張晨光 丁煒東 曹哲明 邴旭文 徐暢 李良
摘要:【目的】從抗氧化酶和消化酶活性及熱休克蛋白基因表達層面明確高溫脅迫對翹嘴鱖(Siniperca chuatsi)幼魚生長及應激生理響應的影響,為實際生產(chǎn)中翹嘴鱖幼魚培育提供可靠的參考依據(jù)?!痉椒ā繉?月齡翹嘴鱖幼魚進行96 h的急性高溫脅迫,通過預試驗測試高起始致死溫度(96 h-UILT50),采用突變升溫方法設常溫對照組(26.0 ℃)和急性高溫脅迫組(36.0 ℃),分別于脅迫0、6、12、24、48和96 h后取樣,使用生化試劑盒測定抗氧化酶和消化酶活性,并以實時熒光定量PCR檢測熱休克蛋白基因(HSP70α和HSP90α)的表達情況?!窘Y(jié)果】翹嘴鱖幼魚死亡率隨水溫的升高不斷上升,其96 h-UILT50為36.22 ℃。在96 h的急性高溫脅迫過程中,翹嘴鱖幼魚肝臟超氧化物歧化酶(SOD)和過氧化氫酶(CAT)活性呈降低—升高—降低的變化趨勢,谷丙轉(zhuǎn)氨酶(GPT)活性及丙二醛(MDA)含量則表現(xiàn)出升高—降低—升高的變化趨勢;在消化酶方面,翹嘴鱖幼魚胃蛋白酶和腸道淀粉酶(AMS)活性呈降低—升高—降低的變化趨勢,而腸道脂肪酶(LPS)活性呈升高—降低—升高的變化趨勢。在急性高溫脅迫過程中,翹嘴鱖幼魚HSP70α基因相對表達量呈升高—下降的波動式變化趨勢,于脅迫12 h時達最高值,在脅迫48 h時出現(xiàn)第2個峰值;HSP90α基因表達呈先升高后降低的變化趨勢,于脅迫24 h時上調(diào)至最高值;但至脅迫96 h時HSP70α和HSP90α基因的相對表達量仍顯著高于對照組翹嘴鱖幼魚(P<0.05)?!窘Y(jié)論】急性高溫脅迫對翹嘴鱖幼魚抗氧化酶和消化酶活性及熱休克蛋白基因表達產(chǎn)生顯著影響。其中,熱休克蛋白基因HSP70α和HSP90α參與高溫脅迫應答過程的生理調(diào)節(jié),以應對高溫脅迫對肝臟細胞的損傷,故可作為高溫脅迫應答的標志物。
關鍵詞: 翹嘴鱖;高溫脅迫;抗氧化酶;消化酶;熱休克蛋白基因
中圖分類號: S965.127? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)03-0815-12
Effects of acute high temperature stress on antioxidant enzymes activity, digestive enzymes activity and gene expression of heat shock proteins in mandarin fish(Siniperca chuatsi)
ZHANG Chen-guang1, DING Wei-dong2, CAO Zhe-ming2, BING Xu-wen1,2*,
XU Chang1,2, LI Liang1,2
(1Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu? 214081, China; 2Fisheries Research
Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu? 214081, China)
Abstract:【Objective】The effects of high temperature stress on the growth and physiological response of juvenile mandarin fish(Siniperca chuatsi) were investigated from the aspects of antioxidant enzyme, digestive enzyme activities and heat shock protein family gene expression, which provided a reliable reference for the cultivation of juvenile S. chuatsi in practical production. 【Method】Two-month-old juvenile S. chuatsi was subjected to acute high temperature stress for 96 h. The high initial lethal temperature(96 h-UILT50) was measured by pre-test. The control group(26.0 ℃) and the acute high temperature stress group(36.0 ℃) were set by abrupt temperature rise method. Samples were taken at 0, 6, 12, 24, 48 and 96 h respectively after stress. Biochemistry kits were used to determine the activities of antioxidant and digestive enzymes, and real-time fluorescence quantitative PCR was used to detect the expression of heat shock protein family genes(HSP70α and HSP90α). 【Result】The mortality rate of juvenile S. chuatsi increased with the increase of water temperature, and its 96 h-UILT50 was 36.22 ℃. During the 96 h acute high temperature stress, the activities of superoxide dismutase(SOD) and catalase(CAT) in liver of S. chuatsi showed a decreasing, increasing and decreasing trend, while the activities of alanine aminotransferase(GPT) and the content of malondialdehyde(MDA) showed an increasing, decrea-sing and increasing trend.In terms of digestive enzymes, the activities of pepsin and intestinal amylase(AMS) of juvenile S. chuatsi showed a decreasing, increasing and decreasing trend, while the activities of intestinal lipase(LPS) showed an increasing, decreasing and increasing trend. In the process of acute heat stress, the relative expression of HSP70α gene in juvenile S. chuatsi showed a fluctuating trend of increasing to decreasing, and reached the highest value at 12 h of stress, and the second peak value appeared at 48 h of stress. The expression of HSP90α gene increased at first and then decreased, and reached the highest value at 24 h of stress. However, at 96 h of stress, HSP70α and HSP90α genes were still significantly higher than those of juvenile S. chuatsi in the control group(P<0.05). 【Conclusion】The activity of antioxidant enzyme, digestive enzyme and the expression of heat shock protein gene of juvenile S. chuatsiare significantly affec-ted by acute high temperature stress. Among them, heat shock protein genes HSP70α and HSP90α are involved in the phy-siological regulation of the response to high temperature stress to deal with the damage of liver cells under high temperature stress, so they can be used as markers of the response to high temperature stress.
Key words: Siniperca chuatsi; high temperature stress; antioxidant enzymes; digestive enzymes; heat shock protein gene
Foundation item: Jiangsu Agricultural Independent Innovation Fund Project[CX(17)3005]; Basic Research Pro-ject of Fisheries Research Center, Chinese Academy of Fishery Sciences(2019JBFZ01)
Effects of acute high temperature stress on antioxidant enzymes activity, digestive enzymes activity and gene expression of heat shock proteins in mandarin fish(Siniperca chuatsi)
ZHANG Chen-guang1, DING Wei-dong2, CAO Zhe-ming2, BING Xu-wen1,2*,
XU Chang1,2, LI Liang1,2
(1Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu? 214081, China; 2Fisheries Research
Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu? 214081, China)
Abstract:【Objective】The effects of high temperature stress on the growth and physiological response of juvenile mandarin fish(Siniperca chuatsi) were investigated from the aspects of antioxidant enzyme, digestive enzyme activities and heat shock protein family gene expression, which provided a reliable reference for the cultivation of juvenile S. chuatsi in practical production. 【Method】Two-month-old juvenile S. chuatsi was subjected to acute high temperature stress for 96 h. The high initial lethal temperature(96 h-UILT50) was measured by pre-test. The control group(26.0 ℃) and the acute high temperature stress group(36.0 ℃) were set by abrupt temperature rise method. Samples were taken at 0, 6, 12, 24, 48 and 96 h respectively after stress. Biochemistry kits were used to determine the activities of antioxidant and digestive enzymes, and real-time fluorescence quantitative PCR was used to detect the expression of heat shock protein family genes(HSP70α and HSP90α). 【Result】The mortality rate of juvenile S. chuatsi increased with the increase of water temperature, and its 96 h-UILT50 was 36.22 ℃. During the 96 h acute high temperature stress, the activities of superoxide dismutase(SOD) and catalase(CAT) in liver of S. chuatsi showed a decreasing, increasing and decreasing trend, while the activities of alanine aminotransferase(GPT) and the content of malondialdehyde(MDA) showed an increasing, decrea-sing and increasing trend.In terms of digestive enzymes, the activities of pepsin and intestinal amylase(AMS) of juvenile S. chuatsi showed a decreasing, increasing and decreasing trend, while the activities of intestinal lipase(LPS) showed an increasing, decreasing and increasing trend. In the process of acute heat stress, the relative expression of HSP70α gene in juvenile S. chuatsi showed a fluctuating trend of increasing to decreasing, and reached the highest value at 12 h of stress, and the second peak value appeared at 48 h of stress. The expression of HSP90α gene increased at first and then decreased, and reached the highest value at 24 h of stress. However, at 96 h of stress, HSP70α and HSP90α genes were still significantly higher than those of juvenile S. chuatsi in the control group(P<0.05). 【Conclusion】The activity of antioxidant enzyme, digestive enzyme and the expression of heat shock protein gene of juvenile S. chuatsiare significantly affec-ted by acute high temperature stress. Among them, heat shock protein genes HSP70α and HSP90α are involved in the phy-siological regulation of the response to high temperature stress to deal with the damage of liver cells under high temperature stress, so they can be used as markers of the response to high temperature stress.
