国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

南華盆地新元古代成冰紀成錳作用及其成礦背景

2021-07-28 12:03:10付勇郭川
地質(zhì)論評 2021年4期
關鍵詞:大塘南華錳礦

付勇,郭川

1)貴州大學資源與環(huán)境工程學院,貴陽,500025; 2)貴州大學喀斯特地質(zhì)資源與環(huán)境教育部重點實驗室,貴陽,500025

內(nèi)容提要: 南華盆地成冰系大塘坡組錳礦是我國最重要的錳礦產(chǎn)出層位之一,它形成于成冰紀Sturtian冰川事件之后,其成礦背景及形成機理一直是研究的重點。在系統(tǒng)總結Sturtian冰川事件起始與結束時間、南華裂谷盆地結構演化及古氣候演變等重大地質(zhì)事件的最新研究進展的基礎上,綜合分析了南華盆地大型沉積型錳礦成礦作用過程與這些重大地質(zhì)事件之間的聯(lián)系。揭示了南華盆地Sturtian冰期的啟動和結束與全球其他地區(qū)基本一致,分別發(fā)生在~717 Ma和~660 Ma之前。同時,對南華系大塘坡錳礦成礦時代進行了約束,大約形成于~660 Ma之前。在新元古代中期Rodinia超大陸裂解作用的影響下,南華裂谷盆地內(nèi)部發(fā)育一系列由同沉積斷層控制的地壘—地塹次級盆地。沿同沉積斷層運移的熱液流體為大塘坡錳礦的形成提供了大量的成礦物質(zhì),并控制著大塘坡錳礦的發(fā)育分布?;瘜W蝕變指數(shù)(CIA)、鋰同位素(δ7Li)及鋨同位素組成[n(187Os)/n(188Os)]等風化指標顯示,南華盆地Sturtian冰期晚期至間冰期大塘坡期早期的氣候為寒冷干燥,隨后轉(zhuǎn)為溫暖濕潤并很快變?yōu)楹涓稍铩V链筇疗轮型砥?,氣候逐漸由寒冷干燥恢復至溫暖濕潤,并一直保持至大塘坡晚期。整體來看,Sturtian冰期結束后,南華盆地表層海水逐漸氧化,深部沉積水體出現(xiàn)局部間歇式氧化環(huán)境,裂陷階段熱液和陸源輸入的Mn2+被氧化為MnO2發(fā)生沉淀,并在底部伴隨著有機質(zhì)的埋藏及早期成巖作用而最終形成菱錳礦。

新元古代是地球演化過程中的一個重要時期,伴隨著強烈和廣泛的冰川作用(Hoffman et al., 1998)、真核生物擴張(Sahoo et al., 2016)及條帶狀鐵建造(BIF)的再現(xiàn)(Cox et al., 2013)等。這些重大地質(zhì)事件與當時的氣候、海水化學性質(zhì)及板塊構造運動等密切相關,長期以來一直是地球科學研究的重點。其中成冰紀發(fā)生了兩次全球范圍的冰川事件(即Sturtian和Marinoan冰期),分別對應著華南地區(qū)的江口冰期和南沱冰期(趙彥彥等,2011; 張啟銳等,2016),這兩次冰期事件很大程度上改變了當時的大陸風化作用,并進一步造成了海洋的化學性質(zhì)和氧化還原狀態(tài)的顯著變化(Hoffman et al., 2017)。華南地區(qū)的這兩次冰期之間發(fā)生了大塘坡間冰期,對應著我國重要的成錳期,在此期間華南地區(qū)形成了豐富的沉積型錳礦床。多年勘探顯示,華南地區(qū)南華系地層中發(fā)育多個大中型沉積型錳礦床(付勇等, 2014),如貴州大塘坡(周琦等, 2013; Yu Wenchao et al., 2019; 張予杰等, 2020)、重慶秀山(凌云等, 2016; Ma Zhixin et al., 2019; 趙志強等, 2019)、湖南湘潭(史富強等, 2016)等,其中錳礦石主要賦存在大塘坡組第一段(或相當層位)的黑色巖系中,使得黔、湘、渝等地區(qū)成為我國最重要的錳礦產(chǎn)地之一。由于大塘坡組錳礦具有重要的經(jīng)濟價值和科學意義,使得南華紀時期與其形成密切相關的Sturtian冰川事件、盆地演化、古氣候及海洋氧化還原狀態(tài)等內(nèi)容一直是研究的熱點(Li Chao et al., 2012; 杜遠生等, 2015; 齊靚等, 2015; 周琦等, 2016; Lan Zhongwu et al., 2020)。

1 南華盆地Sturtian冰期時限及南華 系錳礦成礦時代

目前Sturtian冰期時限及沉積礦床的形成年齡主要通過一系列的間接定年方法(如Rb-Sr、Sm-Nd、鋯石U-Pb法等),主要通過對冰期地層、含礦層系或相鄰地層中的火山灰或成巖礦物來實現(xiàn),但這些間接定年方法受其測試對象稀缺性和自身性質(zhì)的制約,而使其應用存在很大的局限性(Rasmussen, 2005)。相比之下,Re-Os定年方法能直接限定富有機質(zhì)沉積巖(如黑色頁巖)的沉積年齡(Cohen et al., 1999; Kendall et al., 2004; 李超等, 2014; Fu Yong et al., 2016; 王富良等, 2016)。近期研究顯示,在后期成巖作用(如熱成熟、低變質(zhì)作用等)過程中,黑色頁巖中的Re-Os體系仍能保持封閉,即不會發(fā)生Re和Os元素的丟失或獲取(Creaser et al., 2002; Rooney et al., 2010; 李超等, 2014),這使得Re-Os定年方法被廣泛用來限定前寒武系沉積地層的沉積年齡(Rooney et al., 2010; Zhu Bi et al., 2013; Tripathy and Singh, 2015)。

1.1 Sturtian冰期啟動時間

Sturtian冰期地層在全球范圍內(nèi)廣泛分布,但典型的冰期沉積主要發(fā)育在澳大利亞、納米比亞、加拿大、中國南部、阿曼和蒙古等地區(qū)(Hoffman and Li, 2009; 趙彥彥和鄭永飛, 2011; Hoffman et al., 2017)。這次冰期對應著華南地區(qū)的江口冰期,代表沉積為江口群(長安組+富祿組)或兩界河組與鐵絲坳組(Lan Zhongwu et al., 2014; 汪正江等, 2015)。近年來,針對成冰紀冰川事件的期次、起始與結束時間及全球?qū)Ρ?,前人通過冰期沉積或相鄰地層中的火山灰等開展了大量的研究工作,并取得了一系列的進展(圖1和表1)。其中,Lan Zhongwu 等(2014)獲得了桂北地區(qū)丹洲群頂部凝灰質(zhì)粉砂巖和湖北宜昌地區(qū)蓮沱組頂部凝灰?guī)r的SIMS U-Pb年齡,分別為716.1 ± 3.4 Ma和715.9 ± 2.8 Ma;Lan Zhongwu 等(2015)獲得的湖北宜昌地區(qū)蓮沱組頂部凝灰?guī)rSIMS U-Pb年齡為714 ± 8 Ma;覃永軍等(2015)獲得的黔東南地區(qū)下江群頂界U-Pb年齡為717 Ma;Jiang Zhuo-Fei等(2016)獲得的川西地區(qū)開建橋組頂部凝灰?guī)r夾層的SHRIMP和LA-ICP-MS U-Pb年齡分別為715.0 ± 9.8 Ma和718.8 ± 9.4 Ma;Song Gaoyuan 等(2017)獲得的湘西地區(qū)板溪群頂部碎屑鋯石的LA-ICP-MS U-Pb年齡為714.6 ± 5.2 Ma;蔡娟娟等(2018)獲得的桂北地區(qū)長安組底部冰成雜礫巖碎屑鋯石的LA-ICP-MS U-Pb最小加權平均年齡為719.6 ± 6.1 Ma;Lan Zhongwu 等(2020)獲得的長安組之下拱洞組頂部的CA-ID-IRMS鋯石U-Pb年齡(720.16 ± 1.42 Ma),并通過Monte Carlo模擬將華南地區(qū)Sturtian冰期的發(fā)生時間限定在717.61 ± 1.65 Ma。因此,華南地區(qū)Sturtian冰期的發(fā)生時間應為~717 Ma。

表1 新元古代Sturtian冰期起始和結束年齡匯編Table 1 Compilation of chronometric dates for the onset and termination of the Neoproterozoic Sturtian glaciation

針對Sturtian冰期的起始時間,國外學者也開展了大量的研究。其中,F(xiàn)anning 和Link(2004)獲得的勞倫西亞Grand Canyon地區(qū)Pocatello組Scout Mountain段之上冰磧巖斑狀流紋巖中巖漿鋯石的SHRIMP U-Pb年齡為717 ± 6 Ma;Bowring等(2007)獲得的阿曼Ghubrah冰磧巖中火山碎屑凝灰?guī)r中的鋯石TIMS U-Pb年齡為713.7 ± 0.5 Ma,這代表了最接近阿曼斯圖特冰期起始時間的年齡數(shù)據(jù),但由于取樣點位于混積巖之中,因此阿曼斯圖特冰期的起始時間應早于713 Ma。Macdonald等(2010,2018)獲得了加拿大西北部地區(qū)Mount Harper群底部及其之下地層火山灰高分辨率鋯石TIMS年齡,將加拿大地盾斯圖特冰期的起始時間限定在717.4 ± 0.1 Ma和716.9 ± 0.4 Ma。因此,這些年齡數(shù)據(jù)顯示,不同緯度不同大陸上的Sturtian冰期可能是一次同時啟動的、快速的全球性事件,其發(fā)生的時間應為 ~ 717 Ma(圖1;Macdonald et al., 2010; Lan Zhongwu et al., 2020)。

圖1 新元古代Sturtian冰期起始和結束年齡分布圖Fig. 1 The ages of the onset and termination of the Neoproterozoic Sturtian glaciation 數(shù)據(jù)來源:1—蔡娟娟等,2018;2—Lan Zhongwu et al., 2020;3, 17—Fanning and Link, 2004;4, 5—Macdonald et al., 2010;6, 7—Lan Zhongwu et al., 2014;8—Song Gaoyuan et al., 2017;9—Allen et al., 2002;10—Bowring et al., 2007;11—Lund et al., 2003;12—Ferri et al., 1999;13, 29—Fanning and Link, 2008;14, 15—Evans et al., 1997;16—尹崇玉等,2006;18—余文超等,2016b;19—Cox et al., 2018;20—Zhou Chuanming et al., 2004;21—Yu Wenchao et al., 2017;22—Rooney et al., 2014;23—高林志等,2013;24, 25 32, 37—Rooney et al., 2020;26—裴浩翔等,2017;27—Semikhatov, 1991;28—Zhou Chuanming et al., 2020;30—Wang Dan et al., 2019;31—Rooney et al., 2015;33—Zhou Chuanming et al., 2019;34—Fanning and Link, 2006;35—李明龍等,2021;36—Kendall et al., 2006;38—Zhang Sihong et al., 2008 Data are compiled from: 1—Cai Juanjuan et al., 2018&; 2—Lan Zhongwu et al., 2020; 3, 17—Fanning and Link, 2004; 4, 5—Macdonald et al., 2010; 6, 7—Lan Zhongwu et al., 2014; 8—Song Gaoyuan et al., 2017; 9—Allen et al., 2002; 10—Bowring et al., 2007; 11—Lund et al., 2003; 12—Ferri et al., 1999; 13, 29—Fanning and Link, 2008; 14, 15—Evans et al., 1997; 16—Yi Chongyu et al., 2006&;18—Yu Wenchao et al., 2016b&; 19—Cox et al., 2018; 20—Zhou Chuanming et al., 2004; 21—Yu Wenchao et al., 2017; 22—Rooney et al., 2014; 23—Gao Linzhi et al., 2013&; 24, 25 32, 37—Rooney et al., 2020; 26—Pei Haoxiang et al., 2017&; 27—Semikhatov, 1991; 28—Zhou Chuanming et al., 2020; 30—Wang Ping et al., 2019; 31—Rooney et al., 2015; 33—Zhou Chuanming et al., 2019; 34—Fanning and Link, 2006; 35—Li Minglong et al., 2021&; 36—Kendall et al., 2006; 38—Zhang Shihong et al., 2008

