PavCNR12的低效率等位基因變異與果實(shí)大小的增加有關(guān)[38]。
1.2.1 果實(shí)風(fēng)味
果肉酸度是水果感官品質(zhì)的重要組成部分。水果酸度是由于有機(jī)酸的存在,蘋果酸和檸檬酸是大多數(shù)成熟水果的主要有機(jī)酸[39]。目前,研究者通過分析突變體,并借助轉(zhuǎn)基因技術(shù)等方法已分離出一些影響有機(jī)酸含量的基因(表2)[40-47]。Li等[40]在轉(zhuǎn)基因柑橘和擬南芥中通過順時(shí)過表達(dá)方式發(fā)現(xiàn)CitERF13可正調(diào)節(jié)檸檬酸的積累。在蘋果中,轉(zhuǎn)錄因子MdMYB73通過與MdALMT9、MdVHA-A和MdVHP1的啟動(dòng)子直接結(jié)合,激活它們的轉(zhuǎn)錄并增強(qiáng)表達(dá)活性,影響蘋果酸積累及液泡pH;此外,蘋果中,MdCIbHLH1能夠與MdMYB73相互作用,增強(qiáng)其對下游靶基因的活性[41]。除了上述MYB、bHLH和ERF等轉(zhuǎn)錄因子,部分基因也可以通過相互作用影響有機(jī)酸的積累,如通過病毒載體遺傳轉(zhuǎn)化試驗(yàn)發(fā)現(xiàn),在蘋果中,MdSOS2L1可以與MdVHA-B1相互作用,磷酸化MdVHA-B1蛋白,進(jìn)而調(diào)控蘋果酸在蘋果果實(shí)中的積累[42]。
表2 果實(shí)風(fēng)味改良分子育種方法
糖是果實(shí)品質(zhì)和風(fēng)味物質(zhì)形成的基礎(chǔ)原料??扇苄蕴侵饕ㄕ崽?、果糖和葡萄糖,可為植物生長發(fā)育提供能量,也是重要的信號分子,在調(diào)節(jié)植物代謝過程和防御機(jī)制中起重要作用。果實(shí)糖代謝通常以蔗糖形式進(jìn)入果實(shí),隨后,在一系列糖代謝酶的作用下轉(zhuǎn)化為果糖和葡萄糖等。目前,研究者已通過分子生物學(xué)技術(shù)分離出一些影響果實(shí)糖含量的基因(表2),例如酸性轉(zhuǎn)化酶基因(EjVIN)[43]。枇杷EjVIN過表達(dá)可同時(shí)減少果實(shí)己糖和蔗糖含量;此外,一些轉(zhuǎn)錄因子(如CgDREB)[44]的過表達(dá)或抑制,通過調(diào)控下游靶基因的表達(dá)也能影響果實(shí)糖含量的積累。
1.2.2 果實(shí)質(zhì)地
果實(shí)質(zhì)地是果實(shí)品質(zhì)的重要組成部分。在桃中,1對等位基因控制著桃的溶質(zhì)型(M)和不溶質(zhì)型(NM)性狀。Peace等[48]研究發(fā)現(xiàn)基因標(biāo)記endoPG-4或endoPG-5均可在苗期用于區(qū)分離核溶質(zhì)、黏核溶質(zhì)和黏核不溶質(zhì)3種類型桃。進(jìn)一步研究發(fā)現(xiàn),參與溶質(zhì)/非溶質(zhì)性狀的標(biāo)記(Ppa006839m)和參與黏核/離核性狀的標(biāo)記(Ppa006857m)始終是共分離的[49]。在蘋果和梨基因組連鎖群1上開發(fā)了一個(gè)與果實(shí)硬度有關(guān)的功能標(biāo)記Md-Exp7SSR[50]。果實(shí)成熟時(shí)的軟化與乙烯和生長素等的調(diào)控有關(guān)[51-52]。ZMdPG1是蘋果果實(shí)軟化開裂所必需的,研究發(fā)現(xiàn)1-MCP(1-甲基環(huán)丙烯,C4H6)可以阻斷ZMdPG1的表達(dá),說明ZMdPG1的表達(dá)受內(nèi)源乙烯介導(dǎo),擬南芥中過表達(dá)ZMdPG1可導(dǎo)致角果早期開裂[53]。此外,一種硬質(zhì)性桃受隱性單基因控制,成熟期乙烯缺失可導(dǎo)致硬質(zhì)型桃不能軟化,進(jìn)一步分析發(fā)現(xiàn)成熟時(shí)果實(shí)生長素含量降低,抑制了乙烯合成關(guān)鍵基因PpACS1的轉(zhuǎn)錄[54]。
1.2.3 果實(shí)香味
果香化合物主要由萜類、酯類、醇類、醛類以及部分含硫化合物組成[55]。葡萄中的萜類化合物在其游離狀態(tài)下直接釋放出香氣,當(dāng)光照強(qiáng)度增大時(shí),VvPLiNer1表達(dá)上調(diào),引起‘金香玉’葡萄中萜烯類化合物(里那醇)含量增加;而葡萄中VvGT14受光照強(qiáng)度負(fù)調(diào)控,該基因與香葉醇和橙花醇的積累有關(guān)[56]。Lücker等[57]將檸檬中3個(gè)單萜基因在煙草中共表達(dá),轉(zhuǎn)基因株系中釋放出了檸檬烯、β-蒎烯和γ-萜品烯等芳香物質(zhì)。在甜橙果實(shí)中,過表達(dá)CitAP2.10后,引起CsTPS1表達(dá)上調(diào),能夠促進(jìn)朱欒倍半萜的合成[58]。LOX酶活性受到抑制時(shí),會(huì)引起蘋果中酯類物質(zhì)合成底物缺乏,產(chǎn)生具有非正常氣味的蘋果果實(shí)[59]?;騊pFAD2過表達(dá)可顯著增加轉(zhuǎn)基因煙草中亞油酸含量,同時(shí)也顯著改變了葉片組織己醛等香氣物質(zhì)的含量[60]。
1.2.4 果實(shí)功能物質(zhì)
黃酮類化合物如黃酮、黃酮醇和花青素來源于植物苯丙氨酸代謝途徑的幾個(gè)分支,是許多植物重要的紫外線保護(hù)劑,同時(shí)也對人體健康具有重要作用[61-63]。Czemmel等[64]對葡萄R2R3-MYB型轉(zhuǎn)錄因子VvMYBF1進(jìn)行分離鑒定,發(fā)現(xiàn)VvMYBF1是VvFLS1(黃酮醇合成酶)的特異性激活劑,擬南芥myb12突變體中VvMYBF1過表達(dá)可互補(bǔ)其黃酮醇缺乏表型?;騇dNAC9可通過激活MdFLS促進(jìn)紅肉蘋果中黃酮醇的積累[65](表3)。
表3 果實(shí)功能物質(zhì)分子育種方法
類胡蘿卜素在高等植物中可以輔助進(jìn)行光合作用,對人體有益,具有抑制、消除體內(nèi)自由基和減緩衰老等功效[66]。基因CCD1抑制表達(dá)后,紅肉臍橙轉(zhuǎn)基因株系中紫黃質(zhì)、9-順式-紫黃質(zhì)等類胡蘿卜素含量均顯著提高[67]。通過VIGS技術(shù)沉默枇杷果實(shí)PSY基因,發(fā)現(xiàn)總類胡蘿卜素含量降低,表明PSY正調(diào)控枇杷果實(shí)中類胡蘿卜含量[68](表3)。
果樹在生長發(fā)育過程中往往會(huì)受到周圍環(huán)境的不良影響,環(huán)境因素包括生物因素和非生物因素。果樹抗性基因參與了多種生物與非生物脅迫調(diào)控,提高了果樹在復(fù)雜環(huán)境中的適應(yīng)能力[69-71]。利用分子育種等技術(shù)可培育抗逆果樹,改善果樹在逆境脅迫下的生長狀況,穩(wěn)定果樹產(chǎn)量品質(zhì)。相關(guān)研究已取得一定進(jìn)展[72-113](表4)。