Key words: Siniperca chuatsi; high temperature stress; antioxidant enzymes; digestive enzymes; heat shock protein gene
Foundation item: Jiangsu Agricultural Independent Innovation Fund Project[CX(17)3005]; Basic Research Pro-ject of Fisheries Research Center, Chinese Academy of Fishery Sciences(2019JBFZ01)
0 引言
【研究意義】水溫是水產(chǎn)養(yǎng)殖過程中最重要的生態(tài)因子,水溫變化均直接影響魚類的生長、發(fā)育、攝食及代謝等生命活動(He et al.,2014)。高溫是導致多種魚類疾病產(chǎn)生的重要因素,尤其在有條件致病菌的環(huán)境條件下,當水溫持續(xù)升高至超過魚類耐受范圍時,可導致鰓、腸胃及肝臟等部位組織喪失生理功能,魚類體內(nèi)的抗氧化酶系統(tǒng)遭到損傷,呼吸、消化及排泄系統(tǒng)被破壞,進而影響機體的正常生理機能(Yanar et al.,2019)。雖然大多數(shù)魚類具備適應高溫的能力,但若長期處于高溫脅迫下,便會對魚類造成不可逆的損傷,而引發(fā)魚類疾病甚至造成死亡。因此,基于抗氧化酶和消化酶指標及熱休克蛋白相關基因表達趨勢,探討魚類對高溫的耐受程度,可為揭示高溫脅迫下魚體的應對機制提供理論依據(jù)?!厩叭搜芯窟M展】當魚類感受到水溫變化時,便刺激下丘腦—垂體—腎間組織軸(Hypothalamus-pitui-tary-interrenal axis,HPI)作用,通過增加呼吸量和代謝率而維持新陳代謝及其穩(wěn)態(tài);但水溫進一步升高超過其調(diào)節(jié)范圍時,則導致機體代謝紊亂甚至死亡(辛苑茹等,2019)。在銀鯧(Pampus argenteus)(謝明媚等,2015)、暗紋東方鲀(Takifugu obscurus)(Cheng et al.,2018)和葛氏鱸塘鱧(Perccottus glenii)(王博雅等,2020)等魚類中均發(fā)現(xiàn)高溫可引起抗氧化相關酶呈規(guī)律性表達,整體上表現(xiàn)為先升高后降低。已有研究表明,暴露于高溫應激狀態(tài)下的魚類會出現(xiàn)肝細胞空泡化、細胞間邊緣消失及細胞核水解等現(xiàn)象,隨著水溫升高加劇或脅迫時間延長最終引發(fā)其肝臟變性壞死(張思敏等,2018)。消化酶能直觀表征魚類的消化生理機能狀況,反映魚體對食物的吸收消化能力,且水溫變化會極大影響新陳代謝等生理活動。至今,有關水溫對魚體消化酶活性影響的研究已有較多報道,如大黃魚(Larimichthys crocea)(朱愛意和褚學林,2006)、駝背鱸(Cromileptes altivelis)(劉江華等,2014)及美洲鰣(Alosa sapidissima)(楊明等,2020),但鮮見針對翹嘴鱖(Siniperca chua-tsi)的相關報道。熱休克蛋白家族生物學功能廣泛,其中HSP70和HSP90基因能維持熱休克蛋白的空間結(jié)構(gòu),修正并降解因外界刺激引發(fā)的蛋白錯誤折疊,在多肽鏈折疊及蛋白組裝、加工、運輸和降解等方面也發(fā)揮著重要作用(Encomio and Chu,2007;金新萍等,2018)。在團頭魴(Megalobrama amblycephala)(明建華等,2009)、虹鱒(Oncorhynchus mykiss)(周彥靜等,2017)和西伯利亞鱘(Acipenser baeri)(王曉雯等,2019)的相關研究中,發(fā)現(xiàn)在高溫脅迫下HSP70和HSP90基因均顯著上調(diào)。【本研究切入點】翹嘴鱖統(tǒng)稱為白鱖,隸屬于鱸形目(Perciformes)真鱸科(Percichthyidae)鱖屬(Siniperca),肉質(zhì)細嫩鮮美,為高檔的名特淡水魚(盧薛等,2013;王鵬飛,2014;劉雨等,2019;徐暢等,2020)。由于國內(nèi)養(yǎng)殖環(huán)境限制及自身特點等因素,翹嘴鱖幼魚從投放到生長至商品魚階段一般在室外土塘進行。我國南方地區(qū)夏季高溫,水溫可升至37.0 ℃甚至更高,即高溫脅迫已成為長三角地區(qū)翹嘴鱖養(yǎng)殖業(yè)健康發(fā)展的主要限制因素,但至今鮮見有關水溫對其影響的研究報道?!緮M解決的關鍵問題】探究高溫脅迫下翹嘴鱖抗氧化酶和消化酶活性及熱休克蛋白基因(HSP70α和HSP90α)的變化規(guī)律,從酶活性及基因表達層面明確高溫脅迫對其生長及存活率的影響,為實際生產(chǎn)中翹嘴鱖幼魚培育提供可靠的參考依據(jù)。
1 材料與方法
1. 1 試驗用魚及控溫方式
2月齡翹嘴鱖幼魚購自湖州市某翹嘴鱖良種場,在中國水產(chǎn)科學研究院無錫淡水研究中心養(yǎng)殖區(qū)暫養(yǎng),置于水泥廠房中的循環(huán)水槽中喂養(yǎng)(400 L/桶)。挑選鱗片齊整、規(guī)格一致、平均體重9.23±0.34 g、平均體長5.21±0.25 cm的翹嘴鱖幼魚共300尾,在室內(nèi)循環(huán)水槽中暫養(yǎng)1周后開始試驗,期間投喂小規(guī)格的鯪魚幼魚。翹嘴鱖幼魚飼養(yǎng)在80 cm×45 cm×50 cm的復合材料桶中,試驗期間保持水體溶解氧≥6 mg/L、氨氮≤0.05 mg/L、水溫(26.0±0.5)℃、pH 7.3±0.4。養(yǎng)殖水溫以制冷加熱循環(huán)器(NH03801型,賽默飛世爾科技公司)進行調(diào)控,可控溫度范圍在4.0~35.0 ℃,輔以鈦加熱棒(500 W)。
1. 2 高起始致死溫度(96 h-UILT50)測試
設26.0、30.0、34.0和38.0 ℃等4個溫度梯度,每個溫度梯度放入同規(guī)格翹嘴鱖幼魚20尾,初始水溫為(26.0±0.5)℃,按1.0 ℃/h的速度進行加溫,以水溫升高至預設值為時間零點(0 h),進行96 h的高溫脅迫,脅迫結(jié)束后統(tǒng)計各溫度處理組翹嘴鱖幼魚的累計死亡率。利用Probit回歸分析獲得96 h死亡率達50%的溫度,作為翹嘴鱖幼魚高起始致死溫度(Upper incipient lethal temperature 50,96 h-UILT50)(竇碩增等,2017)。觀測翹嘴鱖幼魚的行為反應,每3 h測量1次水溫、溶解氧和pH,每24 h記錄各平行的死亡魚體數(shù),并及時剔除死去的幼魚(魚體平躺或翻轉(zhuǎn)且沒有連續(xù)呼吸現(xiàn)象則認定為死亡)。
1. 3 高溫脅迫試驗
完成預試驗后,根據(jù)96 h-UILT50設定對照組(26.0 ℃)和試驗組(36.0 ℃),挑選鱗片齊整、體長相近的翹嘴鱖幼魚180尾,分開置于6個塑料桶中飼養(yǎng),對照組與試驗組均設3個平行,每個塑料桶投放30尾幼魚。其中,試驗組須在水溫升至36.0 ℃后再投放幼魚,以達到急性高溫脅迫的條件。試驗期間停止投喂,持續(xù)充氧,利用HACH-LDO溶氧儀監(jiān)測水體溶解氧含量變化,pH維持在7.3±0.4。在高溫脅迫0、6、12、24、48和96 h時,每桶隨機抽取3尾翹嘴鱖幼魚,使用50 mg/L MS-222進行麻醉,剖解后采集翹嘴鱖的胃、腸道及肝臟組織,使用現(xiàn)配的生理鹽水進行沖洗,經(jīng)液氮處理后放入-80 ℃冰箱保存?zhèn)溆谩?/p>
1. 4 樣品處理
將各處理組采集的組織樣品擦干水分,隨即稱重并記錄,加入生理鹽水后研磨,研磨液在4.0 ℃下4000 r/min離心10 min,取上清液,-80.0 ℃保存?zhèn)溆谩2捎媚暇┙ǔ缮锕こ萄芯克a(chǎn)的生化試劑盒測定不同指標,總蛋白試劑盒(考馬斯亮藍法)測定翹嘴鱖幼魚胃、腸道和肝臟總蛋白(TP)濃度,總超氧化物歧化酶(SOD)試劑盒測定SOD活性,過氧化氫酶(CAT)試劑盒測定CAT活性,谷丙轉(zhuǎn)氨酶(GPT)試劑盒測定GPT活性,丙二醛(MDA)試劑盒測定MDA含量,胃蛋白酶試劑盒測定胃蛋白酶活性,淀粉酶(AMS)試劑盒測定AMS活性,脂肪酶(LPS)試劑盒測定LPS活性,酶活性單位采用U/mg或U/g表示。