1.2 Sturtian冰期結束時間及南華盆地南華系 錳礦成礦時代

(1)Sturtian冰期結束時間。由于華南地區(qū)Sturtian冰期地層(如富祿組、鐵絲坳組或古城組)中尚未發(fā)現(xiàn)用于高精度定年的同沉積火山巖,因此Sturtian冰期結束的時間通常由上覆間冰期地層大塘坡組底部的凝灰?guī)r層限定。Zhou Chuanming 等(2004)獲得的華南貴州東部松桃地區(qū)大塘坡組底部凝灰?guī)r中鋯石的ID-TIMS U-Pb年齡為662.9 ± 4.3 Ma,之后通過CA-ID-IRMS U-Pb法將之修正為659.96 ± 0.46 Ma(Zhou Chuanming et al., 2020),但由于其采樣部位處于大塘坡組底部位,說明Sturtian冰期結束時間應發(fā)生于之前。隨后,尹崇玉等(2006)也獲得了貴州東部松桃地區(qū)黑水溪剖面大塘坡組底部凝灰?guī)rSHRIMP U-Pb年齡為667.3 ± 9.9 Ma。之后,不同學者進一步開展了一系列Sturtian冰期結束時間的定年工作。例如,Zhang Shihong等(2008)獲得的華南湖北西部地區(qū)緊鄰南沱組下部湘錳組(大塘坡組相當層位)凝灰?guī)r層中鋯石的SHRIMP U-Pb年齡為654.5 ± 3.8 Ma;余文超等(2016b)和Yu Wenchao等(2017)獲得的華南貴州東部松桃地區(qū)將軍山剖面和寨浪溝剖面大塘坡組底部含錳頁巖層鋯石的LA-ICP-MS U-Pb年齡分別為664.2 ± 2.4 Ma和662.7 ± 6.2 Ma;Zhou Chuanming 等(2019)獲得的華南云南東部地區(qū)大塘坡組底部蓋帽白云巖凝灰?guī)r層鋯石的CA-ID-TIMS U-Pb年齡為658.8 ± 0.5 Ma。最近,Rooney 等(2020)獲得了貴州東南部地區(qū)和湖南西部地區(qū)大塘坡組底部含錳頁巖層凝灰?guī)r中鋯石的CA-ID-TIMS U-Pb年齡,分別為660.98 ± 0.74 Ma、658.97 ± 0.76 Ma、657.17 ± 0.78 Ma,其中660.98 ± 0.74 Ma為最接近大塘坡組底界的年齡。同時,Rooney等(2020)還獲得了貴州東北部距鐵絲坳組頂部3 m的黑色頁巖的Re-Os年齡為660.6 ± 3.9 Ma,也進一步證實了富有機質(zhì)沉積巖Re-Os年齡方法的可靠性。在華南湖北恩施地區(qū),李明龍等(2021)獲得的大塘坡組底部凝灰?guī)r鋯石的LA-ICP-MS U-Pb年齡為658.1 ± 2.6 Ma。這些年齡數(shù)據(jù)在誤差范圍內(nèi)完全一致,因此華南Sturtian冰期結束應發(fā)生在~660 Ma前。

世界其他地區(qū)也獲得了與華南地區(qū)類似的年齡,也進一步限定了Sturtian冰期結束的時間。例如,勞倫大陸獲得的Mackenzie Mountains地區(qū)Hay Creek群Twitya組底部黑色頁巖的Re-Os年齡為662.4 ± 3.9 Ma(Rooney et al., 2014);前蘇聯(lián)烏拉爾地區(qū)Laplandian冰磧巖之下火山灰層鋯石的TIMS U-Pb年齡為660 ± 15 Ma(Semikhatov, 1991);澳大利亞南部地區(qū)緊鄰Appila (Sturt) 組冰磧巖之上Wilyerpa組中火山灰層鋯石的CA-ID-TIMS U-Pb年齡和SIMS U-Pb年齡分別為663.03 ± 0.11 Ma(Cox et al., 2018)和659.7±5.3 Ma(Fanning and Link, 2008);澳大利亞Adelaide Rift Complex地區(qū)Appila (Sdturt) 組冰磧巖之上的Tapley Hill組底部Tindelpina段黑色頁巖的Re-Os年齡為657.2 ± 5.4 Ma(Kendall et al., 2006);蒙古Tuva—MongoliaTaishir組底部黑色頁巖的Re-Os年齡為659.0 ± 4.5 Ma(Rooney et al., 2015)。這些年齡與華南地區(qū)獲得的年齡在誤差范圍內(nèi)完全一致(圖1),因此,全球范圍內(nèi)Sturtian冰期的結束可能也是一個等時事件,其應發(fā)生在~660 Ma之前,其持續(xù)時間約為57 Ma(Rooney et al., 2014; Zhou Chuanming et al., 2019; Rooney et al., 2020)。

(2)南華盆地南華系錳礦成礦時代。由于Sturtian冰期結束的時限主要通過上覆大塘坡組底部凝灰?guī)r和富有機質(zhì)沉積巖(如黑色頁巖)獲得,這些年齡也對南華盆地南華系錳礦成礦時代進行了限定。近期,裴浩翔等(2017)獲得的貴州東部道坨錳礦大塘坡組一段含錳黑色頁巖的Re-Os同位素等時線年齡為660.6 ± 7.5 Ma;Wang Dan等(2019)獲得的貴州東部松桃將軍山剖面大塘坡組底部含錳頁巖層凝灰?guī)r中鋯石的SIMS U-Pb年齡為659.3 ± 2.4 Ma。這些年齡數(shù)據(jù)在誤差范圍內(nèi)是一致的,因此結合前人報道的年齡數(shù)據(jù)可將南華盆地南華系錳礦限定在~ 660 Ma,該年齡可對該時期南華盆地甚至全球范圍內(nèi)的成礦地質(zhì)事件提供很好的年齡約束,同時能為全球?qū)Ρ妊芯矿w統(tǒng)很好的年齡框架。

2 南華紀南華裂谷盆地結構演化

已有研究顯示,南華裂谷盆地的形成與演化與Rodinia超大陸的裂解密切相關(王劍等, 2001; 杜遠生等, 2018)。其中,Rodinia超大陸的形成于中元古代末期(1300~900 Ma)的全球范圍造山運動,這次構造運動幾乎波及所有的大陸板塊 (Hoffman, 1991; Li et al., 2008)。隨后,新元古代時期(~750 Ma)發(fā)生了全球性的裂谷作用,導致Rodinia超大陸發(fā)生裂解,并最終在600 Ma完全解體(Li et al., 2008; Zhao Guochun et al., 2018; Wang Wei et al., 2020)。在Rodinia超大陸的形成—裂解過程中,揚子板塊和華夏板塊在830 Ma發(fā)生碰撞形成華南板塊和江南造山帶(王自強等, 2012; 孫海清等, 2013; 趙軍紅等, 2015; Li Qiwei and Zhao Junhong, 2020),并自820 Ma開始發(fā)生多次幕式大陸裂解作用(Wang Jian and Li Zhengxiang, 2003)。在此背景下,揚子板塊內(nèi)形成了以南華裂谷盆地為代表的沿東南方向展布的裂谷系統(tǒng)(王孝磊等, 2004; 杜遠生等, 2015; Zhao Guochun et al., 2018),同時南華裂谷盆地內(nèi)部也發(fā)育一系列由同沉積斷層控制的地壘—地塹次級盆地(圖2;周琦等, 2016)。

由于青白口紀(~800 Ma)第一次裂陷活動的作用,在湘西、黔東、桂北地區(qū)(江南構造帶西段)分別沉積了一系列以深水沉積組合和火山巖及凝灰?guī)r沉積為特征的板溪群、下江群、丹洲群(杜遠生等, 2015)。隨后,南華紀(~725 Ma)發(fā)生了第二次裂陷活動,在湘黔邊界地區(qū)沉積了大塘坡組以黑色泥質(zhì)巖系為特征的深水沉積(圖3;Zhang Shihong et al., 2008)。而震旦紀(~635 Ma)發(fā)生了第三次裂陷活動,在江南構造帶東側形成了以硅質(zhì)泥質(zhì)巖系等深水沉積為特征的震旦系—奧陶系地層。整體來看,揚子地塊東南緣裂谷盆地(I級)可劃分為武陵次級裂谷盆地、天柱—懷化隆起及雪峰次級裂谷盆地3個II級結構單元,它們可進一步識別出間隔分布的III級地塹與地壘結構,如溪口—小茶園次級地塹盆地、松桃—石阡次級地塹盆地、萬山—岑鞏次級地塹盆地及黎平—從江次級地塹盆地(圖2;周琦等, 2016)。在這些地塹盆地內(nèi),大塘坡組沉積厚度自盆地中心向盆地邊緣逐漸降低(圖3)。另一方面,由黔東地區(qū)向鄂西地區(qū)大塘坡組厚度逐漸降低,巖相組合在區(qū)域上也表現(xiàn)出明顯的差異性,二分性逐漸消失(曠紅偉等, 2019)。