表4 部分果樹抗性分子育種方法
2.1.1 在果樹抗干旱脅迫中的應(yīng)用
不論是生長季或休眠期,干旱脅迫均會(huì)對果樹生長發(fā)育起抑制作用,甚至導(dǎo)致果樹冬春季抽條,生長季落果、落葉,死亡等現(xiàn)象[72]。MYB轉(zhuǎn)錄因子在干旱脅迫等非生物脅迫調(diào)控中具有重要作用[73],研究表明過表達(dá)MYB可顯著提高轉(zhuǎn)基因植株抗旱性[74-77]。杜梨PbrMYB2受干旱誘導(dǎo)表達(dá),MYB沉默會(huì)引起杜梨株系的干旱敏感性增強(qiáng)、抗旱性降低[78]。蘋果MdSIMYB1基因表達(dá)受干旱誘導(dǎo),MdSIMYB1過表達(dá)煙草株系根系強(qiáng)壯,抗逆性增強(qiáng)[79]。在長期中度干旱脅迫下,MhYTP1過表達(dá)蘋果株系顯著提高了水分利用效率和生物積累量[80]。為了提高橄欖對逆境的承受能力,Rugini等[81]通過轉(zhuǎn)化滲透壓基因獲得了抗旱性較強(qiáng)的轉(zhuǎn)基因橄欖植株。
2.1.2 在果樹抗低溫脅迫中的應(yīng)用
低溫冷害會(huì)引起植物的光合作用、細(xì)胞膜流動(dòng)性及基礎(chǔ)代謝等降低,造成新梢、花芽及葉片的凍害損傷或死亡,嚴(yán)重影響果樹的正常生長發(fā)育及產(chǎn)量[82]。目前,藍(lán)莓抗寒性差與需冷量過高是其栽培推廣的主要限制因素,劉肖[83]篩選出與抗寒性、需冷量性狀相關(guān)的SNP標(biāo)記,并進(jìn)行雜交實(shí)生苗分子標(biāo)記輔助育種,最終篩選出2個(gè)抗寒性突出的雜交優(yōu)株和1個(gè)低需冷量的雜交優(yōu)株,該策略顯著提高了藍(lán)莓優(yōu)良品種選育效率。bHLH基因家族同樣在植物耐寒性中發(fā)揮重要作用,過表達(dá)PtrbHLH可增強(qiáng)檸檬在寒冷或冰凍溫度下的耐寒性,PtrbHLH基因的RNA沉默(RNAi)則會(huì)引起檸檬冷敏感性提高[84]。
2.1.3 在果樹抗高鹽脅迫中的應(yīng)用
土壤鹽漬化會(huì)引起土壤內(nèi)滲透脅迫離子增加,使果樹發(fā)生離子毒害、吸水困難、氧化脅迫等現(xiàn)象,進(jìn)而影響果樹生長和結(jié)果[85]。樊軍鋒等[86]利用mltD/gutD雙價(jià)耐鹽基因轉(zhuǎn)化獼猴桃的研究發(fā)現(xiàn),與對照株相比,轉(zhuǎn)化株耐鹽性得到顯著提高。孫寧等[87]通過誘變育種獲得蘋果砧木耐鹽變異系,并利用RAPD分子標(biāo)記技術(shù)對耐鹽突變體進(jìn)行分析,從DNA水平上揭示突變體與原品種之間的差異。此外,利用RAPD或AFLP標(biāo)記技術(shù)在柑橘[88]和檸檬[89]中檢測到與抗高鹽顯著相關(guān)的QTLs。DREB轉(zhuǎn)錄因子蛋白通過調(diào)節(jié)一系列下游靶基因的表達(dá)以調(diào)控抗逆反應(yīng),對新疆野蘋果DREB進(jìn)行功能分析,發(fā)現(xiàn)MsDREBA5和StDREB2都能提高轉(zhuǎn)基因擬南芥的抗高鹽能力[90-91],因此DREB基因也可能是抗鹽脅迫分子育種中重要的目標(biāo)基因。Yaish等[92]發(fā)現(xiàn)椰棗品種‘Khalas’中一些miRNA在高鹽脅迫下差異表達(dá),并進(jìn)一步分析確定了在高鹽條件下具有關(guān)鍵作用的miRNA及其靶標(biāo)基因。
2.2.1 在果樹抗病中的應(yīng)用
果樹病害主要由細(xì)菌、真菌等病原微生物或者病毒引起,如由黑腐皮殼菌侵染引起的蘋果腐爛病[93],由病毒侵染導(dǎo)致柑橘黃龍病和衰退病、葡萄的白粉病和霜霉病等,這些病害對果樹生產(chǎn)影響極大[94]。美國研究者已分離出番木瓜環(huán)斑病病毒外殼蛋白基因(PVR),并于1992年培育出抗病的番木瓜品種[95],1997年獲得美國國家環(huán)保局和國家食品與藥品管理局登記,1998年在美國商業(yè)化應(yīng)用[96]。隨后番木瓜環(huán)斑病病毒外殼蛋白基因(PVR)被成功導(dǎo)入歐洲李中,并獲得了抗病歐洲李[97]。李痘疫病毒外殼蛋白基因PPV-CP被成功克隆并構(gòu)建雙元載體,獲得了杏轉(zhuǎn)基因植株,可有效延緩轉(zhuǎn)基因植株病毒病癥狀的出現(xiàn)[98]。MdUGT88F1過表達(dá)蘋果植株中,根皮苷過量生長,促進(jìn)了病原菌的生長,導(dǎo)致植株抗病能力減弱;而MdUGT88F1-RNAi蘋果植株則表現(xiàn)為生長發(fā)育受抑制,抗病能力增強(qiáng)[99]。將歐洲葡萄VrERE基因?qū)氲蕉咸押蜕车仄咸央s交后代的植株中,VrERE活性顯著提高,而對照植株VrERE活性則被外源毒素抑制,表明VrERE基因轉(zhuǎn)化能有效提高葡萄抗毒性[100]。中國野生葡萄STS基因轉(zhuǎn)化到歐洲葡萄后,轉(zhuǎn)基因植株中白藜蘆醇含量與對照相比顯著增加,進(jìn)而提高了轉(zhuǎn)基因植株的抗病性[101]。環(huán)形抗菌肽基因或單獨(dú)線性抗菌肽基因轉(zhuǎn)化到歐洲葡萄后,轉(zhuǎn)基因植株對冠癭病和白粉病抗性均有所提高[102-104]。
將RNA沉默(RNAi)載體(包含李屬壞死環(huán)斑病毒的反向重復(fù)區(qū)域)轉(zhuǎn)化到櫻桃砧木中,可增強(qiáng)櫻桃砧木對病毒的抗性[105]。將柑橘衰退病毒(CTV)的外殼蛋白基因?qū)氲剿岢群湍鞲缢岢戎?,獲得了第一批轉(zhuǎn)基因植株。在甜橙品種菠蘿中首次用成熟組織作為受體,獲得了轉(zhuǎn)化植株[106]。利用綠色熒光蛋白(GFP)作為報(bào)告基因和Xa21基因(從水稻中獲得的Xanthomonas抗性基因)共轉(zhuǎn)導(dǎo)來提高柑橘潰瘍病抗性,得到了9個(gè)摩洛哥蜜橘(Citrassp.)轉(zhuǎn)基因品系中,其中WM-8品系始終耐受潰瘍病[107]。利用SNPs標(biāo)記對歐洲和亞洲梨的種間后代進(jìn)行基因分型并構(gòu)建圖譜,確定了7個(gè)QTLs與3種赤霉病病菌顯著關(guān)聯(lián),這些位點(diǎn)可用于增強(qiáng)梨抗病性[108]。在梨品種‘Pass Crassane’中過表達(dá)AttacinE基因,獲得了6種火疫病癥狀減輕的遺傳轉(zhuǎn)化品系[109]。
2.2.2 在果樹抗蟲害中的應(yīng)用