1. 5 實時熒光定量PCR檢測
稱取0.1 g翹嘴鱖幼魚肝臟置于RNAiso Plus中勻漿,并按說明進行總RNA提取。以RNA為模板,采用HiFiScript cDNA Synthesis Kit試劑盒反轉(zhuǎn)錄合成cDNA,-20.0 ℃保存?zhèn)溆?。根?jù)NCBI數(shù)據(jù)庫中的Heat shock protein 70 alpha(HSP70α)和Heat shock protein 90 alpha(HSP90α)基因序列,以β-actin為內(nèi)參基因,使用Primer Premier 6.0設計引物(表1),委托生工生物工程(上海)股份有限公司合成。實時熒光定量PCR反應體系20.0 μL:2×UltraSYBR Mixture 10.0 μL,正、反向引物各0.4 μL,cDNA模板0.8 μL,ddH2O 8.4 μL。擴增程序:95 ℃預變性10 min;95 ℃ 10 s,60 ℃ 30 s,72 ℃ 32 s,進行39個循環(huán);60 ℃ 30 s,95 ℃ 15 s。根據(jù)實時熒光定量PCR擴增結(jié)果,采用2-ΔΔCt法計算目的基因的相對表達量。
1. 6 統(tǒng)計分析
采用SPSS 20.0以概率單位加權(quán)回歸(Probit)法求出翹嘴鱖幼魚的96 h-UILT50及95%置信區(qū)間,并進行單因素方差分析(One-way ANOVA)和Duncans多重比較。
2 結(jié)果與分析
2. 1 急性高溫脅迫對翹嘴鱖幼魚行為的影響
翹嘴鱖幼魚對急性高溫脅迫產(chǎn)生明顯的行為反應,高溫(34.0~38.0 ℃)組魚體應激響應時間提前,魚體反應程度劇烈。26.0 ℃組翹嘴鱖幼魚在整個試驗周期均相對安靜,多數(shù)時間潛伏在桶底不動,偶爾上游捕食,泳速及泳態(tài)正常,體色呈較深的暗綠色;30.0 ℃組翹嘴鱖幼魚在試驗初期(0~24 h)相對安靜,中期(48 h)后游動頻率高于對照組,喜愛在水體中層游動,泳速、泳態(tài)及體色均正常;34.0 ℃組翹嘴鱖幼魚試驗初期(0~12 h)即表現(xiàn)活躍,游動頻繁,喜歡向水面游動、滯留,后期活力變差,體色變淺,體表特有的色素斑點更明顯;38.0 ℃組翹嘴鱖幼魚試驗初期(0~6 h)即表現(xiàn)煩躁,聚集在水體表面,呼吸急促且極易受驚,中期(48 h)魚體運動頻率明顯下降,身體逐漸失去平衡,且有不同比例的個體反應遲鈍,后期逐漸死亡,死亡個體癥狀:口張大,背脊鰭條豎起,體表有黏液滲出,斑紋消失。
2. 2 高起始致死溫度(96 h-UILT50)的確定
26.0 ℃組翹嘴鱖幼魚在96 h的試驗過程中僅有1條死亡,30.0 ℃組累計有2條幼魚在96 h內(nèi)死亡,34.0 ℃組累計有5條幼魚在96 h內(nèi)死亡,38.0 ℃組累計有13條幼魚在96 h內(nèi)死亡(表2)??梢?,翹嘴鱖幼魚死亡率隨水溫的升高不斷上升,其96 h-UILT50為36.22 ℃。
2. 3 急性高溫脅迫對翹嘴鱖幼魚抗氧化酶活性的影響
2. 3. 1 SOD活性 由圖1可看出,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚肝臟SOD活性無顯著變化(P>0.05,下同),試驗組翹嘴鱖幼魚肝臟SOD活性則呈降低—升高—降低的變化趨勢。在急性高溫脅迫初始,試驗組翹嘴鱖幼魚肝臟SOD活性即迅速降低,至脅迫6 h時其SOD活性顯著低于對照組翹嘴鱖幼魚(P<0.05,下同),至脅迫12 h時降至最低值(23.33 U/mg);隨后試驗組翹嘴鱖幼魚肝臟SOD活性呈明顯上升趨勢,于脅迫48 h時升至最大值(42.60 U/mg),與對照組翹嘴鱖幼魚無顯著差異;此后翹嘴鱖幼魚肝臟SOD活性又表現(xiàn)出下降趨勢,至脅迫96 h時顯著低于對照組翹嘴鱖幼魚。
2. 3. 2 CAT活性 由圖2可看出,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚肝臟CAT活性無顯著變化,試驗組翹嘴鱖幼魚肝臟CAT活性變化趨勢與SOD活性相似,也呈降低—升高—降低的變化趨勢。在急性高溫脅迫初始,試驗組翹嘴鱖幼魚肝臟CAT活性即迅速降低,于脅迫6 h時降至最低值(30.86 U/mg),與對照組翹嘴鱖幼魚差異顯著;至脅迫12 h時CAT活性仍顯著低于對照組翹嘴鱖幼魚,但隨后明顯上升,至脅迫48 h時升至最高值(66.27 U/mg),且顯著高于對照組翹嘴鱖幼魚;此后再次下降,至脅迫96 h時試驗組翹嘴鱖幼魚肝臟CAT活性低于對照組翹嘴鱖幼魚,但差異不顯著。
2. 3. 3 GPT活性 由圖3可看出,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚肝臟GPT活性無顯著變化,試驗組翹嘴鱖幼魚肝臟GPT活性變化趨勢則與SOD和CAT活性恰好相反,表現(xiàn)為升高—降低—升高的變化趨勢。在急性高溫脅迫初始,試驗組翹嘴鱖幼魚肝臟GPT活性即迅速上升,于脅迫6 h時升至最高值(142.83 U/g),顯著高于對照組翹嘴鱖幼魚;從脅迫12 h時開始持續(xù)下降,至脅迫48 h時降至最低值(23.03 U/g),且與對照組翹嘴鱖幼魚差異顯著;隨后再次上升,至脅迫96 h時試驗組翹嘴鱖幼魚GPT活性高于對照組翹嘴鱖幼魚,但二者間無顯著差異。
2. 3. 4 MDA含量 由圖4可看出,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚肝臟MDA含量無顯著變化,試驗組翹嘴鱖幼魚肝臟MDA含量則表現(xiàn)為升高—降低—升高。試驗組翹嘴鱖幼魚肝臟MDA含量在急性高溫脅迫開始即持續(xù)上升,至脅迫6 h時顯著高于對照組翹嘴鱖幼魚,隨后繼續(xù)升高,于脅迫12 h時升至最高值(140.67 nmol/mg),且顯著高于對照組翹嘴鱖幼魚;隨后試驗組翹嘴鱖幼魚肝臟MDA含量呈明顯下降趨勢,至脅迫48 h時降至最低值(74.23 nmol/mg),但與對照組翹嘴鱖幼魚差異不顯著;此后再次上升,至脅迫96 h時試驗組翹嘴鱖幼魚肝臟MDA含量高于對照組翹嘴鱖幼魚,但差異不顯著。
2. 4 急性高溫脅迫對翹嘴鱖幼魚消化酶活性的影響
2. 4. 1 胃蛋白酶活性 從圖5可看出,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚胃蛋白酶活性無顯著變化,試驗組翹嘴鱖幼魚胃蛋白酶活性則呈降低—升高—降低的變化趨勢。在急性高溫脅迫初始,試驗組翹嘴鱖幼魚胃蛋白酶活性即迅速降低,于脅迫6 h時達最低值(27.80 U/mg),顯著低于對照組翹嘴鱖幼魚;隨后表現(xiàn)為持續(xù)升高趨勢,至脅迫24 h時其胃蛋白酶活性顯著高于對照組翹嘴鱖幼魚,并于脅迫48 h時達最高值(105.69 U/mg);此后試驗組翹嘴鱖幼魚胃蛋白酶活性又呈明顯下降趨勢,但仍顯著高于對照組翹嘴鱖幼魚。
2. 4. 2 AMS活性 從圖6可看出,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚腸道AMS活性無顯著變化,試驗組翹嘴鱖幼魚腸道AMS活性變化趨勢與胃蛋白酶相似,呈降低—升高—降低的變化趨勢。試驗組翹嘴鱖幼魚腸道AMS活性在急性高溫脅迫初始呈略微下降趨勢,隨后持續(xù)上升,至脅迫48 h時達最高值(0.97 U/mg),顯著高于對照組翹嘴鱖幼魚;此后出現(xiàn)明顯下降趨勢,但至脅迫96 h時試驗組翹嘴鱖幼魚腸道AMS活性仍顯著高于對照組翹嘴鱖幼魚。
2. 4. 3 LPS活性 從圖7可看出,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚腸道LPS活性無顯著變化,試驗組翹嘴鱖幼魚腸道LPS活性變化趨勢則與胃蛋白酶和AMS活性恰好相反,呈升高—降低—升高的變化趨勢。在急性高溫脅迫初始,試驗組翹嘴鱖幼魚腸道LPS活性即顯著升高,至脅迫6 h時達最高值(23.33 U/g);隨后呈持續(xù)降低趨勢,于脅迫24 h時降至最低值(6.08 U/g),顯著低于對照組翹嘴鱖幼魚;此后再呈上升趨勢,至脅迫96 h時試驗組翹嘴鱖幼魚LPS活性仍低于對照組翹嘴鱖幼魚,但差異不顯著。
2. 5 急性高溫脅迫對翹嘴鱖幼魚熱休克蛋白基因表達的影響