圖2 揚子地塊東南緣裂谷盆地結構示意圖及主要錳礦(剖面)分布圖(修改自杜遠生等, 2015)Fig. 2 The tectonic architecture of rift basin of southeastern Yangtze Block and distribution map of Mn deposits (modified from Du Yuansheng et al. 2015&) 1—重慶秀山小茶園錳礦;2—重慶秀山鹽井溝剖面;3—重慶秀山筆架山錳礦;4—貴州松桃道坨錳礦;5—貴州松桃兩界河錳礦;6—貴州松桃西溪堡錳礦;7—貴州江口桃映剖面;8—貴州銅仁萬山石竹溪錳礦床;9—貴州新晃板橋剖面;10—貴州從江八當錳礦點;11—湖南花垣民樂錳礦;12—湖南湘潭錳礦床。 ① 溪口—小茶園次級地塹盆地;② 松桃—石阡次級地塹盆地;③ 萬山—岑鞏次級地塹盆地;④ 黎平—從江次級地塹盆地 1—Xiaochayuan Mn deposit, Xiushan, Chongqing; 2—Yanjinggou Section, Xiushan, Chongqing; 3—Bijiashan Mn deposit, Xiushan, Chongqing; 4—Daotuo Mn desposit, Daotuo, Guizhou; 5—Liangjiehe Mn Deposit, Songtao, Guizhou; 6—Xixibao Mn deposit, Songtao, Guizhou; 7—Taoying Section, Jiangkou, Guizhou; 8—Shizhuxi Mn deposit, Wanshan, Tongren, Guizhou; 9—Banqiao Section, Xinhuang, Guizhou; 10—Badang Mn deposit, Congjiang, Guizhou; 11—Minle Mn deposit, Huayuan, Hunan; 12—Xiangtan Mn deposit, Hunan. ① Xikou—Xiaochayuan sub-graben basin; ② Songtao—Shiqian sub-graben basin; ③ Wanshan—Cenggong sub-graben basin; ④ Liping—Congjiang sub-graben basin

圖3 南華裂谷盆地南華紀兩界河—大塘坡期盆地結構圖(a,據(jù)周琦等, 2016修改)和大塘坡期早期盆地結構圖 (b,據(jù)鄒光均等, 2020修改)Fig. 3 The architecture of the Nanhua rift basin during the Lianghejie—Datangpo Age of the Nanhua Period (a, modified from Zhou Qi et al., 2016&) and during the early Datangpo Age (b, modified from Zou Guangjun et al., 2020&)

3 南華紀南華盆地風化作用記錄

“雪球地球”假說認為,新元古代成冰紀冰川事件之后,地球迅速轉(zhuǎn)為溫室氣候條件,并同時伴隨著強烈的化學風化作用過程(Hoffman et al., 1998; Hoffman and Schrag, 2002)。前人研究顯示,大陸風化作用對海洋營養(yǎng)物質(zhì)的輸入有著非常重要的影響,并進一步制約著海水的氧化還原狀態(tài),如高營養(yǎng)物質(zhì)輸入會導致海洋表層海水高的初始生產(chǎn)力和富有機質(zhì)頁巖的沉積(Yeasmin et al., 2017; Huang Taiyu et al., 2019; Li Chao et al., 2020)。已有研究顯示,南華盆地大塘坡組底部(或一段)錳礦的形成受沉積水柱氧化還原狀態(tài)的制約(何志威等, 2014; Wu Chengquan et al., 2016; 余文超等, 2020)。為了明確大塘坡組(或相當層位)下部含錳巖系及黑色頁巖形成時期海洋南華盆地的氧化還原狀態(tài),前人采用一系列地球化學指標開展了大量的研究工作,如元素地球化學(朱祥坤等, 2013; 何志威等, 2014; Wu Chengquan et al., 2016; 趙志強等, 2019)、碳同位素(Chen Xi et al., 2008; 裴浩翔等, 2020)、硫同位素(Li Chao et al., 2012; 張飛飛等, 2013; Wang Ping et al., 2019)、鐵組分(Li Chao et al., 2012; Ma Zhixin et al., 2019)、氮同位素(Wei Wei et al., 2016)、鍶-釹同位素(Yu Wenchao et al., 2016; 余文超等, 2016a)、鉬同位素(Cheng Meng et al., 2018; Ye Yuntao et al., 2018; Tan Zhaozhao et al., 2021)、鋰同位素(Wei Guangyi et al., 2020)等。結果顯示,南華盆地沉積水體的氧化還原狀態(tài)大致經(jīng)歷了3個階段:① 冰期階段主要為缺氧環(huán)境;② 成錳階段主要為表層海水氧化、深部水體缺氧的分層海洋結構;③ 含錳巖系上覆黑色頁巖沉積時期主要為缺氧環(huán)境(Li Chao et al., 2012; Cheng Meng et al., 2018; Tan Zhaozhao et al., 2021)。近期研究表明,冰期向間冰期轉(zhuǎn)換階段,大陸風化作用強度并非是迅速升高的,而是存在著多次短期的波動(Huang Kangjun et al., 2016; Li Chao et al., 2020)。針對南華紀南華盆地的大陸風化強度變化,前人已開展了化學蝕變指數(shù)(CIA;齊靚等, 2015; 李明龍等, 2019; Wang Ping et al., 2020)、鋰同位素(δ7Li)(Wei Guangyi et al., 2020)及鋨同位素組成[n(187Os)/n(188Os);裴浩翔等, 2017]等方面的研究,并取得一定的認識。

3.1 化學蝕變指數(shù)(CIA)和鋰同位素(δ7Li)

大陸化學風化作用過程主要受控于濕度和溫度(Nesbitt and Young, 1982; Sheldon and Tabor, 2009)。在熱帶—亞熱帶潮濕氣候背景下,高沉淀、高氣溫及高產(chǎn)率的酸性表層水體有利于強烈風化作用(Schoenborn and Fedo, 2011),可將砂質(zhì)顆粒中的鉀長石有效的轉(zhuǎn)化為粘土礦物(Johnsson et al., 1991)。相比之下,在干旱和極地氣候背景下,有限的沉淀作用及低溫條件通常導致弱的化學風化作用,而且物理風化作用比化學風化作用更為有效,從而會形成化學上不成熟和相對欠風化的沉積物(Nesbitt and Young, 1989)。因此,Nesbitt和Young(1982)提出的化學蝕變指數(shù)(Chemical index of alteration;CIA)可作為評估土壤和沉積物化學風化強度的指標,并具有古氣候意義(Sheldon and Tabor, 2009; Zhai Lina et al., 2018; Wang Ping et al., 2020)。在不同氣候條件下,風化搬運之后形成的沉積物具有不同的CIA值(Nesbitt and Young, 1989;馮連君等,2006)。例如,炎熱濕潤氣候條件下形成的沉積物的CIA值通常為80~100;溫暖潮濕氣候條件下一般為70~80;寒冷干燥氣候條件下形成的沉積物的CIA值為55~70(馮連君等,2006)。但需要注意的是,沉積物的CIA值可能會受到物源組成、搬運過程中的水動力顛選作用及成巖期鉀交代作用等因素的影響(McLennan, 1993; Bahlburg and Dobrzinski, 2011; 李明龍等, 2021)。相比之下,鋰(Li)元素在自然界中主要以Li+離子形式存在,而且無化合價變化(茍龍飛等, 2017)。已有研究顯示,大陸風化作用可造成Li同位素的最大分餾,但生物作用幾乎不會造成Li同位素的分餾(茍龍飛等, 2017;Wei Guangyi et al., 2020)。在風化搬運過程中,輕的Li同位素(6Li)會在次生粘土礦物中優(yōu)先富集,而重的Li同位素(7Li)則會被搬運至海洋中,從而導致海相自生粘土礦物通常具有比陸源風化產(chǎn)物更高的δ7Li值(茍龍飛等, 2017;Wei Guangyi et al., 2020)。因此,海相細粒碎屑沉積巖中的Li同位素組成主要受控于其中陸源碎屑物質(zhì)及海相自生粘土礦物的比例及其Li同位素組成。

李明龍等(2021)開展了鄂西走馬地區(qū)鉆孔ZK701南華系大塘坡組及相鄰層段(下覆古城組和上覆南沱組)的CIA分析(圖4)。古城組頂部較低的CIA值(平均值為57.6;n=2)指示南華盆地Sturtian冰期晚期的氣候條件仍為寒冷干燥,并一直持續(xù)至間冰期大塘坡期早期(CIA平均值=59.1;n=2)。隨后,氣候發(fā)生短暫的波動變化,先由寒冷干燥轉(zhuǎn)為溫暖濕潤并很快變?yōu)楹涓稍铩V链筇疗轮型砥?,氣候逐漸由寒冷干燥恢復至溫暖濕潤,并一直保持至大塘坡晚期。之后,可能受Marinoan冰期的影響,氣候緩慢向寒冷干燥轉(zhuǎn)變。這種變化趨勢與鄂西走馬地區(qū)鉆孔ZK701(李明龍等, 2019)及黔東地區(qū)鉆孔ZK4207與ZK1408 (齊靚等, 2015)南華系的CIA值反映的氣候演化基本一致(圖4)。由于大塘坡組底部錳礦層礦物相主要為碳酸錳,可能會對CIA計算產(chǎn)生較強的影響。為了消除這種影響,Wang Ping 等(2020)對黔東地區(qū)鉆孔ZK2115錳礦層做了去碳酸鹽組分處理。盡管處理前后的CIA值存在差異(處理過的樣品值偏高),但在大塘坡組底部均存在一個低值區(qū)域,達到一個高值之后,再轉(zhuǎn)為振蕩的低值,并逐漸升高,指示氣候變化與ZK701類似的趨勢(圖4)。這種趨勢在黔東地區(qū)道坨剖面大塘坡組的δ7Li也有很好的響應(Wei Guangyi et al., 2020)。整體來看,δ7Li值自大塘坡組底部表現(xiàn)出升高→降低→再升高的趨勢,指示在大塘坡期早期寒冷干燥氣候背景下大陸風化作用逐漸減弱,然后在氣候轉(zhuǎn)為溫暖潮濕氣候背景下大陸風化作用增強,并在氣候再次轉(zhuǎn)為寒冷干燥狀態(tài)下大陸風化作用隨之減弱(圖4)。隨后,大塘坡期中晚期在溫暖潮濕背景下大陸風化作用振蕩變化,但維持一個較高的強度。

3.2 鋨同位素組成[n(187Os)/n(188Os)]

在氧化性海水中,Re和Os通常以ReO-4和HOsO-5等高價態(tài)的穩(wěn)定形式存在,在還原性海水中則會被還原成較難遷移的低價離子(Peucker-Ehrenbrink and Ravizza, 2000; Yamashita et al., 2007)。由于Re、Os的親有機性,富有機質(zhì)沉積巖在沉積過程中會吸附一定數(shù)量的低價Re、Os離子。另一方面,富有機質(zhì)沉積巖(如黑色頁巖)中Os元素主要為水成成因,從而導致富有機質(zhì)沉積巖具有與同時期海水相同的Os同位素比值[即初始n(187Os)/n(188Os)值;李超等, 2014]。因此,可通過Re-Os等時線年齡法獲得富有機質(zhì)沉積巖(如黑色頁巖)的初始n(187Os)/n(188Os)值,以此來約束同時期海水的Os同位素比值(Cohen et al., 1999; Peucker-Ehrenbrink and Ravizza, 2000; Cohen, 2004; Fu Yong et al., 2016; Wei Shuaichao et al., 2017; Rotich et al., 2020)。與Sr同位素一樣,地質(zhì)歷史時期海水中的Os同位素組成并非保持不變,其變化非常劇烈(Cohen, 2004)。海水中的Os同位素組成主要有3個物源:①河流輸入的高放射性的古老地殼風化Os[現(xiàn)今河流的n(187Os)/n(188Os):1.4~1.6;Peucker-Ehrenbrink and Ravizza, 2000];②洋中脊熱液蝕變輸入的非放射性Os[n(187Os)/n(188Os)約為0.127;Esser and Turekian, 1993; Cohen, 2004]; ③宇宙塵埃帶來的非放射性Os[n(187Os)/n(188Os)約為0.127;Shirey and Walker, 1998; Cohen, 2004]。整體來看,海水中的Os同位素主要是這3項來源的綜合結果,地質(zhì)歷史時期突發(fā)性地質(zhì)事件通常會改變不同端元的供給通量,從而可能造成海水Os同位素的相應波動(Ravizza and Turekian, 1989; Finlay et al., 2010)?,F(xiàn)今正常海水的n(187Os)/n(188Os)為1.05~1.06,反映氧化風化狀態(tài)下海水中的Os同位素組成主要來源于放射性陸殼的風化作用(Levasseur et al., 1998; Peucker-Ehrenbrink and Ravizza, 2000)。而太古宙海水的n(187Os)/n(188Os)僅為0.1~0.15(Anbar et al., 2007; Yang et al., 2009),則指示缺氧背景下海水中的Os同位素組成主要來源于洋中脊的熱液蝕變作用(Hannah et al., 2004; Kendall et al., 2009)。因此,海水中Os同位素特征的變化可很好的用來示蹤地質(zhì)歷史時期海洋和氣候環(huán)境的演化特征(van Acken et al., 2013; Gibson et al., 2019; Rotich et al., 2020)。