蟲害一直是制約農(nóng)業(yè)持續(xù)、穩(wěn)定和健康發(fā)展的主要因素,全世界每年因蟲害造成的損失高達(dá)數(shù)千億元,抗蟲性已被列為全球作物基因工程的主要目標(biāo)之一[110]。迄今為止,發(fā)現(xiàn)并應(yīng)用于提高植物抗蟲性的基因主要有兩類:一類是從細(xì)菌中分離的抗蟲基因,如蘇云金桿菌毒蛋白基因(Bacillusthuringiensis,Bt)、異戊基轉(zhuǎn)移酶基因(Isopentenyl transferase,IPT);另一類是從植物和動(dòng)物中分離出來的抗蟲基因,如外源凝集素基因(lectin)、蛋白酶抑制劑基因(Proteinasein hibitor,PI)、淀粉酶抑制劑基因(α-Amylase inhibitor,αAI)等。James等[111]將CrylA導(dǎo)入蘋果品種綠袖‘Greensleeves’中,并得到轉(zhuǎn)基因植株,這是首次將有用的外源目標(biāo)基因?qū)牍麡渲小T诟涕僦?,?yīng)用AFLP標(biāo)記技術(shù)已鑒定了與線蟲抗性顯著關(guān)聯(lián)的多個(gè)QTLs[112]。Yang等[113]成功地將GNA導(dǎo)入柑橘,此研究為柑橘等果樹抗蟲育種研究奠定了基礎(chǔ)。
2.2.3 在應(yīng)對全球氣候變化中的應(yīng)用
氣候條件是決定果樹生長發(fā)育的重要環(huán)境因子,隨著全球氣候變化的加劇,果樹的物候期、需冷量、果實(shí)品質(zhì)和產(chǎn)量等也相應(yīng)地受到影響[114-116]。研究表明,氣候變化直接影響植物物候[117-119],對果樹而言,物候期變化不僅會(huì)改變果樹的生長周期,同時(shí)還會(huì)改變果樹在生長過程中對光、溫、水資源及其他營養(yǎng)物質(zhì)的吸收和利用,進(jìn)而對果實(shí)產(chǎn)量和品質(zhì)產(chǎn)生影響[120-122]。目前,國內(nèi)外學(xué)者已開展大量關(guān)于氣候變化對果樹物候期影響的相關(guān)研究[123]。
我國北方地區(qū)大部分果樹品種的低溫需求量均較多,全球氣候變暖導(dǎo)致需冷量不足,使得難以達(dá)到果樹解除休眠所需的低溫,嚴(yán)重影響北方果樹的大面積發(fā)展[124-125]。此外,近幾年隨著保護(hù)地果樹的不斷發(fā)展,短低溫品種的需求更加迫切[126]。研究還發(fā)現(xiàn),開花植物通過調(diào)節(jié)花色以適應(yīng)生存環(huán)境溫度變化,這暗示全球氣候變暖可能影響開花植物花色[127]。CO2是引起全球氣候變暖的主要溫室氣體之一,生存環(huán)境中CO2濃度增加直接影響植物光合作用等生物過程,進(jìn)而影響植物的生長發(fā)育。在較高的CO2濃度條件下,果樹葉片光合適應(yīng)性隨著二磷酸核酮糖羧化酶蛋白濃度的下降而下調(diào)[128]。在提高CO2濃度條件下,新葉比老葉積累更多淀粉,表明新葉相對于老葉更能適應(yīng)高濃度CO2環(huán)境[129]。適當(dāng)提升CO2濃度可以提高桃產(chǎn)量、維生素C和可溶性糖含量[129]。
目前,有關(guān)氣候變化與果樹育種的研究,主要集中在氣候變化對果樹生產(chǎn)和品質(zhì)的影響,以及現(xiàn)有果樹品種對氣候變化適應(yīng)能力的比較分析,在蘋果[130]、葡萄[131]、柑橘[132]、椰子[132]、李[133]、扁桃[133]等果樹上已有研究報(bào)道,但利用分子育種技術(shù)來提高果樹氣候變化適應(yīng)能力的研究還鮮見報(bào)道。
果樹育種以實(shí)現(xiàn)果大豐產(chǎn)、高品質(zhì)、結(jié)果能力強(qiáng)、貯運(yùn)性能強(qiáng)、果實(shí)成熟期長、抗逆性強(qiáng)和適宜機(jī)械化采收等為目標(biāo)[134]。目前,我國果樹品種選育多采用傳統(tǒng)育種方法,難以實(shí)現(xiàn)對目標(biāo)性狀快速高效的改良選育。分子育種技術(shù)可大幅縮短果樹育種周期,實(shí)現(xiàn)性狀的定向改良。但與水稻、玉米、棉花等大田作物相比,我國果樹分子育種技術(shù)的研究和應(yīng)用較為滯后,加強(qiáng)分子生物學(xué)技術(shù)在果樹育種領(lǐng)域的研究應(yīng)用將是未來果樹育種的重要方向。此外,將分子育種技術(shù)與常規(guī)育種技術(shù)相結(jié)合,可提高育種全程篩選效率,有利于逐步建立經(jīng)濟(jì)、高效的果樹育種體系,為提高果樹育種效率提供技術(shù)支撐。
此外,隨著全球氣候變化的加劇,果樹原有優(yōu)良性狀難以維持。利用分子育種技術(shù),可提高果樹品種對環(huán)境變化的適應(yīng)能力,然而有關(guān)這方面的研究還鮮有報(bào)道。筆者建議,可將培育低溫需求較小、生長適應(yīng)范圍更廣的品種作為果樹育種的一個(gè)明確目標(biāo)。利用分子生物技術(shù)對果樹品種進(jìn)行定向遺傳改良,這也是增強(qiáng)果樹應(yīng)對氣候變化能力的有效策略之一[135]。
我國是果品生產(chǎn)和消費(fèi)大國,市場潛力大,消費(fèi)需求多樣。未來果樹育種研究和果樹新品種開發(fā)應(yīng)圍繞需求展開,現(xiàn)提出以下4點(diǎn)建議:第一,滿足不同人群和不同用途需求,培育多樣化、個(gè)性化的品種;第二,優(yōu)質(zhì)綠色安全是未來農(nóng)產(chǎn)品的發(fā)展方向,培育抗性好、適應(yīng)輕簡化、機(jī)械化栽培的品種將是未來果樹育種的重要方向;第三,充分利用果樹分子遺傳信息,在基因組、轉(zhuǎn)錄組或系統(tǒng)水平上全面分析基因功能,以揭示果樹生長發(fā)育調(diào)控網(wǎng)絡(luò)、環(huán)境應(yīng)答互作分子網(wǎng)絡(luò)、代謝網(wǎng)絡(luò)等分子機(jī)制,為果樹定向育種提供理論指導(dǎo);第四,結(jié)合現(xiàn)代生物學(xué)、農(nóng)業(yè)物聯(lián)網(wǎng)等各種技術(shù),提高育種效率,縮短新品種培育周期[5,136-137]。
參考文獻(xiàn)(reference):
[1]鄧秀新,束懷瑞,郝玉金,等.果樹學(xué)科百年發(fā)展回顧[J].農(nóng)學(xué)學(xué)報(bào),2018,8(1):24-34.DENG X X,SHU H R,HAO Y J,et al.Review on the centennial development of pomology in China[J].J Agric,2018,8(1):24-34.