2. 5. 1 HSP70α基因 由圖8可知,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚HSP70α基因相對表達量無顯著變化,而試驗組翹嘴鱖幼魚HSP70α基因相對表達量呈升高—下降的波動式變化趨勢。隨著急性高溫脅迫時間的推移,試驗組翹嘴鱖幼魚HSP70α基因表達先持續(xù)上調(diào),于脅迫12 h時達最高值;隨后其表達快速下調(diào),但在脅迫48 h時出現(xiàn)第2個峰值,其相對表達量顯著高于對照組翹嘴鱖幼魚;至脅迫96 h時翹嘴鱖幼魚HSP70α基因相對表達量仍顯著高于對照組翹嘴鱖幼魚。
2. 5. 2 HSP90α基因 由圖9可知,在96 h的急性高溫脅迫過程中,對照組翹嘴鱖幼魚HSP90α基因相對表達量也無顯著變化,而試驗組翹嘴鱖幼魚HSP90α基因的表達呈先升高后降低的變化趨勢。隨著急性高溫脅迫時間的推移,試驗組翹嘴鱖幼魚HSP90α基因表達先持續(xù)上調(diào),至脅迫12 h時其相對表達量顯著高于對照組翹嘴鱖幼魚;于脅迫24 h時上調(diào)至最高值,隨后開始逐漸下調(diào),但至脅迫96 h時仍顯著高于對照組翹嘴鱖幼魚。
3 討論
3. 1 高溫脅迫對翹嘴鱖幼魚存活及行為的影響
水溫變化會直接影響魚類的攝食、生長、代謝及免疫等生理活動,尤其是夏季和冬季水溫變化較大,一旦突破魚體的耐受極限即引起代謝紊亂,最終導致死亡(Bly and Clem,1992)。本研究結(jié)果表明,在急性升溫方式下,高溫脅迫(34.0和38.0 ℃)組翹嘴鱖幼魚早期均表現(xiàn)出游動頻繁、浮于水面和呼吸急促等特征,后期則逐漸減慢游動頻率,失去平衡直至喪失運動能力,其96 h-UILT50為36.22 ℃。翹嘴鱖幼魚對高溫脅迫表現(xiàn)出的行為反應與大黃魚(李慶昌等,2016)、虹鱒(夏斌鵬等,2017)及大菱鲆(Scophthalmus maximus)(孟振等,2020)等魚類相同,而96 h-UILT50高于許氏平鲉(Sebastes schlegeli)(竇碩增等,2017)和西伯利亞鱘(王曉雯等,2019)等冷水系魚類。王鵬飛(2014)研究發(fā)現(xiàn),翹嘴鱖成魚的半致死溫度(LT50)為39.9 ℃,可能與魚類個體大小有關,幼魚的各器官組織尚未發(fā)育完全,因此抵御高溫脅迫的能力較成魚弱;也可能是升溫方式不同所引起,本研究是采用突變高溫脅迫方法,而王鵬飛(2014)采用1.2 ℃/h的梯度升溫方式,魚體已逐漸產(chǎn)生耐受性。Yanar等(2019)研究表明,魚類的UILT50還受多種條件協(xié)同作用,包括分布地域、個體大小、馴化溫度、升溫速率及水質(zhì)條件等。
3. 2 高溫脅迫對翹嘴鱖抗氧化酶活性的影響
魚類機體細胞生存需保持適度的氧化與抗氧化平衡,在適宜水體條件下,機體中的抗氧化系統(tǒng)能及時處理因生理代謝等活動產(chǎn)生的活性氧自由基(ROS)。當水溫快速上升時,魚類機體遭受嚴重應激而生成過多的ROS,一旦冗余ROS突破機體抗氧化系統(tǒng)的承受限度,就會導致組織器官應激損傷且易引發(fā)致死現(xiàn)象(胡靜等,2016)。CAT和SOD是動物機體抗氧化及清理自由基作用較強的酶類,SOD可使ROS分解成H2O2,而CAT能將H2O2還原為氧分子和水分子,二者協(xié)同配合以確保細胞和機體的常規(guī)生理生化活動(Martínez-?lvarez et al.,2005)。本研究結(jié)果顯示,翹嘴鱖幼魚肝臟SOD和CAT活性在急性高溫脅迫過程中均呈降低—升高—降低的變化趨勢。脅迫6 h時翹嘴鱖幼魚肝臟中的SOD和CAT活性顯著降低,可能是急性高溫脅迫初期水溫急劇上升,翹嘴鱖幼魚短時間內(nèi)無法適應高溫環(huán)境,其體內(nèi)抗氧化系統(tǒng)被抑制,因此SOD和CAT活性呈顯著下降趨勢;脅迫24 h后,SOD和CAT活性顯著升高,可能是翹嘴鱖幼魚通過調(diào)節(jié)代謝等生理活動,逐漸適應高溫環(huán)境,其體內(nèi)抗氧化系統(tǒng)功能開始恢復;也可能是低氧所致,高溫會降低水體的溶解氧含量,引起抗氧化酶SOD和CAT活性增加,以強化機體的抗氧化防御作用,迅速除去冗余的ROS而維持機體生理代謝平衡(Patterson et al.,2013;Varghese et al.,2017)。該階段的抗氧化酶(SOD和CAT)活性變化趨勢與在吉富羅非魚(Oreochromis niloticus)(王海貞等,2012)和大口黑鱸(Micropterus salmoides)(孫永旭等,2019)等魚類中的研究結(jié)果一致。急性高溫脅迫48 h后,翹嘴鱖幼魚肝臟SOD和CAT活性再次下降,至脅迫96 h時SOD活性已顯著低于對照組翹嘴鱖幼魚,究其原因可能是脅迫后期伴隨高溫脅迫時長的增加,翹嘴鱖幼魚機體已產(chǎn)生免疫疲勞,體內(nèi)ROS濃度遠高于抗氧化系統(tǒng)調(diào)節(jié)閾值,肝臟遭受高溫應激損傷,導致抗氧化能力下降,與劉峰等(2016)的研究結(jié)果一致。在整個急性高溫脅迫過程中,翹嘴鱖幼魚肝臟SOD和CAT活性隨時間的變化趨勢相似,故推測二者在功能上具有協(xié)同性(Livingstone,2001)。
王偉等(2012)研究發(fā)現(xiàn),當機體遭受逆境脅迫生成冗余的ROS且未能及時清除時,會導致ROS與多不飽和脂肪酸(PUFA)反應,大量的脂質(zhì)過氧化物(LPO)生成并最終分解為MDA。MDA的累積會導致生物膜流通性降低和細胞損傷,因此器官組織MDA含量通常是其脂質(zhì)過氧化程度的體現(xiàn),從側(cè)面反映細胞遭受損傷的程度(史鯤鵬等,2018)。孫學亮等(2010)研究發(fā)現(xiàn),在急性高溫脅迫下,半滑舌鰨(Cynoglossus semilaevis)體內(nèi)的MDA含量隨脅迫時間延長呈先升高后降低的變化趨勢,于脅迫6 h時達最高值;王艷妮等(2015)發(fā)現(xiàn)虹鱒體內(nèi)的MDA含量在熱應激開始后持續(xù)上升,應激4 h后顯著高于試驗初期。在本研究中,高溫脅迫6 h后翹嘴鱖幼魚肝臟MDA含量顯著上升,至脅迫12 h時達最高值(140.67 nmol/mg),說明急性高溫脅迫下翹嘴鱖幼魚新陳代謝加快引起ROS濃度上升,機體無法及時清除,導致脂質(zhì)過氧化水平加深,與抗氧化酶(SOD和CAT)活性在脅迫初期(0~12 h)顯著下降相吻合;脅迫12 h后MDA含量逐漸回落,至脅迫48 h時降至最低值(74.23 nmol/mg),且明顯低于對照組翹嘴鱖幼魚,說明翹嘴鱖體內(nèi)的抗氧化系統(tǒng)已被誘導激活,脂質(zhì)過氧化程度開始降低。在逆境脅迫狀態(tài)下,熱休克蛋白作為分子伴侶表達量明顯上調(diào),具有保護生物體免受損傷的重要作用(周鑫等,2013)。但由于熱休克蛋白的作用能力不足以應對長時間的高溫脅迫,脅迫48 h后抗氧化鏈條被打破,抗氧化系統(tǒng)酶消除ROS的能力減退,而刺激脂質(zhì)過氧化反應,故導致魚體內(nèi)MDA含量再次上升,在鯔魚(Mugil cephalus)(吳慶元等,2014)和大瀧六線魚(Hexagrammos otakii)(樊英等,2020)的研究中也發(fā)現(xiàn)類似結(jié)果。
GPT是一種與氨基酸代謝相關的轉(zhuǎn)氨酶,主要分布在細胞線粒體中,少量存在于血液中,可催化氨基轉(zhuǎn)變?yōu)槲於狨ズ捅?,其活性能間接體現(xiàn)蛋白合成與分解的情況(李開放和徐奇友,2019),是衡量肝細胞損傷的重要指標之一(Casillas et al.,2006)。當魚類遭受氧化應激時,其體內(nèi)肝細胞膜通透性迅速增加,合成胞漿酶輸送至血液和組織中,表現(xiàn)為GPT活性迅速上升。在本研究中,急性高溫脅迫下翹嘴鱖幼魚肝臟GPT活性表現(xiàn)出升高—降低—升高的變化趨勢,至高溫脅迫12 h時試驗組翹嘴鱖幼魚肝臟GPT活性顯著高于對照組翹嘴鱖幼魚,表明急性高溫脅迫已對魚體肝臟細胞造成損傷。急性高溫脅迫前期,翹嘴鱖幼魚未能適應高溫環(huán)境,其抗氧化系統(tǒng)被抑制,無法迅速清理冗余的ROS,但機體通過提高GPT活性,加速新陳代謝以提高對高溫的適應能力,與劉超等(2016)的研究結(jié)果一致;脅迫12 h后GPT活性開始下降,至脅迫48 h時降至最低值(23.03 U/g),表明機體進行自我調(diào)節(jié)后得到恢復,抗氧化系統(tǒng)可繼續(xù)發(fā)揮作用,及時清除體內(nèi)冗余的ROS??梢?,CAT、SOD和GPT可協(xié)同作用,但三者對高溫的應激反應速率不一致,GPT最先響應,而SOD和CAT的反應存在滯后性,故推測這3種抗氧化酶在氧化應激系統(tǒng)中承擔不同職能。