盡管前寒武紀海水的Os同位素組成數(shù)據(jù)較少,其n(187Os)/n(188Os)值整體表現(xiàn)出階梯式增大的趨勢(圖5),可能反映了大氣氧氣含量的幕式增加過程(Li Chao et al., 2012; Pufahl et al., 2014; Fan Haifeng et al., 2018; Cole et al., 2020; Uahengo et al., 2020; Wei Guangyi et al., 2021)。裴浩翔等(2017)獲得的貴州道坨錳礦大塘坡組底部黑色頁巖的初始n(187Os)/n(188Os)值為0.781,該值明顯低于現(xiàn)今正常海水的n(187Os)/n(188Os)值(圖5),指示大塘坡組底部沉積時期海水中Os同位素組成來源以海底洋中脊熱液蝕變?yōu)橹?,這也與當時南華盆地廣泛發(fā)育的裂谷活動相一致(杜遠生等, 2015; 周琦等, 2016)。另一方面,較低的初始n(187Os)/n(188Os)值也揭示了當時相對寒冷干燥氣候背景下相對較弱的風化強度。Rooney 等(2020)總結了華南、蒙古及加拿大Sturtian冰期地層的Os同位素化學地層(圖6),可見n(187Os)/n(188Os)值從Sturtian冰磧巖頂部的~1.4逐漸降至距冰磧巖~2.5 m的~0.4,隨后逐漸升高。n(187Os)/n(188Os)值的變化特征揭示了大陸風化作用強度的變化趨勢,即Sturtian冰期結束階段大陸風化作用相對較強,進入間冰期之后,大陸風化作用可能明顯減弱,隨后再次增強(Li Chao et al., 2012)。Sturtian冰期至間冰期大陸風化作用強度的變化特征與Marinoan冰期非常類似(Huang Kangjun et al., 2016)。

圖5 前寒武紀富有機質(zhì)沉積巖和準同生—早期成巖黃鐵礦的初始n(187Os)/n(188Os)值Fig. 5 The initial n(187Os)/n(188Os) of the Precambrian organic-rich sedimentary rocks and syndepositional—early diagenetic pyrite 引用數(shù)據(jù)來源于Kendall et al., 2009、Rooney et al., 2010, 2011、裴浩翔等, 2017 Data are compiled from Kendall et al., 2009, Rooney et al., 2010, 2011 and Pei Haoxiang et al., 2017&

圖6 Sturtian冰期結束后海水的Os同位素化學地層(修改自Rooney et al., 2020)Fig. 6 The composite Os isotope chemostratigraphy of the post-Sturtian successions (modified from Rooney et al., 2020) 引用數(shù)據(jù)來源于/Data from: Peucker-Ehrenbrink and Ravizza, 2000、Meisel et al., 2001、Rooney et al., 2014, 2015

4 錳礦床成礦模式及南華盆地南華系 錳礦成礦機理

4.1 錳礦床成礦模式

根據(jù)賦礦巖石類型的不同,我國錳礦床大致可分為有海相沉積型、火山—沉積型、碳酸鹽巖中熱水沉積型(或“層控”型)、與巖漿作用有關的熱液型、受變質(zhì)型及表生型6種類型(付勇等, 2014)。其中前3種類型主要為沉積型,中國與全球錳礦的分布和儲量數(shù)據(jù)顯示,這類錳礦床的工業(yè)價值最大,具有巨大的工業(yè)儲量(付勇等, 2014;Maynard, 2010, 2014),其成礦過程與大氣氧氣含量、海洋氧化還原狀態(tài)及盆地類型等密切相關(Roy, 2006;付勇等, 2014)。針對沉積型錳礦床,目前國內(nèi)外學者基于大量的實例研究提出了兩種較為流行的錳礦成因模式:① 富錳缺氧海水中直接沉淀成礦(圖7a);② 成巖孔隙水中轉(zhuǎn)化成礦(圖7b, c, d;董志國等, 2020)。

圖7 沉積型錳礦床主要成礦模式圖Fig. 7 The main metallogenic models of sedimentary manganese deposits 修改自/modified from: Force and Cannon, 1988; Huckriede and Meischner, 1996; Roy, 2006; Maynard, 2014

(1)富錳缺氧海水中直接沉淀成礦。錳是一種對氧化還原敏感的變價元素,其存在的形式主要受體系的Eh—pH條件控制(Roy, 2006)。在氧化水體中,錳主要以氧化物(Mn2O3)沉淀的形式存在;在還原性水體中,則主要以溶解態(tài)Mn2+離子形式存在(Krauskopf, 1957)。在現(xiàn)代海洋缺氧水體(如開放海洋的最小含氧帶或局限海洋分層水體的深部缺氧帶)中Mn2+相對集中,但大量實例研究和實驗模擬顯示,現(xiàn)代海洋缺氧水體的Mn2+濃度并不足以沉淀出碳酸錳(MnCO3)礦物(Mucci, 2004; 王霄等,2018)。另一方面,雖然鐵與錳的化學性質(zhì)比較類似,由于Mn2+/Mn(OH)3的還原電位比Fe2+/Fe(OH)3高(Lu Zunli et al., 2010),在適當?shù)倪€原條件下鐵和錳可發(fā)生分離(Krauskopf, 1957)。但大量的研究實例顯示,沉積型錳礦床中并不存在明顯的鐵錳分帶現(xiàn)象(Maynard, 2010)。因此,富錳缺氧海水中直接沉淀成礦模式還有待進一步的論證。

(2)成巖孔隙水中轉(zhuǎn)化成礦。這種成礦模式主要包括3個階段:① Mn2+離子在還原性缺氧水體中的富集;② 在氧化還原界面之上,運移過來的Mn2+離子被氧化形成錳氧化物(或氫氧化物)發(fā)生沉淀;③隨著上覆沉積物的堆積,沉積物—水界面之下逐漸演變?yōu)橐粋€還原的微環(huán)境,早期沉積的錳氧化物(或氫氧化物)被微生物還原成Mn2+離子,其與孔隙水中的碳酸根(CO32-)離子結合形成碳酸錳(即菱錳礦)發(fā)生沉淀(Roy, 2006; Maynard, 2014)。大量的研究實例顯示,這種成礦模式主要發(fā)生在具氧化還原分層結構的盆地中(Roy, 2006; Maynard, 2014; 董志國等, 2020; 余文超等, 2020)。其中海洋的化學性質(zhì)分層結構可形成于多種環(huán)境,如與極端地質(zhì)事件(如冰川事件等;圖7b)有關的水體循環(huán)受限、最小氧化帶的擴張(圖7c)及季節(jié)性富氧底流的輸入(圖7d)等(Force and Cannon, 1988; Li Chao et al., 2012; Maynard, 2014)。近年來,越來越多的學者認為,在沉積型錳礦床形成過程中微生物可能也起著非常重要的作用(Fan Delian et al., 1999; Yu Wenchao et al., 2019)。

4.2 南華盆地南華系錳礦成礦機理

在元古宙時期,地球大氣圈逐漸發(fā)生氧化,并對地球表層環(huán)境、海洋化學條件和元素循環(huán)過程等產(chǎn)生了深遠的影響(Kump, 2008; Lyons et al., 2014; Cole et al., 2020)。大量的研究顯示,大氣圈氧氣含量的增加并不是一個漸進的過程,而是在兩次快速的增氧之后才達到現(xiàn)今的水平(Canfield, 2005; Lyons et al., 2014)。它們分別為2.1~2.4 Ga左右的大氧化事件(Great Oxidation Event;GOE)和0.75~0.58 Ga左右的新元古代氧化事件(Neoproterozoic Oxygenation Event;NOE)(Kump, 2008; Lyons et al., 2014)。在大氣圈增氧過程中,新元古代成冰紀地球上發(fā)生了幾次全球性的冰川事件,冰雪甚至覆蓋率中低緯度和磁道地區(qū)(即“雪球地球”;Hoffman et al., 1998)。其中可進行全球?qū)Ρ鹊膬纱伪跒镾turtian冰期和Marinoan冰期,分別對應華南地區(qū)的江口冰期和南沱冰期(趙彥彥和鄭永飛, 2011; 張啟銳和蘭中伍, 2016; 曠紅偉等, 2019)。在兩次冰期之間的間冰期期間,華南地區(qū)南華盆地沉積了深水相大塘坡組(或相當層位),主要分布在黔—湘—渝等地區(qū)。

5 結論

(1)南華盆地Sturtian冰期的啟動和結束與全球其他地區(qū)基本一致,分別發(fā)生在~717 Ma和~660 Ma之前,持續(xù)時間約為57 Ma;且南華盆地南華系大塘坡錳礦大約形成于~660 Ma之前。

(2)在Rodinia超大陸裂解作用的影響下,南華裂谷盆地內(nèi)部發(fā)育一系列由同沉積斷層控制的地壘—地塹次級盆地,為錳質(zhì)的沉淀提供了可容空間;同時,深部熱液為大塘坡錳礦的形成提供了大量的成礦物質(zhì),并對大塘坡錳礦的發(fā)育具有明顯的控制作用。

(3)南華盆地Sturtian冰期晚期至間冰期大塘坡期早期的氣候主要為寒冷干燥,隨后轉(zhuǎn)為溫暖濕潤并很快變?yōu)楹涓稍?。至大塘坡期中晚期,氣候逐漸由寒冷干燥恢復至溫暖濕潤,并一直保持至大塘坡期晚期。

(4)Sturtian冰期結束后,南華盆地表層海水逐漸氧化,深部沉積水體出現(xiàn)局部間歇式氧化環(huán)境,熱液和陸源輸入的Mn2+被氧化為MnO2發(fā)生沉淀,并在早期成巖階段在微生物的作用下最終形成菱錳礦。

致謝:感謝評審專家和責任編輯對本文修改提出的寶貴建議。

參 考 文 獻/References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

蔡娟娟, 崔曉莊, 蘭中伍, 王劍, 江卓斐, 鄧奇, 卓皆文, 陳風霖, 江新勝. 2018. 華南揚子陸塊成冰紀冰川作用的啟動時限及其全球?qū)Ρ? 古地理學報, 20(1): 65~86.