[2]鄧秀新.關(guān)于我國水果產(chǎn)業(yè)發(fā)展若干問題的思考[J].果樹學(xué)報(bào),2021,38(1):121-127.DENG X X.Thoughts on the development of China’s fruit industry[J].J Fruit Sci,2021,38(1):121-127.DOI:10.13925/j.cnki.gsxb.20200509.
[3]龍興桂,馮殿齊,苑兆和.中國現(xiàn)代果樹栽培[M].北京:中國農(nóng)業(yè)出版社,2020.LONG X G,F(xiàn)ENG D Q,YUAN Z H.Modern fruit tree cultivation in China[M].Beijing:Chinese Agriculture Press,2020.
[4]陳學(xué)森,李秀根,毛志泉,等.新種質(zhì)創(chuàng)造支撐果品產(chǎn)業(yè)升級:紅肉蘋果和‘庫爾勒香梨’種質(zhì)資源利用以及‘紅富士’芽變選種案例分析[J].果樹學(xué)報(bào),2021,38(1):128-141.CHEN X S,LI X G,MAO Z Q,et al.Fruit industry upgrading supported by new germplasm creation:case study on the utilization of germplasm resources of red-fleshed apple and ‘Kuerlexiangli’ pear and the sports selection of ‘Red Fuji’[J].J Fruit Sci,2021,38(1):128-141.DOI:10.13925/j.cnki.gsxb.20200300.
[5]鄧秀新,王力榮,李紹華,等.果樹育種40年回顧與展望[J].果樹學(xué)報(bào),2019,36(4):514-520.DENG X X,WANG L R,LI S H,et al.Retrospection and prospect of fruit breeding for last four de-cades in China[J].J Fruit Sci,2019,36(4):514-520.DOI:10.13925/j.cnki.gsxb.20190094.
[6]YUE J,LIU J,TANG W,et al.Kiwifruit genome database (KGD):a comprehensive resource for kiwifruit genomics[J].Hortic Res,2020,7:117.DOI:10.1038/s41438-020-0338-9.
[7]李桂芬,楊向暉,喬燕春,等.枇杷屬植物種間及近緣屬雜交親和性研究[J].園藝學(xué)報(bào),2016,43(6):1069-1078.LI G F,YANG X H,QIAO Y C,et al.Study on interspecific and intergeneric hybridization compatibility ofEriobotryaand related genera[J].Acta Hortic Sin,2016,43(6):1069-1078.DOI:10.16420/j.issn.0513-353x.2016-0215.
[8]趙丹,王飛,趙秀明,等.柿屬部分品種雜交親和性以及結(jié)實(shí)性的研究[J].園藝學(xué)報(bào),2012,39(11):2229-2237.ZHAO D,WANG F,ZHAO X M,et al.Studies of cross compatibility and fecundity on part ofDiospyros[J].Acta Hortic Sin,2012,39(11):2229-2237.DOI:10.16420/j.issn.0513-353x.2012.11.017.
[9]JIA H M,JIA H J,CAI Q L,et al.The red bayberry genome and genetic basis of sex determination[J].Plant Biotechnol J,2019,17(2):397-409.DOI:10.1111/pbi.12985.
[10]高源,劉鳳之,曹玉芬,等.蘋果屬種質(zhì)資源親緣關(guān)系的SSR分析[J].果樹學(xué)報(bào),2007,24(2):129-134.GAO Y,LIU F Z,CAO Y F,et al.Analysis of genetic relationship forMalusgermplasm resources by SSR markers[J].J Fruit Sci,2007,24(2):129-134.
[11]韓振誠,潘學(xué)軍,安華明,等.貴州柿屬植物種質(zhì)資源遺傳多樣性的SRAP分析[J].果樹學(xué)報(bào),2015,32(5):751-762.HAN Z C,PAN X J,AN H M,et al.Genetic diversity ofDiospyrosLinn.in Guizhou based on SRAP[J].J Fruit Sci,2015,32(5):751-762.DOI:10.13925/j.cnki.gsxb.20150171.
[12]鐘敏,廖光聯(lián),李章云,等.野生毛花獼猴桃雄花花器性狀及SSR遺傳多樣性研究[J].果樹學(xué)報(bào),2018,35(6):658-667.ZHONG M,LIAO G L,LI Z Y,et al.Genetic diversity of wild male kiwifruit (ActinidiaerianthaBenth.) germplasms based on SSR and morphological markers[J].J Fruit Sci,2018,35(6):658-667.DOI:10.13925/j.cnki.gsxb.20170514.
[13]夏溪,奉樹成,張春英.新型分子生物學(xué)技術(shù)在花卉定向育種中的應(yīng)用進(jìn)展[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,43(6):173-180.XIA X,F(xiàn)ENG S C,ZHANG C Y.Advance in flower directive breeding using new molecular biology techniques[J].J Nanjing For Univ (Nat Sci Ed),2019,43(6):173-180.DOI:10.3969/j.issn.1000-2006.201902014.
[14]DING Y,LI H,CHEN L L,et al.Recent advances in genome editing using CRISPR/Cas9[J].Front Plant Sci,2016,7:703.DOI:10.3389/fpls.2016.00703.
[15]WEI Z Z,SUN Z Z,CUI B B,et al.Transcriptome analysis of coloredCallalily (ZantedeschiarehmanniiEngl.) by Illumina sequencing:de novo assembly,annotation and EST-SSR marker development[J].Peer J,2016,4:e2378.DOI:10.7717/peerj.2378.
[16]CHEN M X,SUN C,ZHANG K L,et al.SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant[J].BMC Plant Biol,2019,19(1):445.DOI:10.1186/s12870-019-2018-1.
[17]ZHAO G,LIAN Q,ZHANG Z,et al.A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits[J].Nat Genet,2019,51(11):1607-1615.DOI:10.1038/s41588-019-0522-8.
[18]DIXON R A,STEELE C L.Flavonoids and isoflavonoids:a gold mine for metabolic engineering[J].Trends Plant Sci,1999,4(10):394-400.DOI:10.1016/s1360-1385(99)01471-5.
[19]PETRONI K,TONELLI C.Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J].Plant Sci,2011,181(3):219-229.DOI:10.1016/j.plantsci.2011.05.009.
[20]TAKOS A M,JAFFé F W,JACOB S R,et al.Light-induced expression of aMYBgene regulates anthocyanin biosynthesis in red apples[J].Plant Physiol,2006,142(3):1216-1232.DOI:10.1104/pp.106.088104.
[21]ESPLEY R V,HELLENS R P,PUTTERILL J,et al.Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J].Plant J,2007,49(3):414-427.DOI:10.1111/j.1365-313x.2006.02964.x.
[22]BAN Y,HONDA C,HATSUYAMA Y,et al.Isolation and functional analysis of aMYBtranscription factor gene that is a key regulator for the development of red coloration in apple skin[J].Plant Cell Physiol,2007,48(7):958-970.DOI:10.1093/pcp/pcm066.
[23]KOBAYASHI S.Retrotransposon-induced mutations in grape skin color[J].Science,2004,304(5673):982.DOI:10.1126/science.1095011.
[24]DELUC L,BARRIEU F,MARCHIVE C,et al.Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J].Plant Physiol,2006,140(2):499-511.DOI:10.1104/pp.105.067231.