3. 3 高溫脅迫對翹嘴鱖幼魚消化酶活性的影響
消化酶能直接反映魚體的消化生理機能,表征魚類對體內(nèi)食物的吸收消化能力。已有研究表明,消化酶活性受諸多因素影響,可因所屬種類、生理狀況、水體環(huán)境及養(yǎng)殖方式等不同而存在差異(Zhou et al.,2016;Hoseinifar et al.,2017)。翹嘴鱖為肉食性魚類,胃蛋白酶活性最能體現(xiàn)機體消化和吸收營養(yǎng)物質(zhì)的狀況。本研究結(jié)果表明,翹嘴鱖幼魚胃蛋白酶活性在急性高溫脅迫6 h內(nèi)顯著降低,隨后持續(xù)上升,于脅迫48 h時達最高值(105.69 U/mg),說明經(jīng)過短暫的適應后,高溫脅迫并不會破壞胃蛋白酶活性,反而在某種程度上促進胃蛋白酶分泌,以分解更多蛋白為免疫相關酶的表達與翻譯提供原料,與施兆鴻等(2016)發(fā)現(xiàn)銀鯧幼魚受高溫脅迫后,其體內(nèi)胃蛋白酶活性持續(xù)升高的結(jié)論一致。LPS是脂質(zhì)代謝過程中極其重要的酶類,催化分解脂肪,產(chǎn)生甘油一酯、甘油二酯及游離脂肪酸,最終轉(zhuǎn)化為脂肪酸和甘油而為魚體供能。劉玲等(2018)在駝背鱸和鞍帶石斑魚(Epinephelus lanceolatus)雜交子代鼠龍斑的研究中也發(fā)現(xiàn),在35.0 ℃高溫環(huán)境下鼠龍斑腸道LPS活性呈先升后降的變化趨勢。翹嘴鱖幼魚腸道LPS活性在短時間內(nèi)顯著升高,隨后持續(xù)降低,說明在急性高溫脅迫下機體清除氧化自由基需消耗比正常代謝更多的能量,前期翹嘴鱖幼魚主要依靠消耗脂肪來提供能量,因此高溫脅迫前期(6 h)LPS活性上升而為抗氧化系統(tǒng)供能;后期由于高溫脅迫時間延長,機體自身已無法清除冗余的ROS,抗氧化系統(tǒng)及免疫系統(tǒng)受損,同時消化系統(tǒng)因組織結(jié)構(gòu)發(fā)生變性壞死而導致LPS活性降低。在AMS方面,試驗組翹嘴鱖幼魚腸道AMS活性在脅迫初期(6 h)略有下降,隨后持續(xù)上升,并于脅迫48 h時達最高值(0.97 U/mg)。在半滑舌鰨(田相利等,2008)、藍點馬鮫魚(Scomberomorus niphoius)(陳健等,2015)和小黃魚(Larimichthys polyactis)(劉峰等,2016)等相關研究中也發(fā)現(xiàn)高溫脅迫會誘導腸道AMS活性上升,說明魚體需通過水解淀粉來彌補因應對高溫失去的能量。
本研究結(jié)果顯示,急性高溫脅迫下翹嘴鱖幼魚消化酶(胃蛋白酶、LPS和AMS)活性均有降低現(xiàn)象,但對高溫的敏感性存在差異。至高溫脅迫結(jié)束時,LPS活性恢復到與對照組翹嘴鱖幼魚相當?shù)乃?,表現(xiàn)出對高溫環(huán)境的適應;AMS和胃蛋白酶活性至脅迫96 h時仍顯著高于對照組翹嘴鱖幼魚,說明翹嘴鱖幼魚可通過增加這2種消化酶活性,分解淀粉和蛋白質(zhì)以應對高溫環(huán)境。
3. 4 高溫脅迫對翹嘴鱖幼魚熱休克蛋白基因表達的影響
熱休克蛋白也稱應激蛋白,在多種生物體中均有發(fā)現(xiàn),能有效提升機體應對溫度脅迫、低氧脅迫、重金屬脅迫及饑餓脅迫等惡劣環(huán)境的能力(Basu et al.,2002)。本研究結(jié)果表明,經(jīng)急性高溫脅迫后翹嘴鱖幼魚HSP70α基因表達量顯著增加,于脅迫12 h時升達最高值,隨后整體上呈降低趨勢,與已報道的部分水生生物試驗結(jié)果一致。蘇嶺等(2010)研究發(fā)現(xiàn),在28.0 ℃高溫脅迫下,鯽魚(Carassius auratus)HSP70基因開始逐漸上調(diào),至脅迫4 h時達最高值,隨后逐漸下調(diào)并于脅迫48 h時降至最初值;Ming等(2010)研究證實,在34.0 ℃高溫下脅迫24 h,團頭魴肝臟HSP70基因相對表達量呈先上升后降低的變化趨勢;強俊等(2012)研究發(fā)現(xiàn),尼羅羅非魚(Oreochromis niloticus)經(jīng)35.0 ℃高溫脅迫6 h,其肝臟中的HSP70基因上調(diào)表達至最高值,隨后24 h內(nèi)逐漸降低??梢?,改變HSP70基因表達量是魚類應對高溫脅迫的主要途徑,脅迫初期高溫脅迫引起組織中變性蛋白和異常蛋白數(shù)目增多,正常狀態(tài)的蛋白平衡被打破,從而導致部分維持正常生理功能的酶活性下降甚至喪失,HSP70基因通過多種途徑調(diào)節(jié),誘導肝臟細胞中HSP70含量升高。脅迫后期HSP70基因表達量回落,或許是由于HSP70基因?qū)毎谋Wo作用存在局限性,脅迫程度超過其調(diào)節(jié)范圍時,肝臟細胞膜結(jié)構(gòu)和蛋白質(zhì)組成改變,而干擾HSP70基因在細胞內(nèi)的分布,因此對機體的保護能力下降。本研究結(jié)果表明,翹嘴鱖幼魚HSP70α基因表達受溫度調(diào)節(jié),以此確保組織器官不被損害及維持機體內(nèi)部功能的穩(wěn)定,因此HSP70被視為評估應激水平的生物標志之一(Jonsson et al.,2006)。
HSP90基因存在于真核細胞中,能與400多種蛋白相結(jié)合,在不同脅迫條件下,如高溫脅迫或低溫脅迫均能誘導其上調(diào)表達。Wu等(2012)研究發(fā)現(xiàn),草魚(Ctenopharyngodon idella)在高溫或低溫脅迫下均會顯著上調(diào)多種組織中的HSP90基因表達量;生安志等(2016)研究表明,牙鲆(Paralichthys olivaceus)經(jīng)28.0 ℃高溫脅迫1 h,其肝臟中的HSP90基因相對表達量顯著升高;Yan等(2017)研究表明,在高溫脅迫下泥鰍(Misgurnus anguillicaudatus)HSP90基因表達迅速上調(diào);張德康等(2020)研究發(fā)現(xiàn),美洲鰣經(jīng)7.0 ℃低溫脅迫12 h,其HSP90基因表達顯著上調(diào)。在本研究中,翹嘴鱖幼魚HSP90α基因在急性高溫脅迫后顯著上調(diào),并于脅迫24 h時達最高值,為對照組翹嘴鱖幼魚的14.06倍,說明高溫脅迫會誘導HSP90α大量合成,且在初期發(fā)揮細胞防御功能。隨后HSP90α基因表達逐漸下調(diào),但至脅迫結(jié)束時仍顯著高于對照組翹嘴鱖幼魚,或許是由于氧化損傷較嚴重已超過魚體調(diào)節(jié)范圍,且長時間會引發(fā)免疫水平降低及代謝紊亂現(xiàn)象,從而引起HSP90α基因表達下調(diào)。HSP90α基因可通過參與熱休克轉(zhuǎn)錄因子的聚合作用以激活目標基因,在高溫環(huán)境下保護細胞不受損傷,也可能是通過抑制高溫誘導細胞凋亡來實現(xiàn)(Yavelsky et al.,2004)。
4 結(jié)論
急性高溫脅迫對翹嘴鱖幼魚抗氧化酶和消化酶活性及熱休克蛋白基因表達產(chǎn)生顯著影響。在高溫脅迫過程中,CAT、SOD和GPT等3種抗氧化酶在氧化應激系統(tǒng)中承擔不同職能,AMS和胃蛋白酶2種消化酶通過分解淀粉和蛋白質(zhì)以應對高溫環(huán)境;熱休克蛋白基因HSP70α和HSP90α參與高溫脅迫應答過程的生理調(diào)節(jié),以應對高溫脅迫對肝臟細胞的損傷,故可作為高溫脅迫應答的標志物。
參考文獻:
陳健,鄭春靜,桑衛(wèi)國. 2015. 溫度和pH對不同日齡藍點馬鮫魚仔魚消化酶活性的影響[J]. 寧波大學學報(理工版),28(3):9-12. [Chen J,Zheng C J,Sang W G. 2015. Effects of temperature and pH on digestive enzyme day-var-ying activity larvae of Scomberomorus niphoius[J]. Journal of Ningbo University(Natural Science & Engineering Edition),28(3):9-12.]