董志國, 張連昌, 王長樂, 張幫祿, 彭自棟, 朱明田, 馮京, 謝月橋. 2020. 沉積碳酸錳礦床研究進展及有待深入探討的若干問題. 礦床地質(zhì), 39(2): 237~255.

杜遠生, 周琦, 余文超, 王萍, 袁良軍, 齊靚, 郭華, 徐源. 2015. Rodinia超大陸裂解、Sturtian冰期事件和揚子地塊東南緣大規(guī)模錳成礦作用. 地質(zhì)科技情報, 34(6): 1~7.

杜遠生, 周琦, 余文超, 張亞冠, 王萍, 覃永軍, 龐大衛(wèi). 2018. 貴州南華紀—震旦紀沉積大地構造及其對沉積礦產(chǎn)的控制作用. 貴州地質(zhì), 35(4): 282~290.

馮連君, 儲雪蕾, 張同鋼, 黃晶. 2006. 蓮沱砂巖——南華大冰期前氣候轉(zhuǎn)冷的沉積記錄. 巖石學報, 22(9): 2387~2393.

付勇, 徐志剛, 裴浩翔, 江冉. 2014. 中國錳礦成礦規(guī)律初探. 地質(zhì)學報, 88(12): 2192~2207.

高林志, 陸濟璞, 丁孝忠, 王漢榮, 劉燕學, 李江. 2013. 桂北地區(qū)新元古代地層凝灰?guī)r鋯石U-Pb年齡及地質(zhì)意義. 中國地質(zhì), 40(5): 1443~1452.

茍龍飛, 金章東, 賀茂勇. 2017. 鋰同位素示蹤大陸風化: 進展與挑戰(zhàn). 地球環(huán)境學報, 8(2): 89~102.

何志威, 楊瑞東, 高軍波, 程偉, 劉帥, 張峰瑋. 2014. 貴州松桃道坨錳礦含錳巖系地球化學特征和沉積環(huán)境分析. 地質(zhì)論評, 60(5): 1061~1075.

曠紅偉, 柳永清, 耿元生, 白華青, 彭楠, 范正秀, 宋換新, 夏曉旭, 王玉沖, 陳驍帥. 2019. 中國中新元古代重要沉積地質(zhì)事件及其意義. 古地理學報, 21(1): 1~30.

李超, 屈文俊, 王登紅, 周利敏, 杜安道, 付勇, 裴浩翔. 2014. Re-Os同位素在沉積地層精確定年及古環(huán)境反演中的應用進展. 地球?qū)W報, 35(4): 405~414.

李明龍, 陳林, 田景春, 鄭德順, 許克元, 方喜林, 曹文勝, 趙軍, 冉中夏. 2019. 鄂西走馬地區(qū)南華紀古城期—南沱早期古氣候和古氧相演化: 來自細碎屑巖元素地球化學的證據(jù). 地質(zhì)學報, 93(9): 2158~2170.

李明龍, 楊波涌, 鄭德順, 陳林, 田景春. 2021. 鄂西走馬地區(qū)南華紀大塘坡間冰期古氣候研究. 地質(zhì)論評, 67(1): 39~55.

凌云, 馬志鑫, 楊弘忠, 劉振, 劉偉, 張禮敏, 李波. 2016. 重慶秀山南華紀大塘坡期沉積相分析與錳礦成礦. 地質(zhì)科技情報, 35(6): 150~156.

裴浩翔, 付勇, 李超, 李延河, 安正澤. 2017. 貴州道坨錳礦成礦時代及環(huán)境的Re-Os同位素證據(jù). 科學通報, 62(Z2): 3346~3355.

裴浩翔, 李延河, 付勇, 占朋才. 2020. 貴州銅仁高地“大塘坡式”錳礦的成礦機制——硫、碳同位素制約. 地球?qū)W報, 41(5): 651~662.

齊靚, 余文超, 杜遠生, 周琦, 郭華, 王佳武, 王萍, 徐源. 2015. 黔東南華紀鐵絲坳期—大塘坡期古氣候的演變: 來自CIA的證據(jù). 地質(zhì)科技情報, 34(6): 47~57.

覃永軍, 杜遠生, 牟軍, 盧定彪, 龍建喜, 王安華, 張厚松 ,曾昌興. 2015. 黔東南地區(qū)新元古代下江群的地層年代及其地質(zhì)意義. 地球科學(中國地質(zhì)大學學報), 40(7): 1107~1131.

史富強, 朱祥坤, 閆斌, 劉燕群, 張飛飛, 趙妮娜, 褚明愷. 2016. 湖南湘潭錳礦的地球化學特征及成礦機制. 巖石礦物學雜志, 35(3): 443~456.

孫海清, 黃建中, 江新勝, 羅來, 馬慧英, 伍皓. 2013. 揚子東南緣“南華紀”盆地演化——來自新元古代花崗巖的年齡約束. 中國地質(zhì), 40(6): 1725~1735.

汪正江, 王劍, 江新勝, 孫海清, 高天山, 陳建書, 邱艷生, 杜秋定, 鄧奇, 楊菲. 2015. 華南揚子地區(qū)新元古代地層劃分對比研究新進展. 地質(zhì)論評, 61(1): 1~22.

王富良, 付勇, 江冉, 周文喜, 葛枝華, 魏帥超, 梁厚鵬, 張鵬. 2016. Re-Os同位素在晚新元古代至早寒武世測年及古環(huán)境演繹中的應用進展. 巖礦測試, 35(5): 530~541.

王劍, 劉寶珺, 潘桂棠. 2001. 華南新元古代裂谷盆地演化——Rodinia超大陸解體的前奏. 礦物巖石, 21(3): 135~145.

王孝磊, 周金城, 邱檢生, 高劍峰. 2004. 湘東北新元古代強過鋁花崗巖的成因: 年代學和地球化學證據(jù). 地質(zhì)論評, 50(1): 65~76.

王自強, 高林志, 丁孝忠, 黃志忠. 2012. “江南造山帶”變質(zhì)基底形成的構造環(huán)境及演化特征. 地質(zhì)論評, 58(3): 401~413.

尹崇玉, 王硯耕, 唐烽, 萬渝生, 王自強, 高林志, 邢裕盛, 劉鵬舉. 2006. 貴州松桃南華系大塘坡組凝灰?guī)r鋯石SHRIMP Ⅱ U-Pb年齡. 地質(zhì)學報, 80(2): 273~278.

余文超, 杜遠生, 周琦, 彭頭平, 王萍, 袁良軍, 徐源, 潘文, 謝小峰, 齊靚. 2016a. 黔東松桃南華系大塘坡組錳礦層物源: 來自Sr同位素的證據(jù). 地球科學, 41(7): 1110~1120.

余文超, 杜遠生, 周琦, 王萍, 齊靚, 徐源, 靳松, 潘文, 袁良軍, 謝小峰, 楊炳南. 2020. 華南成冰紀“大塘坡式”錳礦沉積成礦作用與重大地質(zhì)事件的耦合關系. 古地理學報, 22(5): 855~871.

余文超, 杜遠生, 周琦, 王萍, 袁良軍, 徐源, 潘文, 謝小峰, 齊靚, 焦良軒. 2016b. 黔東松桃地區(qū)大塘坡組LA-ICP-MS鋯石U-Pb年齡及其地質(zhì)意義. 地質(zhì)論評, 62(3): 539~549.

張飛飛, 朱祥坤, 高兆富, 程龍, 彭乾云, 楊德智. 2013. 黔東北西溪堡錳礦的沉淀形式與含錳層位中黃鐵礦異常高δ34S值的成因. 地質(zhì)論評, 59(2): 274~286.

張啟銳, 蘭中伍. 2016. 南華系、蓮沱組年齡問題的討論. 地層學雜志, 40(3): 297~301.

張予杰, 安顯銀, 劉石磊, 高永娟, 鄭杰, 桑永恒. 2020. 黔東北地區(qū)大塘坡組早期含錳沉積充填、巖相古地理與錳礦的關系. 中國地質(zhì), 47(3): 607~626.

趙軍紅, 王偉, 劉航. 2015. 揚子東南緣新元古代地質(zhì)演化. 礦物巖石地球化學通報, 34(2): 227~233.

趙彥彥, 鄭永飛. 2011. 全球新元古代冰期的記錄和時限. 巖石學報, 27(2): 545~565.

趙志強, 凌云, 李核良, 蔣凱, 李杰, 蔡柯柯, 廖洪. 2019. 重慶秀山小茶園大塘坡組含錳巖系地球化學特征及地質(zhì)意義. 礦物巖石地球化學通報, 38(2): 330~341.

周琦, 杜遠生, 覃英. 2013. 古天然氣滲漏沉積型錳礦床成礦系統(tǒng)與成礦模式——以黔湘渝毗鄰區(qū)南華紀“大塘坡式”錳礦為例. 礦床地質(zhì), 32(3): 457~466.

周琦, 杜遠生, 袁良軍, 張遂, 余文超, 楊勝堂, 劉雨. 2016. 黔湘渝毗鄰區(qū)南華紀武陵裂谷盆地結構及其對錳礦的控制作用. 地球科學, 41(2): 177~188.

朱祥坤, 彭乾云, 張仁彪, 安正澤, 張飛飛, 閆斌, 李津, 高兆富, 覃英, 潘文. 2013. 貴州省松桃縣道坨超大型錳礦床地質(zhì)地球化學特征. 地質(zhì)學報, 87(9): 1335~1348.

鄒光均, 黃建中, 凌躍新, 譚仕敏, 曹創(chuàng)華, 黃革非, 文春華. 2020. 湘黔渝毗鄰區(qū)南華紀巖相古地理及沉積盆地演化. 地球?qū)W報, 41(2): 207~218.

Allen P A, Bowring S, Leather J, Brasier M, Cozzi A, Grotzinger J P, McCarron G, Amthor J J. 2002. Chronology of Neoproterozoic glaCIAtions: New insights from Oman. International Sedimentological Congress,16th, Johannesburg, South Africa, July 8~12, Abstract Volume: 7~8.

Anbar A D, Duan Y, Lyons T W, Arnold G L, Kendall B, Creaser R A, Kaufman A J, Gordon G W, Scott C, Garvin J, Buick R. 2007. A whiff of oxygen before the great oxidation event? Science, 317(5846): 1903~1906.

Bahlburg H, Dobrzinski N. 2011. A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions, In: Arnaud E, Halverson G P, Shield-Zhou G, Geological T (Eds.), Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs, 36: 81~92.

Bowring S A, Grotzinger J P, Condon D J, Ramezani J, Newall M J, Allen P A. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307(10): 1097~1145.