[25]DELUC L,BOGS J,WALKER A R,et al.The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J].Plant Physiol,2008,147(4):2041-2053.DOI:10.1104/pp.108.118919.
[26]RAHIM M A,BUSATTO N,TRAINOTTI L.Regulation of anthocyanin biosynthesis in peach fruits[J].Planta,2014,240(5):913-929.DOI:10.1007/s00425-014-2078-2.
[27]YAO G,MING M,ALLAN A C,et al.Map-based cloning of the pear geneMYB114identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis[J].Plant J,2017,92(3):437-451.DOI:10.1111/tpj.13666.
[28]VIMOLMANGKANG S,HAN Y,WEI G,et al.An apple MYB transcription factor,MdMYB3,is involved in regulation of anthocyanin biosynthesis and flower development[J].BMC Plant Biol,2013,13:176.DOI:10.1186/1471-2229-13-176.
[29]CHAGNé D,KUI L W,ESPLEY R V,et al.An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes[J].Plant Physiol,2013,161(1):225-239.DOI:10.1104/pp.112.206771.
[30]SHEN X,ZHAO K,LIU L,et al.A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv.Hong Deng (PrunusaviumL.)[J].Plant Cell Physiol,2014,55(5):862-880.DOI:10.1093/pcp/pcu013.
[31]FENG S,WANG Y,YANG S,et al.Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J].Planta,2010,232(1):245-255.DOI:10.1007/s00425-010-1170-5.
[32]DIRLEWANGER E,PRONIER V,PARVERY C,et al.Genetic linkage map of peach [Prunuspersica(L.) Batsch]using morphological and molecular markers[J].Theor Appl Genet,1998,97(5/6):888-895.DOI:10.1007/s001220050969.
[33]DIRLEWANGER E,COSSON P,BOUDEHRI K,et al.Development of a second-generation genetic linkage map for peach[Prunuspersica(L.) Batsch]and characterization of morphological traits affecting flower and fruit[J].Tree Genet Genomes,2006,3(1):1-13.DOI:10.1007/s11295-006-0053-1.
[34]SU L,BASSA C,AUDRAN C,et al.The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[J].Plant Cell Physiol,2014,55(11):1969-1976.DOI:10.1093/pcp/pcu124.
[35]TELLO J,TORRES-PéREZ R,GRIMPLET J,et al.Polymorphisms and minihaplotypes in theVvNAC26 gene associate with berry size variation in grapevine[J].BMC Plant Biol,2015,15:253.DOI:10.1186/s12870-015-0622-2.
[36]QI X L,LIU C L,SONG L L,et al.PaCYP78A9,a cytochrome P450,regulates fruit size in sweet cherry (PrunusaviumL.)[J].Front Plant Sci,2017,8:2076.DOI:10.3389/fpls.2017.02076.
[37]ROSYARA U R,BINK M C A M,WEG E,et al.Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry[J].Mol Breed,2013,32(4):875-887.DOI:10.1007/s11032-013-9916-y.
[38]DE FRANCESCHI P,STEGMEIR T,CABRERA A,et al.Cell number regulator genes inPrunusprovide candidate genes for the control of fruit size in sweet and sour cherry[J].Mol Breed,2013,32:311-326.DOI:10.1007/s11032-013-9872-6.
[39]ETIENNE A,GéNARD M,LOBIT P,et al.What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J].J Exp Bot,2013,64(6):1451-1469.DOI:10.1093/jxb/ert035.
[40]LI S J,YIN X R,XIE X L,et al.TheCitrustranscription factor,CitERF13,regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump,CitVHA-c4[J].Sci Rep,2016,6:20151.DOI:10.1038/srep20151.
[41]HU D G,SUN C H,MA Q J,et al.MdMYB1regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J].Plant Physiol,2016,170(3):1315-1330.DOI:10.1104/pp.15.01333.
[42]HU D G,SUN C H,SUN M H,et al.MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple[J].Plant Cell Rep,2016,35(3):705-718.DOI:10.1007/s00299-015-1914-6.
[43]WANG Y P,CHEN J W,F(xiàn)ENG J J,et al.Overexpression of a loquat (EriobotryajaponicaLindl.) vacuolar invertase affects sucrose levels and growth[J].Plant Cell Tissue Organ Cult (PCTOC),2015,123(1):99-108.DOI:10.1007/s11240-015-0817-0.
[44]NISHAWY E,SUN X H,EWAS M,et al.Overexpression ofCitrusgrandisDREB gene in tomato affects fruit size and accumulation of primary metabolites[J].Sci Hortic,2015,192:460-467.DOI:10.1016/j.scienta.2015.06.035.
[45]LI S J,YIN X R,WANG W L,et al.CitrusCitNAC62 cooperates with CitWRKY1to participate in citric acid degradation via up-regulation of CitAco3[J].J Exp Bot,2017,68(13):3419-3426.DOI:10.1093/jxb/erx187.
[46]HU D G,LI Y Y,ZHANG Q Y,et al.The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple[J].Plant J,2017,91(3):443-454.DOI:10.1111/tpj.13579.
[47]YAO Y X,LI M,ZHAI H,et al.Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis[J].J Plant Physiol,2011,168(5):474-480.DOI:10.1016/j.jplph.2010.08.008.
[48]PEACE C P,CRISOSTO C H,GRADZIEL T M.Endopolygalacturonase:a candidate gene for freestone and melting fleshin peach[J].Mol Breed,2005,16(1):21-31.DOI:10.1007/s11032-005-0828-3.
[49]MORGUTTI S,NEGRINI N,GHIANI A,et al.Endopolygalacturonasegene polymorphisms:asset of the locus in different peach accessions[J].Am J Plant Sci,2017,8(4):941-957.DOI:10.4236/ajps.2017.84063.
[50]COSTA F,WEG W E,STELLA S,et al.Map position and functional allelic diversity of Md-Exp7,a new putative expansin gene associated with fruit softening in apple (Malus×domesticaBorkh.) and pear (Pyruscommunis)[J].Tree Genet Genomes,2008,4(3):575-586.DOI:10.1007/s11295-008-0133-5.
[51]TATSUKI M,NAKAJIMA N,F(xiàn)UJII H,et al.Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (PrunuspersicaL.Batsch)[J].J Exp Bot,2013,64(4):1049-1059.DOI:10.1093/jxb/ers381.
[52]張宗營.‘泰山早霞’蘋果(MalusdomesticaBorkh.)果實(shí)成熟軟化相關(guān)基因的分離與功能鑒定[D].泰安:山東農(nóng)業(yè)大學(xué),2016.ZHANG Z Y.Isolation and function characterization of genes associated with fruit ripening and softening in ‘Taishanzaoxia’ apple(MalusdomesticaBorkh.)[D].Taian:Shandong Agricultural University,2016.
[53]LI M,ZHANG Y,ZHANG Z,et al.Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence[J].PLoS One,2013,8(3):e58745.DOI:10.1371/journal.pone.0058745.
[54]HAYAMA H,TATSUKI M,ITO A,et al.Ethylene and fruit softe-ning in the stony hard mutation in peach[J].Postharvest Biol Technol,2006,41(1):16-21.DOI:10.1016/j.postharvbio.2006.03.006.
[56]ZHANG E P,CHAI F M,ZHANG H H,et al.Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp[J].Food Chem,2017,237:379-389.DOI:10.1016/j.foodchem.2017.05.127.
[57]LüCKER J,SCHWAB W,VAN HAUTUM B,et al.Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon[J].Plant Physiol,2004,134(1):510-519.DOI:10.1104/pp.103.030189.
[58]SHEN S L,YIN X R,ZHANG B,et al.CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange[J].J Exp Bot,2016,67(14):4105-4115.DOI:10.1093/jxb/erw189.