竇碩增,南鷗,曹亮,宋駿杰,田洪林,劉永葉. 2017. 石島灣四種常見魚類的熱耐受性比較研究[J]. 海洋科學,41(9):56-64. doi:10.11759//hykx2017031002. [Dou S Z,Nan O,Cao L,Song J J,Tian H L,Liu Y Y. 2017. A comparative study of the thermal tolerance of four common fish species in Shidao Bay,the Yellow Sea[J]. Marine Scien-ces,41(9):56-64.]
樊英,王曉璐,于曉清,劉洪軍,葉海斌,王淑嫻,刁菁,胡發(fā)文,菅玉霞. 2020. 地衣芽孢桿菌對大瀧六線魚生長、腸道消化酶、血清非特異性免疫及抗病力的影響[J]. 漁業(yè)科學進展,41(1):63-73. doi:10.19663/j.issn.2095-9869. 20191111001. [Fan Y,Wang X L,Yu X Q,Liu H J,Ye H B,Wang S X,Diao J,Hu F W,Jian Y X. 2020. Effect of Bacillus licheniformis on growth,intestinal digestive enzymes,serum non-special immune and resistance against Aeromonas salraonicida in fat greenling,Hexagrammos otakii[J]. Progress in Fishery Sciences,41(1):63-73.]
胡靜,葉樂,吳開暢,王雨. 2016. 急性鹽度脅迫對克氏雙鋸魚幼魚血清皮質(zhì)醇濃度和Na+-K+-ATP酶活性的影響[J]. 南方水產(chǎn)科學,12(2):116-120. doi:10.3969/j.issn.2095-0780. 2016.02.017. [Hu J,Ye L,Wu K C,Wang Y. 2016. Effect of acute salinity stress on serum cortisol and activity of Na+/K+-ATPase of juvinile Amphiprion clarkii[J]. South China Fisheries Science,12(2):116-120.]
金新萍,謝倩,呂斌,曹詣斌. 2018. 金魚HSC70和HSP40基因克隆及其原核表達[J]. 南方農(nóng)業(yè)學報,49(2):367-374. doi:10.3969/j.issn.2095-1191.2018.02.25. [Jin X P,Xie Q,Lü B,Cao Y B. 2018. Cloning and prokaryotic expression of genes HSC70 and HSP40 in goldfish[J]. Journal of Southern Agriculture,49(2):367-374.]
李開放,徐奇友. 2019. 白藜蘆醇對松浦鏡鯉生長性能、腸道消化酶活性、肝臟抗氧化指標和血清生化指標的影響[J]. 動物營養(yǎng)學報,31(4):1833-1841. doi:10.3969/j.issn. 1006-267x.2019.04.042. [Li K F,Xu Q Y. 2019. Effects of resveratrol on growth performance,intestinal digestive enzyme activity,liver antioxidant index and serum biochemical index of Songpu mirror carp[J]. Chinese Journal of Animal Nutrition,31(4):1833-1841.]
李慶昌,陳小明,劉賢德. 2016. 突變高溫脅迫對大黃魚血清生理指標的影響[J]. 漁業(yè)研究,38(6):437-444. doi:10.14012/j.cnki.fjsc.2016.06.002. [Li Q C,Chen X M,Liu X D. 2016. Acute heat stress on the influence of large yellow croaker(Larimichthys crocea) serum physiological indicators[J]. Journal of Fisheries Research,38(6):437-444.]
劉超,吳富村,林思恒,闕華勇,張國范. 2016. 高溫刺激導致蝦夷扇貝死亡因素的探究[J]. 海洋科學,40(11):91-98. doi:10.11759/hykx20151008001. [Liu C,Wu F C,Lin S H,Que H Y,Zhang G F. 2016. Pilot study on reasons for yesso scallops(Patinopecten yessoensis) survival after heat shock[J]. Marine Sciences,40(11):91-98.]
劉峰,劉陽陽,樓寶,陳睿毅,詹偉,徐麒翔,馬濤,徐冬冬,王立改,毛國民. 2016. 溫度對小黃魚體內(nèi)抗氧化酶及消化酶活性的影響[J]. 海洋學報,38(12):76-85. doi:10. 3969/j.issn.0253-4193.2016.12.008. [Liu F,Liu Y Y,Lou B,Chen R Y,Zhan W,Xu Q X,Ma T,Xu D D,Wang L G,Mao G M. 2016. Effects of water temperature on antioxi-dant and digestive enzymes activities in Larimichthys poly-actis[J]. Haiyang Xuebao,38(12):76-85.]
劉江華,區(qū)又君,李加兒,吳水清. 2014. 溫度和pH對駝背鱸消化酶活力的影響[J]. 中山大學學報(自然科學版),53(3):95-100. doi:10.13471/j.cnki.acta.snus.2014.03.022. [Liu J H,Qu Y J,Li J E,Wu S Q. 2014. Effects of temperature and pH on the activities of digestive enzymes in Cromileptes altivelis[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,53(3):95-100.]
劉玲,陳超,李炎璐,劉莉,陳建國,李文升,馬文輝. 2018. 短期溫度脅迫對駝背鱸(♀)×鞍帶石斑魚(♂)雜交子代幼魚抗氧化及消化酶活性的影響[J]. 漁業(yè)科學進展,39(2):59-66. [Liu L,Chen C,Li Y L,Liu L,Chen J G,Li W S,Ma W H. 2018. Effects of short-term temperature stress on antioxidant and digestive enzymes of hybrid progeny (Cromileptes altivelis Valenciennes ♀×Epinephelus lanceolatus ♂)[J]. Progress in Fishery Sciences,39(2):59-66.]
劉雨,丁煒東,曹哲明,邴旭文,徐暢,楊帆,張晨光,谷心池,孫阿君. 2019. 急性氨氮脅迫對翹嘴鱖幼魚抗氧化酶活性及炎癥反應相關基因表達的影響[J]. 南方農(nóng)業(yè)學報,50(8):1860-1868. doi:10.3969/j.issn.2095-1191.2019.08. 29. [Liu Y,Ding W D,Cao Z M,Bing X W,Xu C,Yang F,Zhang C G,Gu X C,Sun A J. 2019. Effects of acute ammonia nitrogen stress on antioxidant enzymes activity and gene expression involved in inflammation of juvenile Siniperca chuatsi[J]. Journal of Southern Agriculture,50(8):1860-1868.]
盧薛,孫際佳,王海芳,羅渡,侯曉翠,劉凌志,李桂峰. 2013. 大眼鱖與翹嘴鱖正反交及其正交子代自交的胚胎發(fā)育觀察[J]. 中國水產(chǎn)科學,20(5):975-981. doi:10.3724/SP.J.1118.2013.00975. [Lu X,Sun J J,Wang H F,Luo D,Hou X C,Liu L Z,Li G F. 2013. Observations on embryonic development of reciprocal hybrids of Siniperca kneri Garman×Siniperca chuatsi Basilewsky and F2 of S. kneri females×S. chuatsi males F1[J]. Journal of Fishery Sciences of China,20(5):975-981.]
孟振,張鴻麗,劉新富,賈玉東,劉濱,曲江波. 2020. 急性熱應激對大菱鲆血液生化指標的影響[J]. 海洋科學,44(1):122-131. doi:10.11759/hykx20190814001. [Meng Z,Zhang H L,Liu X F,Jia Y D,Liu B,Qu J B. 2020. Effect of acute heat stress on plasma biochemical indexes in turbot Scophthalmus maximus[J]. Marine Sciences,44(1):122-131.]
明建華,謝駿,劉波,何義進,周群蘭,潘良坤,俞菊華,徐跑. 2009. 團頭魴HSP70 cDNA的克隆、序列分析以及熱應激對其mRNA表達的影響[J]. 中國水產(chǎn)科學,16(5):635-648. [Ming J H,Xie J,Liu B,He Y J,Zhou Q L,Pan L K,Yu J H,Xu P. 2009. Cloning,sequence analysis of HSP70 cDNA and effects of heat stress on its mRNA expression in Megalobrama amblycephala[J]. Journal of Fishery Sciences of China,16(5):635-648.]
強俊,楊弘,王輝,徐跑,何杰. 2012. 急性溫度應激對吉富品系尼羅羅非魚(Oreochromis niloticus)幼魚生化指標和肝臟HSP70 mRNA表達的影響[J]. 海洋與湖沼,43(5):943-953. [Qiang J,Yang H,Wang H,Xu P,He J. 2012. The effect of acute temperature stress on biochemical indices and expression of liver HSP70 mRNA in GIFT nile tilapia juveniles(Oreochromis niloticus)[J]. Oceanologia et Limnologia Sinica,43(5):943-953.]
生安志,鞠輝明,李貴陽,李杰,莫照蘭. 2016. 牙鲆(Paralichthys olivaceus)HSP90 mRNA在溫度刺激和鰻弧菌感染下的表達特征[J]. 漁業(yè)科學進展,37(5):1-8. doi:10. 11758/yykxjz.20150326001. [Sheng A Z,Ju H M,Li G Y,Li J,Mo Z L. 2016. Expression patterns of HSP90 of Paralichthys olivaceusin response to temperature treatment and Vibrio anguillarum infection[J]. Progress in Fishery Sciences,37(5):1-8.]