Cai Juanjuan, Cui Xiaozhuang, Lan Zhongwu, Wang Jian, Jiang Zhuofei, Deng Qi, Zhuo Jiewen, Chen Fenglin, Jiang Xinsheng. 2018&. Onset time and global correlation of the Cryogenian glaciations in Yangtze Block, South China. Journal of Palaeogeography (Chinese Edition), 20(1): 65~86.

Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33(1): 1~36.

Chen Xi, Li Da, Ling Hongfei, Jiang Shaoyong. 2008. Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment. Progress in Natural Science, 18(4): 421~429.

Cheng Meng, Li Chao, Chen Xi, Zhou Lian, Algeo T J, Ling Hongfei, Feng Lianjun, Jin Chengsheng. 2018. Delayed Neoproterozoic oceanic oxygenation: Evidence from Mo isotopes of the Cryogenian Datangpo Formation. Precambrian Research, 319: 187~197.

Cohen A S. 2004. The rhenium-osmium isotope system: applications to geochronological and palaeoenvironmental problems. Journal of the Geological Society, 161(4): 729~734.

Cohen A S, Coe A L, Bartlett J M, Hawkesworth C J. 1999. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth and Planetary Science Letters, 167(3~4): 159~173.

Cole D B, Mills D B, Erwin D H, Sperling E A, Porter S M, Reinhard C T, Planavsky N J. 2020. On the co-evolution of surface oxygen levels and animals. Geobiology, 18(3): 260~281.

Cox G M, Halverson G P, Minarik W G, Le Heron D P, Macdonald F A, Bellefroid E J, Strauss J V. 2013. Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance. Chemical Geology, 362: 232~249.

Cox G M, Isakson V, Hoffman P F, Gernon T M, Schmitz M D, Shahin S, Collins A S, Preiss W, Blades M L, Mitchell R N, Nordsvan A. 2018. South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation. Precambrian Research, 315: 257~263.

Creaser R A, Sannigrahi P, Chacko T, Selby D. 2002. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochimica et Cosmochimica Acta, 66(1): 3441~3452.

Dong Zhiguo, Zhang Llianchang, Wang Changle, Zhang Banglu, Peng Zidong, Zhu Mingtian, Feng Jing, Xie Yueqiao. 2020&. Progress and problems in understanding sedimentary manganese carbonate metallogenesis. Mineral Deposits, 39(2): 237~255.

Du Yuansheng, Zhou Qi, Yu Wenchao, Wang Ping, Yuan Liangjun, Qi Liang, Guo Hua, Xu Yuan. 2015&. Linking the Cryogenian manganese metallogenic process in Southeast margin of Yangtze Block to break-up of Rodinia Supercontinent and Sturtian glaciation. Geological Science and Technology Information, 34(6): 1~7.

Du Yuansheng, Zhou Qi, Yu Wenchao, Zhang Yaguan, Wang Ping, Qin Yongjun, Pang Dawei. 2018&. Sedimentary geotectonics and its control function of sedimentary mineral in Nanhua Period—Sinian Period in Guizhou. Guizhou Geology, 35(4): 282~290.

Esser B K, Turekian K K. 1993. The osmium isotopic composition of the continental crust. Geochimica et Cosmochimica Acta, 57(13): 3093~3104.

Evans D V D, Lund K, Aleinikoff J N, Fanning C M. 1997. SHRIMP U-Pb age of late Proterozoic volcanism in central Idaho. In Geological Society of America Abstracts with Programs, 29(6): A196.

Fan Delian, Ye Jie, Yin Leiming, Zhang Rufan. 1999. Microbial processes in the formation of the Sinian Gaoyan manganese carbonate ore, Sichuan Province, China. Ore Geology Reviews, 15(1~3): 79~93.

Fan Haifeng, Wen Hanjie, Han Tao, Zhu Xiangkun, Feng Lianjun, Chang Huajin. 2018. Oceanic redox condition during the late Ediacaran (551~541 Ma), South China. Geochimica et Cosmochimica Acta, 238: 343~356.

Fanning C M, Link P. 2008. Age constraints for the Sturtian glaciation: data from the Adelaide Geosyncline, South Australia and Pocatello Formation, Idaho, USA, In: Selwyn Symposium. The Geological Society of Australia, vol. Abstract, 57~62.

Fanning C M, Link P K. 2004. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology, 32(10): 881~884.

Fanning C M, Link P K. 2006. Constraints on the timing of the Sturtian glaciation from southern Australia: i.e. for the true Sturtian GSA. Geological Society of America Abstracts with Programs, 38(7): 115.

Feng Lianjun, Chu Xuelei, Zhang Tonggang, Huang Jing. 2006&. Liantuo sandstones: sedimentary records under cold climate before the Nanhua big glaciations. Acta Petrologica Sinica, 22(9): 2387~2393.

Ferri F, Rees C J, Nelson J L, Legun A S. 1999. Geology and mineral deposits of the northern Kechika Trough between Gataga River and the 60th paralle. British Columbia Ministry of Energy and Mines, Bulletin, 107: 1~122.

Finlay A J, Selby D, Gr?cke D R. 2010. Tracking the Hirnantian glaciation using Os isotopes. Earth and Planetary Science Letters, 293(3~4): 339~348.

Force E R, Cannon W F. 1988. Depositional model for shallow-marine manganese deposits around black shale basins. Economic Geology, 83(1): 93~117.

Fu Yong, Dong Lin, Li Chao, Qu Wenjun, Pei Haoxiang, Qiao Wenlang, Shen Bing. 2016. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang formation. Journal of Earth Science, 27(2): 271~281.

Fu Yong,Xu Zhigang,Pei Haoxiang,Jiang Ran. 2014&. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica, 88(12): 2192~2207.

Gao Linzhi, Lu Jipu, Ding Xiaozhong, Wang Hanrong, Liu Yanxue, Li Jiang. 2013&. Zircon U-Pb dating of Neoproterozoic tuff in South Guangxi and its implications for stratigraphic correlation. Geology in China, 40(5): 1443~1452.

Gibson T M, W?rndle S, Crockford P W, Bui T H, Creaser R A, Halverson G P. 2019. Radiogenic isotope chemostratigraphy reveals marine and nonmarine depositional environments in the late Mesoproterozoic Borden Basin, Arctic Canada. GSA Bulletin, 131(11~12): 1965~1978.

Gou Longfei, Jin Zhangdong, He Maoyong. 2017&. Using lithium isotopes traces continental weathering: Progresses and challenges. Journal of Earth Environment, 8(2): 89~102.

Hannah J L, Bekker A, Stein H J, Markey R J, Holland H D. 2004. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth and Planetary Science Letters, 225(1~2): 43~52.

He Zhiwei, Yang Ruidong, Gao Junbo, Cheng Wei, Liu Shuai, Zhang Fengwei. 2014&. Geochemical characteristics and sedimentary environment of manganese-bearing rock series of Daotuo,manganese deposit,Songtao County of Guizhou Province. Geological Review, 60(5): 1061~1075.

Hoffman P F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252(5011): 1409~1412.

Hoffman P F, Abbot D S, Ashkenazy Y, Benn D I, Brocks J J, Cohen P A, Cox G M, Creveling J R, Donnadieu Y, Erwin D H, Fairchild I J, Ferreira D, Goodman J C, Halverson G P, Jansen M F, Le Hir G, Love G D, Macdonald F A, Maloof A C, Partin C A, Ramstein G, Rose B E J, Rose C V, Sadler P M, Tziperman E, Voigt A, Warren S G. 2017. Snowball Earth climate dynamics and Cryogenian geology—geobiology. Science Advances, 3(11): e1600983.

Doi: 10.1126/sciadv.1600983.

Hoffman P F, Kaufman A J, Halverson G P, Schrag D P. 1998. A Neoproterozoic snowball earth. Science, 281(5381): 1342~1346.

Hoffman P F, Li Z X. 2009. A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3~4): 158~172.

Hoffman P F, Schrag D P. 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14(3): 129~155.

Huang Kangjun, Teng Fangzhen, Shen Bing, Xiao Shuhai, Lang Xianguo, Ma Haoran, Fu Yong, Peng Yongbo. 2016. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. Proceedings of the National Academy of Sciences, 113(52): 14904~14909.

Huang Taiyu, Chen Daizhao, Fu Yong, Yeasmin Rumana, Guo Chuan. 2019. Development and evolution of a euxinic wedge on the ferruginous outer shelf of the early Cambrian Yangtze sea. Chemical Geology, 524: 259~271.

Huckriede H, Meischner D. 1996. Origin and environment of manganese-rich sediments within black-shale basins. Geochimica et Cosmochimica Acta, 60(8): 1399~1413.

Jiang Zhuofei, Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, Zhuo Jiewen, Xiong Guoqing, Lu Junze, Wu Hao, Wei Yanan. 2016. New zircon U-Pb ages of the pre-Sturtian rift successions from the western Yangtze Block, South China and their geological significance. International Geology Review, 58(9): 1064~1075.

Johnsson M J, Stallard R F, Lundberg N. 1991. Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia. Geological Society of America Bulletin, 103(12): 1622~1647.

Kendall B, Creaser R A, Selby D. 2006. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation. Geology, 34(9): 729~732.

Kendall B, Creaser R A, Selby D. 2009.187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks. Geological Society, London, Special Publications, 326(1): 85~107.

Kendall B S, Creaser R A, Ross G M, Selby D. 2004. Constraints on the timing of Marinoan “Snowball Earth” glaciation by187Re-187Os dating of a Neoproterozoic, post-glacial black shale in Western Canada. Earth and Planetary Science Letters, 222(3~4): 729~740.

Krauskopf K B. 1957. Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta, 12(1~2): 61~84.

Kuang Hongwei, Liu Yongqing, Geng Yuansheng, Bai Huaqing, Peng Nan, Fan Zhengxiu, Song Huanxin, Xia Xiaoxu, Wang Yuchong, Chen Xiaoshuai. 2019&. Important sedimentary geological events of the Meso—Neoproterozoic and their significance. Journal of Palaeogeography (Chinese Edition), 21(1): 1~30.

Kump L R. 2008. The rise of atmospheric oxygen. Nature, 451(7176): 277~278.

Lan Zhongwu, Li Xianhua, Zhu Maoyan, Chen Zhongqiang, Zhang Qirui, Li Qiuli, Lu Dingbiao, Liu Yu, Tang Guoqiang. 2014. A rapid and synchronous initiation of the wide spread Cryogenian glaciations. Precambrian Research, 255: 401~411.

Lan Zhongwu, Li Xianhua, Zhu Maoyan, Zhang Qirui, Li Qiuli. 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb zircon age constraints and regional and global significance. Precambrian Research, 263: 123~141.

Lan Zhongwu, Huyskens M H, Lu Kai, Li Xianhua, Zhang Gangyang, Lu Dingbiao, Yin Qingzhu. 2020. Toward refining the onset age of Sturtian glaciation in South China. Precambrian Research, 338: 105555.

Doi: 10.1016/j.precamres.2019.105555.

Levasseur S, Birck J L, Allègre C J. 1998. Direct measurement of femtomoles of osmium and the187Os/186Os ratio in seawater. Science, 282(5387): 272~274.