[60]王嬌嬌,黃玉吉,張波,等.桃果實(shí)PpFAD2基因的功能研究[C]//中國園藝學(xué)會(huì).2015年學(xué)術(shù)年會(huì)論文集.廈門,2015:27.
[61]JAAKOLA L.New insights into the regulation of anthocyanin biosynthesis in fruits[J].Trends Plant Sci,2013,18(9):477-483.DOI:10.1016/j.tplants.2013.06.003.
[62]GAFRIKOVA M,GALOVA E,SEVCOVICOVA A,et al.Extract fromArmoraciarusticanaand its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide[J].Molecules,2014,19(3):3160-3172.DOI:10.3390/molecules19033160.
[63]BATRA P,SHARMA A K.Anti-cancer potential of flavonoids:recent trends and future perspectives[J].3 Biotech,2013,3(6):439-459.DOI:10.1007/s13205-013-0117-5.
[64]CZEMMEL S,STRACKE R,WEISSHAAR B,et al.The grapevine R2R3-MYB transcription factor VvMYBF1regulates flavonol synthesis in developing grape berries[J].Plant Physiol,2009,151(3):1513-1530.DOI:10.1104/pp.109.142059.
[65]孫慶國,姜生輝,房鴻成,等.蘋果MdNAC9的克隆及其調(diào)控黃酮醇合成功能的鑒定[J].園藝學(xué)報(bào),2019,46(11):2073-2081.SUN Q G,JIANG S H,F(xiàn)ANG H C,et al.Cloning ofMdNAC9 and functional of its regulation on flavonol synthesis[J].Acta Hortic Sin,2019,46(11):2073-2081.DOI:10.16420/j.issn.0513-353x.2018-1070.
[66]ZAKAR T,LACZKO-DOBOS H,TOTH T N,et al.Carotenoids assist in cyanobacterial photosystem II assembly and function[J].Front Plant Sci,2016,7:295.DOI:10.3389/fpls.2016.00295.
[67]張印,萬勇,張婷,等.柑橘愈傷組織RNAi沉默CCD1基因?qū)ζ漕惡}卜素積累的影響[J].園藝學(xué)報(bào),2020,47(10):1982-1990.ZHANG Y,WAN Y,ZHANG T,et al.RNAi-mediated suppression ofCCD1 gene impacts carotenoid accumulation in citrus calli[J].Acta Hortic Sin,2020,47(10):1982-1990.DOI:10.16420/j.issn.0513-353x.2019-1007.
[68]洪敏,石絲,何珊珊,等.VIGS誘導(dǎo)PSY基因沉默對枇杷果實(shí)類胡蘿卜素積累的影響[J].分子植物育種,2018,16(6):1792-1797.HONG M,SHI S,HE S S,et al.Effects of VIGS inducedPSYgene silencing on carotenoid accumulation in fruit ofEriobotryajaponicaLindl[J].Mol Plant Breed,2018,16(6):1792-1797.DOI:10.13271/j.mpb.016.001792.
[69]WEI T,DENG K J,LIU D Q,et al.Ectopic expression of DREB transcription factor,AtDREB1A,confers tolerance to drought in transgenicSalviamiltiorrhiza[J].Plant Cell Physiol,2016,57(8):1593-1609.DOI:10.1093/pcp/pcw084.
[70]NISHAWY E,SUN X H,EWAS M,et al.Over expression ofCitrusgrandisDREB gene in tomato affects fruit size and accumulation of primary metabolites[J].Sci Hortic,2015,192:460-467.DOI:10.1016/j.scienta.2015.06.035.
[71]裴慶利,王春連,劉丕慶,等.分子標(biāo)記輔助選擇在水稻抗病蟲基因聚合上的應(yīng)用[J].中國水稻科學(xué),2011(2):119-129.PEI Q L,WANG C L,LIU P Q,et al.Marker-assisted selection for pyramiding disease and insect resistance genes in rice[J].Chin J Rice Sci,2011,25(2):119-129.
[72]李君霞,代書桃,陳宇翔,等.MYB轉(zhuǎn)錄因子在植物抗旱基因工程中的應(yīng)用進(jìn)展[J].河南農(nóng)業(yè)科學(xué),2020,49(11):1-9.LI J X,DAI S T,CHEN Y X,et al.Progress on application of MYB transcription factor in plant drought tolerance genetic engineering[J].J Henan Agric Sci,2020,49(11):1-9.DOI:10.15933/j.cnki.1004-3268.2020.11.001.
[73]GUBLER F,KALLA R,ROBERTS J K,et al.Gibberellin-regulated expression of amybgene in barley aleurone cells:evidence for Myb transactivation of a high-pI alpha-amylase gene promoter[J].Plant Cell,1995,7(11):1879-1891.DOI:10.1105/tpc.7.11.1879.
[74]LI M J,QIAO Y,LI Y Q,et al.A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenicArabidopsis[J].J Plant Res,2016,129(6):1097-1107.DOI:10.1007/s10265-016-0857-5.
[75]QIN Y X,WANG M C,TIAN Y C,et al.Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance inArabidopsis[J].Mol Biol Rep,2012,39(6):7183-7192.DOI:10.1007/s11033-012-1550-y.
[76]ZHANG L,ZHAO G,XIA C,et al.A wheat R2R3-MYB gene,TaMYB30-B,improves drought stress tolerance in transgenicArabidopsis[J].J Exp Bot,2012,63(16):5873-5885.DOI:10.1093/jxb/ers237.
[77]YU Y T,WU Z,LU K,et al.Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity,and improves both drought tolerance and seed productivity inArabidopsisthaliana[J].Plant Mol Biol,2016,90(3):267-279.DOI:10.1007/s11103-015-0411-1.
[78]LI K,XING C,YAO Z,et al.PbrMYB21,a novel MYB protein ofPyrusbetulaefolia,functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene[J].Plant Biotechnol J,2017,15(9):1186-1203.DOI:10.1111/pbi.12708.
[79]SHUKLA P S,GUPTA K,AGARWAL P,et al.Overexpression of a novel SbMYB15 fromSalicorniabrachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco[J].Planta,2015,242(6):1291-1308.DOI:10.1007/s00425-015-2366-5.
[80]GUO T L,WANG N,XUE Y C,et al.Overexpression of the RNA binding protein MhYTP1 in transgenic apple enhances drought tolerance and WUE by improving ABA level under drought condition[J].Plant Sci,2019,280:397-407.DOI:10.1016/j.plantsci.2018.11.018.
[81]RUGINI E,DE PACE C.Olive breeding with classical and modern approaches Olive Tree Genome,2016:163-193.DOI:10.1007/978-3-319-48887-5_10.
[82]烏鳳章,王賀新,徐國輝,等.木本植物低溫脅迫生理及分子機(jī)制研究進(jìn)展[J].林業(yè)科學(xué),2015,51(7):116-128.WU F Z,WANG H X,XU G H,et al.Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J].Sci Silvae Sin,2015,51(7):116-128.
[83]劉肖.藍(lán)莓抗寒性、需冷量SNP分析與分子輔助育種研究[D].北京:北京林業(yè)大學(xué),2013.LIU X.Study on molecular marker-assisted breeding with single nucleotide polymorphisms linked to cold hardiness and chilling requirement in blueberry[D].Beijing:Beijing Forestry University,2013.
[84]HUANG X S,WANG W,ZHANG Q,et al.A basic helix-loop-helix transcription factor,PtrbHLH,ofPoncirustrifoliataconfers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide[J].Plant Physiol,2013,162(2):1178-1194.DOI:10.1104/pp.112.210740.