施兆鴻,謝明媚,彭士明,張晨捷,高權(quán)新. 2016. 溫度脅迫對銀鯧(Pampus argenteus)幼魚消化酶活性及血清生化指標的影響[J]. 漁業(yè)科學進展,37(5):30-37. doi:10.11758/yykxjz.20150617001. [Shi Z H,Xie M M,Peng S M,Zhang C J,Gao Q X. 2016. Effects of temperature stress on activities of digestive enzymes and serum biochemical indices of Pampus argenteus juveniles[J]. Progress in Fishery Sciences,37(5):30-37.]
史鯤鵬,董雙林,周演根,高勤峰,孫大江. 2018. 不同倍性虹鱒幼魚對急性溫度脅迫的抗氧化響應[J]. 應用生態(tài)學報,29(9):3102-3110. doi:10.13287/j.1001-9332.201809. 001. [Shi K P,Dong S L,Zhou Y G,Gao Q F,Sun D J. 2018. Antioxidant responses of rainbow trout with diffe-rent ploidies to acute temperature stress[J]. Chinese Journal of Applied Ecology,29(9):3102-3110.]
蘇嶺,李紹戊,王荻,劉紅柏,盧彤巖,尹家勝. 2010. 半定量RT-PCR方法檢測熱應激對鯽魚肝臟中HSP70 mRNA含量的影響[J]. 華北農(nóng)學報,25(S):100-104. [Su L,Li S W,Wang D,Liu H B,Lu T Y,Yin J S. 2010. Semi-quantitative RT-PCR method of detection of heat stress on fish liver content of HSP70 mRNA[J]. Acta Agriculturae Boreali-Sinica,25(S):100-104.]
孫學亮,邢克智,陳成勛,王慶奎,于學全,胡金城. 2010. 急性溫度脅迫對半滑舌鰨血液指標的影響[J]. 水產(chǎn)科學,29(7):387-392. doi:10.16378/j.cnki.1003-1111.2010.07.002. [Sun X L,Xing K Z,Chen C X,Wang Q K,Yu X Q,Hu J C. 2010. The effects of acute temperature stress on blood parameters in half-smooth tongue-sole(Cynoglossus semilaevis)[J]. Fisheries Science,29(7):387-392.]
孫永旭,董宏標,王文豪,曹明,段亞飛,李華,劉青松,張家松. 2019. 溫度對大口黑鱸幼魚不同組織抗氧化能力及免疫相關蛋白表達的影響[J]. 生態(tài)科學,38(3):18-25. doi:10.14108/j.cnki.1008-8873.2019.03.003. [Sun Y X,Dong H B,Wang W H,Cao M,Duan Y F,Li H,Liu Q S,Zhang J S. 2019. Effects of temperature on antioxidant capacity and immune associated protein expression in different tissues and organs of juvenile(Micropterus salmoides)[J]. Ecological Science,38(3):18-25.]
田相利,任曉偉,董雙林,王國棟,房景輝. 2008. 溫度和鹽度對半滑舌鰨幼魚消化酶活性的影響[J]. 中國海洋大學學報,38(6):895-901. doi:10.16441/j.cnki.hdxb.2008.06. 006. [Tian X L,Ren X W,Dong S L,Wang G D,F(xiàn)ang J H. 2008. Studies on the specific activities of digestive enzymes of Cynoglossus semilaevis Günther at different salinities and temperatures[J]. Periodical of Ocean University of China,38(6):895-901.]
王博雅,郭策,黃璞祎,柴龍會. 2020. 急性升溫脅迫與恢復對葛氏塘鱧抗氧化酶活性的影響[J]. 水產(chǎn)科學,39(3):394-399. doi:10.16378/j.cnki.1003-1111.2020.03.012. [Wang B Y,Guo C,Huang P Y,Chai L H. 2020. Effects of acute raising temperature stress and recovery on antioxidant enzyme activities of amur sleeper Perccottus glenii[J]. Fishe-ries Science,39(3):394-399.]
王海貞,王輝,李瑞偉,梁國棟. 2012. 溫度和鹽度對吉富羅非魚幼魚腸道兩種抗氧化酶活力的聯(lián)合效應[J]. 廣東海洋大學學報,32(1):47-53. [Wang H Z,Wang H,Li R W,Liang G D. 2012. Combined effect of temperature and salinity on two kinds intestinal antioxidant enzymes of GIFT tilapia juveniles(Oreochromis niloticus)[J]. Journal of Guangdong Ocean University,32(1):47-53.]
王鵬飛. 2014. 鱖熱休克蛋白和低氧反應基因的克隆和表達研究[D]. 廣州:中山大學. [Wang P F. 2014. Cloning and expression analysis of heat shock protein and hypoxia responsive genes in mandarin fish(Siniperca chuatsi)[D]. Guangzhou:Sun Yat-sen University.]
王偉,姜志強,孟凡平,李瑩,王震宇. 2012. 急性溫度脅迫對太平洋鱈仔稚魚成活率、生理生化指標的影響[J]. 水產(chǎn)科學,31(8):463-466. doi:10.16378/j.cnki.1003-1111.2012. 08.009. [Wang W,Jiang Z Q,Meng F P,Li Y,Wang Z Y. 2012. The effects of sharply changes in temperature on survival and indices of physiology and biochemistry in Pacific cod Gadus macrocephalus[J]. Fisheries Science,31(8):463-466.]
王曉雯,張蓉,朱建亞,劉麗麗,馬國慶,朱華. 2019. 急性熱應激對西伯利亞鱘肝功指標及肝臟熱休克蛋白表達的影響[J]. 四川農(nóng)業(yè)大學學報,37(1):122-128. doi:10.16036/ j.issn.1000-2650.2019.01.019. [Wang X W,Zhang R,Zhu J Y,Liu L L,Ma G Q,Zhu H. 2019. Effects of acute heat stress on hepatic biochemical index and gene expression of heat shock proteins in Acipenser baeri[J]. Journal of Sichuan Agricultural University,37(1):122-128.]
王艷妮,劉哲,康玉軍,李珍,施海娜,張久盤,王建福,蔣麗,黃進強. 2015. 熱應激對虹鱒部分非特異性免疫指標的影響[J]. 農(nóng)業(yè)生物技術學報,23(5):634-642. doi:10. 3969/j.issn.1674-7968.2015.05.009. [Wang Y N,Liu Z,Kang Y J,Li Z,Shi H N,Zhang J P,Wang J F,Jiang L,Huang J Q. 2015. Effects of heat stress on some non-specific immunity parameters in rainbow trout(Oncorhynchus mykiss)[J]. Journal of Agricultural Biotechnology,23(5):634-642.]
吳慶元,蔣玫,李磊,??∠瑁蛐聫? 2014. 低鹽度脅迫對鯔魚(Mugil cephalus)幼魚鰓絲、肌肉、腸Na+-K+-ATP酶活性和MDA含量的影響[J]. 生態(tài)與農(nóng)村環(huán)境學報,30(4):481-487. [Wu Q Y,Jiang M,Li L,Niu J X,Shen X Q. 2014. Effects of chronic stress of lower salinity on activity of Na+-K+-ATPase and content of MDA in branchial filament,muscle,intestine of juvenile mullet(Mugil cepha-lus)[J]. Journal of Ecology and Rural Environment,30(4):481-487.]
夏斌鵬,劉哲,周彥靜,王永杰,黃進強,李永娟,康玉軍,王建福,劉曉霞. 2017. 慢性熱應激對虹鱒部分血清非特異性免疫指標的影響[J]. 農(nóng)業(yè)生物技術學報,25(7):1078-1085. doi:10.3969/j.issn.1674-7968.2017.07.005. [Xia B P,Liu Z,Zhou Y J,Wang Y J,Huang J Q,Li Y J,Kang Y J,Wang J F,Liu X X. 2017. Effects of chronic heat stress on part of serum non-specific immunity parameters in rainbow trout(Oncorhynchus mykiss)[J]. Journal of Agricultural Biotechnology,25(7):1078-1085.]
謝明媚,彭士明,張晨捷,高權(quán)新,施兆鴻. 2015. 急性溫度脅迫對銀鯧幼魚抗氧化和免疫指標的影響[J]. 海洋漁業(yè),37(6):541-549. doi:10.13233/j.cnki.mar.fish.2015.06. 008. [Xie M M,Peng S M,Zhang C J,Gao Q X,Shi Z H. 2015. Effects of acute temperature stress on antioxidant enzyme activities and immune indexes of juvenile (Pampus argenteus)[J]. Marine Fisheries,37(6):541-549.]
辛苑茹,溫海深,李吉方,侯志帥,張美昭,車德釗,陳落落. 2019. 急性高溫脅迫對虹鱒二倍體和三倍體幼魚hsps基因表達的影響[J]. 中國海洋大學學報,49(3):129-137. doi:10.16441/j.cnki.hdxb.20180334. [Xin Y R,Wen H S,Li J F,Hou Z S,Zhang M Z,Che D Z,Chen L L. 2019. Effects of acute thermal stress on gene expression of heat shock protein in diploid and triploid juvenile rainbow trout(Oncorhynchus mykiss)[J]. Periodical of Ocean University of China,49(3):129-137.]