Li Chao, Love G D, Lyons T W, Scott C T, Feng Lianjun, Huang Jing, Chang Huajin, Zhang Qirui, Chu Xuelei. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331~332: 246~256.

Li Chao, Qu Wenjun, Wang Denghong, Zhou Limin, Du Andao, Fu Yong, Pei Haoxiang. 2014&. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of paleoenvironment. Acta Geoscientica Sinica, 35(4): 405~414.

Li Chao, Zhang Zihu, Jin Chengsheng, Cheng Meng, Wang Haiyang, Huang Junhua, Algeo T J. 2020. Spatiotemporal evolution and causes of marine euxinia in the early Cambrian Nanhua Basin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109676.

Doi: 10.1016/j.palaeo.2020.109676.

Li Jian, Hao Cuiguo, Wang Zhihong, Dong Lin, Wang Yiwu, Huang Kangjun, Lang Xianguo, Huang Tianzheng, Yuan Honglin, Zhou Chuanming, Shen Bing. 2020. Continental weathering intensity during the termination of the Marinoan Snowball Earth: Mg isotope evidence from the basal Doushantuo cap carbonate in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109774.

Doi: 10.1016/j.palaeo.2020.109774.

Li Qiwei, Zhao Junhong. 2020. Amalgamation between the Yangtze and Cathaysia blocks in South China: Evidence from the ophiolite geochemistry. Precambrian Research, 350: 105893.

Doi: 10.1016/j.precamres.2020.105893.

Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1~2): 179~210.

Li Minglong, Chen Lin, Tian Jingchun, Zheng Deshu, Xu Keyuan, Fang Xilin, Cao Wensheng, Zhao Jun, Ran Zhongxia. 2019&. Paleoclimate and paleo- oxygen evolution during the Gucheng Period—early Nantuo Period of Nanhua System in the Zouma area, West Hubei: evidence from elemental geochemistry of fine clastic rocks. Acta Geologica Sinica, 93(9): 2158~2170.

Li Minglong, Yang Boyong, Zheng Deshun, Chen Lin, Tian Jingchun. 2021&. Study on the paleoclimate during the Datangpo interglacial stage of the Nanhua Period in the Zouma area, western Hubei Province, Geological Review, 67(1): 39~55.

Ling Yun,, Ma Zhixin, Yang Hongzhong, Liu Zhen, Liu Wei, Zhang Limin, Li Bo. 2016&. Sedimentary facies analysis of Datangpo Formation and manganese minerallization at Xiushan, Chongqing. Geological Science and Technology Information, 35(6): 150~156.

Lu Zunli, Jenkyns H C, Rickaby R E M. 2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology, 38(12): 1107~1110.

Lund K, Aleinikoff J N, Evans K V, Fanning C M. 2003. SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geological Society of America Bulletin, 115(3): 349~372.

Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488): 307~315.

Ma Zhixin, Liu Xiting, Yu Wenchao, Du Yuansheng, Du Qiuding. 2019. Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin: Insight from the basal Datangpo Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 529: 39~52.

Macdonald F A, Schmitz M D, Crowley J L, Roots C F, Jones D S, Maloof A C, Strauss J V, Cohen P A, Johnston D T, Schrag D P. 2010. Calibrating the Cryogenian. Science, 327(5970): 1241~1243.

Macdonald F A, Schmitz M D, Strauss J V, Halverson G P, Gibson T M, Eyster A, Cox G, Mamrol P, Crowley J L. 2018. Cryogenian of Yukon. Precambrian Research, 319: 114~143.

Maynard J B. 2010. The chemistry of manganese ores through time: A signal of increasing diversity of Earth-surface environments. Economic Geology, 105(3): 535~552.

Maynard J B. 2014. Manganiferous sediments, rocks, and ores, In: Holland H D, Turekian K K (Eds.), Treatise on geochemistry (Second Edition). Oxford: Elsevier: 327~349.

McLennan S M. 1993. Weathering and global denudation. The Journal of Geology, 101(2): 295~303.

Meisel T, Walker R J, Irving A J, Lorand J P. 2001. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochimica et Cosmochimica Acta, 65(8): 1311~1323.

Mucci A. 2004. The behavior of mixed Ca—Mn carbonates in water and seawater: controls of manganese concentrations in marine porewaters. Aquatic Geochemistry, 10(1): 139~169.

Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715~717.

Nesbitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2): 129~147.

Pei Haoxiang, Fu Yong, Li Chao, Li Yanhe, An Zhengze. 2017&. Mineralization age and metallogenic environment of Daotuo manganese deposits in Guizhou: Evidence from Re-Os isotopes. Chinese Science Bulletin, 62(28~29): 3346~3355.

Pei Haoxiang, Li Yanhe, Fu Yong, Zhan Pengcai. 2020&. Metallogenic mechanism of “Datangpo Type” manganese deposits in Gaodi, Guizhou Province: Constrains from sulfur and carbon isotopes. Acta Geoscientica Sinica, 41(5): 651~662.

Peucker-Ehrenbrink B, Ravizza G. 2000. The marine osmium isotope record. Terra Nova, 12(5): 205~219.

Pufahl P K, Anderson S L, Hiatt E E. 2014. Dynamic sedimentation of Paleoproterozoic continental margin iron formation, Labrador Trough, Canada: Paleoenvironments and sequence stratigraphy. Sedimentary Geology, 309: 48~65.

Qin Yongjun, Du Yuansheng, Mou Jun, Lu Dingbiao, Long Jianxi, Wang Anhua, Zhang Housong, Zeng Changxing. 2015&. Geochronology of Neoproterozoic Xiajiang Group in Southeast Guizhou, South China, and its geological implication. Earth Science——Journal of China University of Geosciences, 40(7): 1107~1131.

Rasmussen B. 2005. Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Science Reviews, 68(3~4): 197~243.

Ravizza G, Turekian K K. 1989. Application of the187Re-187Os system to black shale geochronometry. Geochimica et Cosmochimica Acta, 53(12): 3257~3262.

Rooney A D, Chew D M, Selby D. 2011. Re-Os geochronology of the Neoproterozoic—Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re-Os systematics. Precambrian Research, 185(3~4): 202~214.

Rooney A D, Macdonald F A, Strauss J V, Dudas F O, Hallmann C, Selby D. 2014. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. Proceedings of the National Academy of Sciences, 111(1): 51~56.

Rooney A D, Selby D, Houzay J-P, Renne P R. 2010. Re-Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: Implications for basin-wide correlations and Re-Os organic-rich sediments systematics. Earth and Planetary Science Letters, 289(3~4): 486~496.

Rooney A D, Strauss J V, Brandon A D, Macdonald F A. 2015. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology, 43(5): 459~462.

Rooney A D, Yang C, Condon D J, Zhu M, Macdonald F A. 2020. U-Pb and Re-Os geochronology tracks stratigraphic condensation in the Sturtian snowball Earth aftermath. Geology, 48(6): 625~629.

Rotich E K, Handler M R, Naeher S, Selby D, Hollis C J, Sykes R. 2020. Re-Os geochronology and isotope systematics, and organic and sulfur geochemistry of the middle—late Paleocene Waipawa Formation, New Zealand: Insights into early Paleogene seawater Os isotope composition. Chemical Geology, 536: 119473.

Doi: 10.1016/j.chemgeo.2020.119473.

Roy S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Science Reviews, 77(4): 273~305.

Sahoo S K, Planavsky N J, Jiang G, Kendall B, Owens J D, Wang X, Shi X, Anbar A D, Lyons T W. 2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14(5): 457~468.

Schoenborn W A, Fedo C M. 2011. Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California. Chemical Geology, 285(1~4): 231~255.

Semikhatov M A. 1991. General problems of Proterozoic stratigraphy in the USSR Soviet Science Review G (Geology), 1: 1~192.

Sheldon N D, Tabor N J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95(1~2): 1~52.

Shi Fuqiang, Zhu Xiangkun, Yan Bin, Liu Yanqun, Zhang Feifei, Zhao Nina, Chu Mingkai. 2016&. Geochemical charateristics and metallogenic mechanism of the Xiangtan manganese ore deposits in Hunan Province. Acta Petrologica et Mineralogica, 35(3): 443~456.

Shirey S B, Walker R J. 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences, 26(1): 423~500.

Sun Haiqing, Huang Jianzhong, Jiang Xinsheng, Luo Lai, Ma Huiying, Wu Hao. 2013&. The evolution of “Nanhuaian” rift basin based on the southeastern margin of Yangtze platform: Age constraints from the Neoproterozoic granites. Geology in China, 40(6): 1725~1735.

Song Gaoyuan, Wang Xinqiang, Shi Xiaoying, Jiang Ganqing. 2017. New U-Pb age constraints on the upper Banxi Group and synchrony of the Sturtian glaciation in South China. Geoscience Frontiers, 8(5): 1161~1173.

Tan Zhaozhao, Jia Wanglu, Li Jie, Yin Lu, Wang Susu, Wu Jinxiang, Song Jianzhong, Peng Ping’an. 2021. Geochemistry and molybdenum isotopes of the basal Datangpo Formation: Implications for ocean-redox conditions and organic matter accumulation during the Cryogenian interglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 563: 110169.

Doi: 10.1016/j.palaeo.2020.110169.

Tripathy G R, Singh S K. 2015. Re-Os depositional age for black shales from the Kaimur Group, Upper Vindhyan, India. Chemical Geology, 413: 63~72.

Uahengo C I, Shi X, Jiang G, Vatuva A. 2020. Transient shallow-ocean oxidation associated with the late Ediacaran Nama skeletal fauna: Evidence from iodine contents of the Lower Nama Group, southern Namibia. Precambrian Research, 343: 105732.

Doi: 10.1016/j.precamres.2020.105732.

van Acken D, Thomson D, Rainbird R H, Creaser R A. 2013. Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada: Rhenium-osmium dating of black shales from the Wynniatt and Boot Inlet Formations. Precambrian Research, 236: 124~131.

Wang Dan, Zhu Xiangkun, Zhao Nina, Yan Bin, Li Xianhua, Shi Fuqiang, Zhang Feifei. 2019. Timing of the termination of Sturtian glaciation: SIMS U-Pb zircon dating from South China. Journal of Asian Earth Sciences, 177: 287~294.

Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122(1~4): 141~158.

Wang Ping, Algeo T J, Zhou Q, Yu W, Du Y, Qin Y, Xu Y, Yuan L, Pan W. 2019. Large accumulations of34S-enriched pyrite in a low-sulfate marine basin: The Sturtian Nanhua Basin, South China. Precambrian Research, 335: 105504.

Doi: 10.1016/j.precamres.2019.105504.

Wang Ping, Du Yuansheng, Yu Wenchao, Algeo T J, Zhou Qi, Xu Yuan, Qi Liang, Yuan Liangjun, Pan Wen. 2020. The chemical index of alteration (CIA) as a proxy for climate change during glacial—interglacial transitions in Earth history. Earth-Science Reviews, 201: 103032.

Doi: 10.1016/j.earscirev.2019.103032.