[85]LIU C Y,YAN M,HUANG X B, et al.Effects of NaCl stress on growth and ion homeostasis in pomegranate tissues[J].Eur J Hortic Sci,2020,85(1):42-50.DOI:10.17660/ejhs.2020/85.1.5.
[86]樊軍鋒,李嘉瑞,韓一凡,等.mtlD/gutD雙價(jià)耐鹽基因轉(zhuǎn)化秦美獼猴桃的研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2002,30(3):53-58.FAN J F,LI J R,HAN Y F,et al.Studies on transformation ofmtlD/gutDsalt-resistant gene to Kiwifruit(Qin-mei)[J].J Northwest Sci-Tech Univ Agric For,2002,30(3):53-58. DOI:10.13207/j.cnki.jnwafu.2002.03.014.
[87]孫寧,孫建設(shè),李增裕.蘋果砧木耐鹽突變體的篩選鑒定及RAPD分析[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,27(5):37-40.SUN N,SUN J S,LI Z Y.Salt tolerant mutant screening and RAPD analysis studies on apple rootstock[J].J Agric Univ Hebei,2004,27(5):37-40.
[88]MOORE G A,GUY C L,TOZLU I,et al.Mapping quantitative trait loci for salt tolerance and cold tolerance inCitrusgrandis(L.) osb.×Poncirustrifoliata(L.) raf.hybrid populations[J].Acta Hortic,2000(535):37-46.DOI:10.17660/actahortic.2000.535.3.
[89]TOZLU I,GUY C L,MOORE G A.QTL analysis of Na+and Cl-accumulation related traits in an intergeneric BC1progeny ofCitrusandPoncirusunder saline and nonsaline environments[J].Genome,1999,42(4):692-705.DOI:10.1139/g99-003.
[90]ZHAO K,SHEN X,YUAN H,et al.Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) fromMalussieversiiRoem[J].Plant Cell Physiol,2013,54(9):1415-1430.DOI:10.1093/pcp/pct087.
[91]BOUAZIZ D,PIRRELLO J,BEN AMOR H,et al.Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato[J].Plant Physiol Biochem,2012,60:98-108.DOI:10.1016/j.plaphy.2012.07.029.
[92]YAISH M W,SUNKAR R,ZHENG Y,et al.A genome-wide identification of the miRNAome in response to salinity stress in date palm (PhoenixdactyliferaL.)[J].Front Plant Sci,2015,6:946.DOI:10.3389/fpls.2015.00946.
[93]郭寶強(qiáng).蘋果樹腐爛病防治技術(shù)要點(diǎn)[J].農(nóng)業(yè)工程技術(shù),2019,39(35):48.GUO B Q.Key points of controlling apple tree rot disease[J].Agric Eng Technol,2019,39(35):48.DOI:10.16815/j.cnki.11-5436/s.2019.35.036.
[94]蔣迪,徐昌杰,陳大明,等.柑橘轉(zhuǎn)基因研究的現(xiàn)狀及展望[J].果樹學(xué)報(bào),2002,19(1):48-52.JIANG D,XU C J,CHEN D M,et al.Status and prospect of research inCitrustransgene[J].J Fruit Sci,2002,19(1):48-52.DOI:10.13925/j.cnki.gsxb.2002.01.013.
[95]FITCH M M M,MANSHARDT R M,GONSALVES D,et al.Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus[J].Bio/Technology,1992,10(11):1466-1472.DOI:10.1038/nbt1192-1466.
[96]李亞新.首例商品化的轉(zhuǎn)基因果樹:番木瓜[J].園藝學(xué)報(bào),2000,27(1):51.LI Y X.The first commercialized genetically modified fruit tree: papaya[J].Acta Hortic Sin,2000,27(1):51.
[97]SCORZA R,CORDTS J M,MANTE S,et al. Agrobacterium-media-ted transformation of plum (PrunusdomesticaL.) with the papaya ringspot virus coat protein gene[J]. HortScience, 1991,26(6): 786-786.
[99]ZHOU K,HU L,LI Y,et al.MdUGT88F1-mediated phloridzin biosynthesis regulates apple development andValsacanker resis-tance[J].Plant Physiol,2019,180(4):2290-2305.DOI:10.1104/pp.19.00494.
[100]LEGRAND V,DALMAYRAC S,LATCHé A,et al.Constitutive expression ofVr-EREgene in transformed grapevines confers enhanced resistance to eutypine,a toxin fromEutypalata[J].Plant Sci,2003,164(5):809-814.DOI:10.1016/S0168-9452(03)00069-4.
[101]FAN C H,PU N,WANG X P,et al.Agrobacterium-mediated genetic transformation of grapevine (VitisviniferaL.) with a novel stilbene synthase gene from Chinese wildVitispseudoreticulata[J].Plant Cell Tissue Organ Cult,2008,92(2):197-206.DOI:10.1007/s11240-007-9324-2.
[102]VIDAL J R,KIKKERT J R,DONZELLI B D,et al.Biolistic transformation of grapevine using minimal gene cassette technology[J].Plant Cell Rep,2006,25(8):807-814.DOI:10.1007/s00299-006-0132-7.
[103]VIDAL J R,KIKKERT J R,MALNOY M A,et al.Evaluation of transgenic ‘Chardonnay’ (Vitisvinifera) containing Magainin genes for resistance to crown gall and powdery mildew[J].Transgenic Res,2006,15(1):69-82.DOI:10.1007/s11248-005-4423-5.
[104]VIDAL J R,KIKKERT J R,WALLACE P G,et al.High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (VitisviniferaL.) containing npt-II and antimicrobial peptide genes[J].Plant Cell Rep,2003,22(4):252-260.DOI:10.1007/s00299-003-0682-x.
[105]SONG G Q,SINK K C,WALWORTH A E,et al.Engineering cherry rootstocks with resistance toPrunusnecrotic ring spot virus through RNAi-mediated silencing[J].Plant Biotechnol J,2013,11(6):702-708.DOI:10.1111/pbi.12060.
[106]MACHADO M A,CRISTOFANI-YALY M,BASTIANEL M.Breeding,genetic and genomic ofCitrusfor disease resistance[J].Rev Bras Frutic,2011,33(spe1):158-172.DOI:10.1590/s0100-29452011000500019.
[107]OMAR A A,MURATA M M,EL-SHAMY H A,et al.Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice[J].Transgenic Res,2018,27(2):179-191.DOI:10.1007/s11248-018-0065-2.
[108]WON K,BASTIAANSE H,KIM Y K,et al.Genetic mapping of polygenic scab (Venturiapirina) resistance in an interspecific pear family[J].Mol Breed,2014,34(4):2179-2189.DOI:10.1007/s11032-014-0172-6.
[109]REYNOIRD J P,MOURGUES F,NORELLI J,et al.First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene fromHyalophoracecropia[J].Plant Sci,1999,149(1):23-31.DOI:10.1016/S0168-9452(99)00139-9.
[110]李夢桃,李圣彥,汪海,等.轉(zhuǎn)cry2Ah-vp基因玉米的抗蟲性鑒定[J].植物保護(hù)學(xué)報(bào),2020,47(1):74-83.LI M T,LI S Y,WANG H,et al.Identification of insect resistance in the transgenic maize harboringcry2Ah-vpgene[J].J Plant Prot,2020,47(1):74-83.DOI:10.13802/j.cnki.zwbhxb.2020.2019043.
[111]JAMES D J,PASSEY A J,WEBSTER A D,et al. Transgenic apples and strawberries: advances in transformation,introduction of genes for insect resistance and field studies of tissue cultured plants[J]. Acta Hortic, 1993,336: 179-184. DOI: 10.17660/ActaHortic.1993.336.22.