徐暢,丁煒東,曹哲明,邴旭文,張晨光,谷心池,劉雨. 2020. 急性低氧脅迫對翹嘴鱖抗氧化酶、呼吸相關酶活性及相關基因表達的影響[J]. 南方農(nóng)業(yè)學報,51(3):686-694. doi:10.3969/j.issn.2095-1191.2020.03.027. [Xu C,Ding W D,Cao Z M,Bing X W,Zhang C G,Gu X C,Liu Y. 2020. Effects of acute hypoxia stress on antioxidant enzymes,respiratory related enzymes and expression of related genes in mandarin fish(Siniperca chuatsi)[J]. Journal of Southern Agriculture,51(3):686-694.]
楊明,蔣飛,施永海,徐嘉波,劉永士,鄧平平,袁新程. 2020. 高溫脅迫對美洲鰣消化酶活性的影響[J]. 西北農(nóng)林科技大學學報(自然科學版),48(10):1-8. doi:10.13207/j.cnki.jnwafu.2020.10.001. [Yang M,Jiang F,Shi Y H,Xu J B,Liu Y S,Deng P P,Yuan X C. 2020. Effect of high temperature stress on activities of digestive enzymes in Alosa sapidissima[J]. Journal of Northwest A & F University (Natural Science edition),48(10):1-8.]
張德康,高建操,王裕玉,莊硯冰,顧若波,徐鋼春. 2020. 低溫脅迫對美洲鰣抗氧化狀態(tài)及應激相關基因表達的影響[J]. 海洋湖沼通報,(2):144-151. doi:10.13984/j.cnki.cn37-1141.2020.02.018. [Zhang D K,Gao J C,Wang Y Y,Zhuang Y B,Gu R B,Xu G C. 2020. Influences of low temperature stress on antioxidant status and expression of stress related genes of American shad,Alosa sapidissima[J]. Transactions of Oceanology and Limnology,(2):144-151.]
張思敏,李吉方,溫海深,呂里康,李蘭敏,趙吉. 2018. 急性溫度脅迫對許氏平鲉肝臟代謝機能和血液指標的影響及生理機制[J]. 中國海洋大學學報,48(5):35-38. doi:10.16441/j.cnki.hdxb.20170224. [Zhang S M,Li J F,Wen H S,Lü L K,Li L M,Zhao J. 2018. Effect of acute temperature stress on liver metabolism of black rockfish Sebastes schlegelii and associating physiological mechanism[J]. Periodical of Ocean University of China,48(5):35-38.]
周鑫,董云偉,王芳,董雙林. 2013. 草魚hsp70和hsp90對溫度急性變化的響應[J]. 水產(chǎn)學報,37(2):216-221. doi:10. 3724/SP.J.1231.2013.37965. [Zhou X,Dong Y W,Wang F,Dong S L. 2013. Effect of rapid temperature change on expression of hsp70 and hsp90 in grass carp(Ctenopharyngodon idella)[J]. Journal of Fisheries of China,37(2):216-221.]
周彥靜,劉哲,夏斌鵬,康玉軍,王永杰,劉曉霞. 2017. 持續(xù)熱應激對虹鱒肝臟組織形態(tài)結(jié)構(gòu)的影響[J]. 甘肅農(nóng)業(yè)大學學報,52(6):1-5. doi:10.13432/j.cnki.jgsau.2017.06.001. [Zhou Y J,Liu Z,Xia B P,Kang Y J,Wang Y J,Liu X X. 2017. Effect of continuing heat stress on the liver tissue morphology of rainbow trout(Oncorhynchus mykiss)[J]. Journal of Gansu Agricultural University,52(6):1-5.]
朱愛意,褚學林. 2006. 大黃魚(Pseudosciaena crocea)消化道不同部位兩種消化酶的活力分布及其受溫度、ph的影響[J]. 海洋與湖沼,37(6):561-567. [Zhu A Y,Chu X L. 2006. Activity and distribution of two enzymes in diffe-rent parts of digestive tract of Pseudosciaena crocea temperature and pH impacts[J]. Oceanologia et Limnologia Sinica,37(6):561-567.]
Basu N,Todgham A E,Ackerman P A,Bibeau M R,Nakano K,Schulte P M,Iwama George K. 2002. Heat shock protein genes and their functional significance in fish[J]. Gene,295(2):173-183. doi:10.1016/s0378-1119(02)00687-x.
Bly J E,Clem L W. 1992. Temperature and teleost immune functions[J]. Fish & Shellfish Immunology,2(3):159-171. doi:10.1016/s1050-4648(05)80056-7.
Casillas E,Sundquist J,Ames W E. 2006. Optimization of assay conditions for,and the selected tissue distribution of,alanine aminotransferase and aspartate aminotransferase of English sole,Parophrys vetulus Girard[J]. Journal of Fish Biology,21(2):197-204. doi:10.1111/j.1095-8649. 1982.tb03999.x.
Cheng C H,Guo Z X,Luo S W,Wang A L. 2018. Effects of high temperature on biochemical parameters,oxidative stress,DNA damage and apoptosis of pufferfish(Takifugu obscurus)[J]. Ecotoxicology and Environmental Safety,150:190-198. doi:10.1016/j.ecoenv.2017.12.045.
Encomio V G,Chu F L E. 2007. Heat shock protein (hsp70) expression and thermal tolerance in sublethally heat-shocked eastern oysters Crassostrea virginica infected with the parasite Perkinsus marinus[J]. Diseases of Aqua-tic Organisms,76(3):251-260. doi:10.3354/dao076251.
He Y F,Wu X B,Zhu Y J,Li H C,Li X M,Yang D G. 2014. Effect of rearing temperature on growth and thermal to-lerance of Schizothorax(Racoma) kozlovi larvae and juveniles[J]. Journal of Thermal Biology,46:24-30. doi:10. 1016/j.jtherbio.2014.09.009.
Hoseinifar S H,Dadar M,Ring? E. 2017. Modulation of nu-trient digestibility and digestive enzyme activities in aqua-tic animals:The functional feed additives scenario[J]. Aquaculture Research,48(8):3987-4000. doi:10.1111/are.13368.
Jonsson H,Schiedek D,Goks?yr A,EinarGr?svik B. 2006. Expression of cytoskeletal proteins,cross-reacting with anti-CYP1A,in Mytilussp exposed to organic contaminants[J]. Aquatic Toxicology,78(S1):S42-S48. doi:10.1016/j.aquatox.2006.02.014.
Livingstone D R. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms[J]. Marine Pollution Bulletin,42(8):656-666. doi:10.1016/S0025-326X(01)00060-1.
Martínez-?lvarez R M,Moralesa A E,Sanz A. 2005. Antioxidant defenses in fish:Biotic and abiotic factors[J]. Reviews in Fish Biology & Fisheries,15(1-2):75-88. doi:10.1007/s11160-005-7846-4.
Ming J H,Xie J,Xu P,Liu W B,Ge X P,Liu B,He Y J,Cheng Y F,Zhou Q L,Pan L K. 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream(Megalobrama amblycephala Yih)[J]. Fish & Shellfish Immunology,28(3):407-418. doi:10.1016/j.fsi.2009. 11.018.
Patterson J T,Mims S D,Wright R A. 2013. Effects of body mass and water temperature on routine metabolism of American paddlefish Polyodon spathula[J]. Journal of Fish Biology,82(4):1269-1280. doi:10.1111/jfb.12066.
Varghese T,Pal A K,Mishal P,Sahu N P,Dasgupta S. 2017. Physiological and molecular responses of a bottom dwe-ling carp,Cirrhinus mrigala to short-term envrionmental hypoxia[J]. Turkish Journal of Fisheries and Aquatic Scien-ces,18(3):483-490. doi:10.4194/1303-2712-v18_3_14.
Wu C X,Zhao F Y,Zhang Y,Zhu Y J,Ma M S,Mao H L,Hu C Y. 2012. Overexpression of Hsp90 from grass carp (Ctenopharyngodon idella) increases thermal protection against heat stress[J]. Fish & Shellfish Immunology,33(1):42-47. doi:10.1016/j.fsi.2012.03.033.
Yan J,Liang X,Zhang Y,Li Y,Cao X J,Gao J. 2017. Clo-ning of three heat shock protein genes (HSP70,HSP90α and HSP90β) and their expressions in response to thermal stress in loach(Misgurnus anguillicaudatus) fed with different levels of vitamin C[J]. Fish & Shellfish Immunology,66:103-111. doi:10.1016/j.fsi.2017.05.023.
Yanar M,Erdo?an E,Kumlu M. 2019. Thermal tolerance of thirteen popular ornamental fish species[J]. Aquaculture,501(25):382-386. doi:10.1016/j.aquaculture.2018.11.041.
Yavelsky V,Vais O,Piura B,Wolfson M,Rabinovich A,F(xiàn)raifeld V. 2004. The role of Hsp90 in cell response to hyperthermia[J]. Journal of Thermal Biology,29(7-8):509-514. doi:10.1016/j.jtherbio.2004.08.078.
Zhou P P,Wang M Q,Xie F J,Deng D F,Zhou Q C. 2016. Effects of dietary carbohydrate to lipid ratios on growth performance,digestive enzyme and hepatic carbohydrate metabolic enzyme activities of large yellow croaker(Lar-michthys crocea)[J]. Aquaculture,452:45-51. doi:10.1016/ j.aquaculture.2015.10.010.
(責任編輯 蘭宗寶)