Wang Zhengjiang, Wang Jian, Jiang Xinsheng, Sun Haiqing, Gao Tianshan, Chen Jianshu, Qiu Yansheng, Du Qiuding, Deng Qi, Yang Fei. 2015&. New progress for the stratigraphic division and correlation of Neoproterozoic in Yangtze Block, South China. Geological Review, 61(1): 1~22.

Wang Fuliang, Fu Yong, Jiang Ran, Zhou Wenxi, Ge Zhihua, Wei Shuaichao, Liang Houpeng, Zhang Peng. 2016&. Research progress on Re-Os isotopes application in dating and paleoenvironmental interpretation during the Neoproterozoic to Early Cambrian Periods. Rock and Mineral Analysis, 35(5): 530~541.

Wang Jian, Liu Baojun, Pan Guitang. 2001&. Neoproterozoic rifting history of South China——Significance to Rodinia breakup. Mineralogy and Petrology, 21(3): 135~145.

Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Gao Jianfeng. 2004&. Petrogenesis of Neoproterozoic peraluminous granites from northeastern Hunan Province: Chronological and geochemical constraints. Geological Review, 50(1): 65~76.

Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, Huang Zhizhong. 2012&. Tectonic environment of the metamorphosed basement in the Jiangnan Orogen and its evolutional features. Geological Review, 58(3): 401~413.

Wang Wei, Cawood P A, Pandit M K, Xia Xiaoping, Raveggi M, Zhao Junhong, Zheng Jianping, Qi Liang. 2020. Fragmentation of South China from greater India during the Rodinia—Gondwana transition. Geology, 49(2): 228~232.

Wei Guangyi, Planavsky N J, He Tianchen, Zhang Feifei, Stockey R G, Cole D B, Lin Yibo, Ling Hongfei. 2021. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records. Earth-Science Reviews, 214: 103506.

Doi: 10.1016/j.earscirev.2021.103506.

Wei Guangyi, Wei Wei, Wang Dan, Li Tao, Yang Xiaoping, Shields G A, Zhang Feifei, Li Gaojun, Chen Tianyu, Yang Tao, Ling Hongfei. 2020. Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation. Earth and Planetary Science Letters, 539: 116244.

Doi: 10.1016/j.epsl.2020.116244.

Wei Shuaichao, Fu Yong, Liang Houpeng, Ge Zhihua, Zhou Wenxi, Wang Guangzhe. 2017. Re-Os geochronology of the Cambrian stage-2 and -3 boundary in Zhijin County, Guizhou Province, China. Acta Geochimica, 37(2): 323~333.

Wei Wei, Wang Dan, Li Da, Ling Hongfei, Chen Xi, Wei Guangyi, Zhang Feifei, Zhu Xiangkun, Yan Bin. 2016. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: Evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China. Journal of Earth Science, 27(2): 233~241.

Wu Chengquan, Zhang Zhengwei, Xiao Jiafei, Fu Yazhou, Shao Shuxun, Zheng Chaofei, Yao Junhua, Xiao Chaoyi. 2016. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform, China: Constraints from geological and geochemical evidence. Ore Geology Reviews, 75: 76~99.

Yamashita Y, Takahashi Y, Haba H, Enomoto S, Shimizu H. 2007. Comparison of reductive accumulation of Re and Os in seawater—sediment systems. Geochimica et Cosmochimica Acta, 71(14): 3458~3475.

Yang G, Hannah J L, Zimmerman A, Stein H J, Bekker A. 2009. Re-Os depositional age for Archean carbonaceous slates from the southwestern Superior Province: Challenges and insights. Earth and Planetary Science Letters, 280(1~4): 83~92.

Ye Yuntao, Wang Huajian, Zhai Lina, Wang Xiaomei, Wu Chaodong, Zhang Shuichang. 2018. Contrasting Mo—U enrichments of the basal Datangpo Formation in South China: Implications for the Cryogenian interglacial ocean redox. Precambrian Research, 315: 66~74.

Yeasmin R, Chen D Z, Fu Y, Wang J G, Guo Z H, Guo C. 2017. Climatic—oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid—upper Yangtze Block, NE Guizhou, South China. Journal of Asian Earth Sciences, 134: 365~386.

Yin Chongyu, Wang Yangeng, Tang Feng, Wan Yusheng, Wang Ziqiang, Gao Linzhi, Xing Yusheng, Liu pPengju. 2006&. SHRIMP II U-Pb zircon date from the Nanhua Datangpo Formation in Songtao County, Guizhou Province. Acta Geologica Sinica, 80(2): 273~278.

Yu Wenchao, Algeo T J, Du Yuansheng, Maynard B, Guo Hua, Zhou Qi, Peng Touping, Wang Ping, Yuan Liangjun. 2016. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321~337.

Yu Wenchao, Algeo T J, Du Yuansheng, Zhou Qi, Wang Ping, Xu Yuan, Yuan Liangjun, Pan Wen. 2017. Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China. Precambrian Research, 293: 112~130.

Yu Wenchao, Du Yuansheng, Zhou Qi, Peng Touping, Wang Ping, Yuan Liangjun, Xu Yuan, Pan Wen, Xie Xiaofeng, Qi Liang. 2016a&. Provenance of Nanhua Datangpo Formation manganese Mn deposit in Songtao area, East Guizhou Province: Evidence from Sr isotope. Earth Scinece, 41(7): 1110~1120.

Yu Wenchao, Du Yuansheng, Zhou Qi, Wang Ping, Qi Liang, Xu Yuan, Jin Song, Pan Wen, Yuan Liangjun, Xie Xiaofeng, Yang Bingnan. 2020&. Coupling between metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and major geological events, Journal of Palaeogeography (Chinese Edition), 22(5): 855~871

Yu Wenchao, Du Yuansheng, Zhou Qi, Wang Ping, Yuan Liangjun, Xu Yuan, Pan Wen, Xie Xiaofeng, Qi Liang, Jiao Liangxuan. 2016b&. LA-ICP-MS zircon U-Pb dating from the Nanhua Datangpo Formation in Songtao area, East Guizhou and its geological significance. Geological Review, 62(3): 539~549.

Yu Wenchao, Polgári M, Gyollai I, Fintor K, Szabó M, Kovács I, Fekete J, Du Yuansheng, Zhou Qi. 2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Research, 322: 122~135.

Zhai Lina, Wu Chaodong, Ye Yuntao, Zhang Shuichang, Wang Yizhe. 2018. Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran—Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 280~292.

Zhang Feifei, Zhu Xiangkun, Gao Zhaofu, Cheng Long, Peng Qianyun, Yang Dezhi. 2013&. Implication of the precipitation mode of manganese and ultra-highδ34S values of pyrite in Mncarbonate of Xixibao Mn Ore Deposit in northeastern Guizhou Province. Geological Review, 59(2): 274~286

Zhang Qirui, Lan Zhongwu. 2016&. An update of the chronostratigraphy of the Nanhua system. Journal of Stratigraphy, 40(3): 297~301.

Zhang Sihong, Jiang Ganqing, Han Yigui. 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20(4): 289~294.

Zhang Yujie, An Xianyin, Liu Shilei, Gao Yongjuan, Zheng Jie, Sang Yongheng. 2020&. The lithofacies, Mn-bearing sedimentary filling and paleogeographic pattern of Early Datangpo Stage and implied for manganese in the northeastern Guizhou Province. Geology in China, 47(3): 607~626.

Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262~286.

Zhao Junhong, Wang Wei, Liu Hang. 2015&. Geological evolution of the southeastern Yangtze Block during the Neoproterozoic. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2): 227~233.

Zhao Yanyan, Zheng Yongfei. 2011&. Record and time limit of global Neoproterozoic Glaciation. Acta Petrologica Sinica, 27(2): 545~565.

Zhao Zhiqiang, Ling Yun, Li Heliang, Jiang Kai, Li Jie, Cai Keke, Liang Hong. 2019&. Geochemistry and significance of the Datangpo Formation in the Xiaochayuan manganese deposit in the Xiushan County, Chongqing. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 330~341.

Zhou Chuanming, Huyskens M H, Xiao Shuhai, Yin Qingzhu. 2020. Refining the termination age of the Cryogenian Sturtian glaciation in South China. Palaeoworld, 29(3): 462~468.

Zhou Chuanming, Huyskens M H, Lang Xianguo, Xiao Shuhai, Yin Qingzhu. 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47(3): 251~254.

Zhou Chuanming, Tucker Robert, Xiao Shuhai, Peng Zhanxiong, Yuan Xunlai, Chen Zhe. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32(5): 437~440.

Zhu Bi, Becker H, Jiang Shaoyong, Pi Daohui, Fischer-G?dde M, Yang Jinghong. 2013. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China. Precambrian Research, 225: 67~76.

Zhou Qi, Du Yuansheng, Qin Ying. 2013&. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: A case study of Datangpo-type manganese deposits formed in rift basin of Nanhua Period along Guizhou—Hunan—Chongqing bounder area. Mineral Deposits, 32(3): 457~466.

Zhou Qi, Du Yuansheng, Yuan Liangjun, Zhang Sui, Yu Wenchao, Yang Shengtang, Liu Yu. 2016&. The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua Period in Guizhou—Hunan—Chongqing border area, South China. Earth Science, 41(2): 177~188.

Zhu Xiangkun, Peng Qianyun, Zhang Renbiao,An Zhengze,Zhang Feifei,Yan Bin, Li Jin, Gao Zhaofu, Qin Ying, Pan Wen. 2013&. Geological and geochemical characteristics of the Daotuo super large manganese ore deposit at Songtao Country in Guizhou Province, South China. Acta Geologica Sinica, 87(9): 1335~1348.

Zou Guangjun, Huang Jianzhong, Ling Yuexin, Tan Shimin, Cao Chuanghua, Huang Gefei, Wen Chunhua. 2020&. Lithofacies paleogeography and sedimentary evolution of Hunan—Guizhou—Chongqing border area in the Nanhua Period. Acta Geoscientica Sinica, 41(2): 207~218.

猜你喜歡
大塘南華錳礦
南華新書架
南華新書架
南華新書架
錳礦渣制備多孔整體式催化劑探究
南華新書架
國外某鐵錳礦工藝礦物學研究
鄂西走馬地區(qū)大塘坡組頂部泥巖碎屑鋯石LA-ICP-MS U-Pb年齡及其地質(zhì)意義
中信大錳礦業(yè)有限責任公司
畫卷苗鄉(xiāng)——大塘
江西大塘客家方言聲母[n]的研究
图们市| 合江县| 苏尼特左旗| 大港区| 秦安县| 临邑县| 和顺县| 顺义区| 苍梧县| 金华市| 松潘县| 乌拉特后旗| 曲水县| 溧阳市| 宁津县| 天峻县| 甘南县| 平舆县| 宜宾县| 丘北县| 乃东县| 丁青县| 江安县| 合肥市| 亳州市| 张家口市| 内丘县| 正蓝旗| 澎湖县| 琼海市| 浦江县| 阿克陶县| 康乐县| 漳浦县| 岳普湖县| 丰城市| 东城区| 蚌埠市| 沙坪坝区| 班戈县| 屏山县|