[112]LING P,DUNCAN L W,DENG Z,et al.Inheritance ofCitrusnematode resistance and its linkage with molecular markers[J].Theor Appl Genet,2000,100(7):1010-1017.DOI:10.1007/s001220051382.
[113]YANG Z N,INGELBRECHT I L,LOUZADA E,et al.Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (CitrusparadisiMacf.)[J].Plant Cell Rep,2000,19(12):1203-1211.DOI:10.1007/s002990000257.
[115]CECCARELLI S,GRANDO S,MAATOUGUI M,et al.Plant breeding and climate changes[J].J Agric Sci,2010,148(6):627-637.DOI:10.1017/s0021859610000651.
[116]OLESEN J E,B?RGESEN C D,ELSGAARD L,et al.Changes in time of sowing,flowering and maturity of cereals in Europe under climate change[J].Food Addit Contam:Part A,2012,29(10):1527-1542.DOI:10.1080/19440049.2012.712060.
[117]CAMPOY J A,RUIZ D,EGEA J.Dormancy in temperate fruit trees in a global warming context:a review[J].Sci Hortic,2011,130(2):357-372.DOI:10.1016/j.scienta.2011.07.011.
[118]蔡榕碩,付迪.全球變暖背景下中國東部氣候變遷及其對物候的影響[J].大氣科學(xué),2018,42(4):729-740.CAI R S,F(xiàn)U D.The pace of climate change and its impacts on phenology in eastern China[J].Chin J Atmos Sci,2018,42(4):729-740.
[119]鄭景云,葛全勝,郝志新,等.過去150年長三角地區(qū)的春季物候變化[J].地理學(xué)報(bào),2012,67(1):45-52.ZHENG J Y,GE Q S,HAO Z X,et al.Changes of spring phenodate in Yangtze River Delta region in the past 150 years[J].Acta Geogr Sin,2012,67(1):45-52.
[120]TAO F L,YOKOZAWA M,XU Y L,et al.Climate changes and trends in phenology and yields of field crops in China,1981-2000[J].Agric For Meteorol,2006,138(1/2/3/4):82-92.DOI:10.1016/j.agrformet.2006.03.014.
[121]郭建平.氣候變化對中國農(nóng)業(yè)生產(chǎn)的影響研究進(jìn)展[J].應(yīng)用氣象學(xué)報(bào),2015,26(1):1-11.GUO J P.Advances in impacts of climate change on agricultural production in China[J].J Appl Meteorol Sci,2015,26(1):1-11.
[122]劉玉潔,陳巧敏,葛全勝,等.氣候變化背景下1981—2010中國小麥物候變化時(shí)空分異[J].中國科學(xué):地球科學(xué),2018,48(7):888-898.LIU Y J,CHEN Q M,GE Q S,et al.Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010[J].Sci Sin (Terrae),2018,48(7):888-898.
[123]LEGAVE J M,BLANKE M,CHRISTEN D,et al.A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in western Europe[J].Int J Biometeorol,2013,57(2):317-331.DOI:10.1007/s00484-012-0551-9.
[124]王力榮,朱更瑞,左覃元,等.短低溫桃和油桃育種進(jìn)展[J].果樹科學(xué),2000,17(1):57-62.WANG L R,ZHU G R,ZUO Q Y,et al.Reviews of low chilling peach and nectarine breeding[J].J Fruit Sci,2000,17(1):57-62. DOI:10.13925/j.cnki.gsxb.2000.01.014.
[125]趙鋒,劉威生,劉寧,等.我國杏種質(zhì)資源及遺傳育種研究新進(jìn)展[J].果樹學(xué)報(bào),2005,22(6):687-690. ZHAO F,LIU W S,LIU N,et al.Reviews of the apricot germplasm resources and genetic breeding in China[J].J Fruit Sci,2005,22(6):687-690.
[126]郁香荷,劉威生,劉寧,等.杏溫室栽培品種選擇及配套技術(shù)研究[J].果樹學(xué)報(bào),2004,21(1):76-78.YU X H,LIU W S,LIU N,et al.Varieties and techniques of cultivation of apricot in greenhouse[J].J Fruit Sci,2004,21(1):76-78.
[127]KOSKI M H,MACQUEEN D,ASHMAN T L.Floral pigmentation has responded rapidly to global change in ozone and temperature[J].Curr Biol,2020,30(22):4425-4431.DOI:10.1016/j.cub.2020.08.077.
[128]VU J C V,NEWMAN Y C,ALLEN L H Jr,et al.Photosynthetic acclimation of young sweet orange trees to elevated growth CO2and temperature[J].J Plant Physiol,2002,159(2):147-157.DOI:10.1078/0176-1617-00689.
[129]侯新村,李憲利,高東升,等.CO2施肥對桃樹暗呼吸和光呼吸的影響[J].果樹學(xué)報(bào),2005,22(5):466-469.HOU X C,LI X L,GAO D S,et al.Effect of CO2enrichment on respiration and photorespiration of peach trees[J].J Fruit Sci,2005,22(5):466-469.
[130]EL YAACOUBI A,EL JAOUHARI N,BOURIOUG M,et al.Potential vulnerability of moroccan apple orchard to climate change-induced phenological perturbations:effects on yields and fruit quality[J].Int J Biometeorol,2020,64(3):377-387.DOI:10.1007/s00484-019-01821-y.
[131]BIGARD A,BERHE D T,MAODDI E,et al.VitisviniferaL.fruit diversity to breed varieties anticipating climate changes[J].Front Plant Sci,2018,9:455.DOI:10.3389/fpls.2018.00455.
[132]Al-KHAYRI J M,JAIN S M,JOHNSON D V. Advances in plant breeding strategies: fruits[M]. Spr Int Publing AG, 2018.
[133]GITEA M A,GITEA D,TIT D M,et al. Orchard management under the effects of climate change: implications for apple,plum,and almond growing[J]. Environ Sci Pollut Res, 2019,26: 9908-9915. DOI: 10.1007/s11356-019-04214-1.
[134]李明,劉聰利,齊希梁,等.中國甜櫻桃產(chǎn)業(yè)的品種現(xiàn)狀、需求特點(diǎn)與未來育種目標(biāo)[J].落葉果樹,2019,51(3):5-7.LI M,LIU C L,QI X L,et al.Current situation,demand characteristics and future breeding objectives of sweet cherry industry in China[J].Deciduous Fruits,2019,51(3):5-7.DOI:10.13855/j.cnki.lygs.2019.03.002.
[135]彭穎姝,高捍東,苑兆和.全球氣候變化對溫帶果樹的影響[J].中國農(nóng)業(yè)科技導(dǎo)報(bào),2018,20(7):1-10.PENG Y S,GAO H D,YUAN Z H.Impact of global climate change on temperate fruit tree[J].J Agric Sci Technol,2018,20(7):1-10.DOI:10.13304/j.nykjdb.2017.0463.
[136]束懷瑞.關(guān)于蘋果產(chǎn)業(yè)新動(dòng)能的幾點(diǎn)思考[J].落葉果樹,2018,50(2):1-2.SHU H R.Some thoughts on the new momentum of the apple industry[J].Deciduous Fruits,2018,50(2):1-2.DOI:10.13855/j.cnki.lygs.2018.02.001.
[137]馮軼,許雪峰,張新忠,等.蘋果矮化砧木致矮機(jī)理的研究進(jìn)展[J].園藝學(xué)報(bào),2018,45(9):1633-1641.FENG Y,XU X F,ZHANG X Z,et al.Progress of dwarfing mechanism of apple rootstock[J].Acta Hortic Sin,2018,45(9):1633-1641.DOI:10.16420/j.issn.0513-353x.2018-0384.