屈紅軍 李文厚 姚天星 武龍發(fā) 王妍心, 胡佳森 成倚山
1西北大學(xué)大陸動力學(xué)國家重點(diǎn)實驗室,陜西西安 710069 2西北大學(xué)地質(zhì)學(xué)系,陜西西安 710069
近年來,在華北板塊南緣的陜西省洛南縣北部石門鎮(zhèn)周邊發(fā)現(xiàn)了1層發(fā)育于中元古界薊縣系洛南群巡檢司組頂部的似層狀硅質(zhì)玉髓及透鏡狀燧石,似層狀玉髓多呈紫紅色、灰綠色、煙灰色和無色等,透鏡狀燧石多呈紫色及灰綠色似瑪瑙紋圈層狀,部分灰綠色燧石呈角礫狀。這些燧石及硅質(zhì)玉髓已經(jīng)玉化,質(zhì)細(xì)色艷,瑰麗異常,達(dá)到高品級石英巖質(zhì)玉石級別,已申報為國家寶玉石礦種,并且在寶玉石市場嶄露頭角,顯示出巨大的經(jīng)濟(jì)開發(fā)潛力。該套硅質(zhì)玉髓的命名目前還處于討論階段,寶石界將其稱為紫綠瑪瑙,因產(chǎn)于華山南麓,亦稱華陽玉,陜西省地礦廳已將其以秦紫玉為名申報國家寶玉石礦種,目前陜西省洛南縣為中國該色玉髓的唯一產(chǎn)地(張鋒軍等,2017)。該層硅質(zhì)玉髓為近幾年的發(fā)現(xiàn),還沒有人做過系統(tǒng)研究。該層硅質(zhì)玉髓的硅質(zhì)來源是陸源、熱液、還是生物來源呢?硅質(zhì)玉髓層是由于海平面快速上升導(dǎo)致化學(xué)沉淀形成的凝縮層?還是由于海平面快速下降引起的淡水淋濾硅化作用形成的海底硬底構(gòu)造或者硅質(zhì)殼?彩色透鏡狀與似層狀硅質(zhì)玉髓的成因有何差異?似瑪瑙紋透鏡狀燧石與角礫狀燧石成因機(jī)理有何不同?彩色與無色硅質(zhì)玉髓的顏色差別由什么引起?關(guān)于這些中元古界薊縣系洛南群硅質(zhì)玉髓層形成機(jī)理及玉化多樣性的原因,前人尚未做過相關(guān)研究。同樣的硅質(zhì)玉髓及透鏡狀燧石,在華北板塊南緣的甘肅華亭縣、陜西岐山縣北部的中元古界薊縣系也發(fā)現(xiàn)層控分布。
硅質(zhì)巖因?qū)Τ练e環(huán)境等具有判別意義而受到了國內(nèi)外學(xué)者的廣泛關(guān)注(Bostr?m and Peterson,1969;Bostr?metal., 1973;Adachietal., 1986;Yamamoto,1987;Murrayetal., 1991,1992,1994;丁林和鐘大賚,1995;Robert and Marc,2006;杜遠(yuǎn)生等,2006a,2006b,2007;杜遠(yuǎn)生,2009;Marin-Carbonneetal., 2011,2012)。硅質(zhì)巖一般粒度較細(xì),結(jié)構(gòu)和構(gòu)造較為簡單,受后期成巖作用和風(fēng)化作用影響不大,因此其地球化學(xué)特征能夠在一定程度上反映硅質(zhì)巖成因等信息(Bostr?m and Peterson,1969;Murrayetal., 1991,1992;Malivaetal., 2005)。硅質(zhì)巖的成因及硅質(zhì)來源與其巖石化學(xué)成分關(guān)系非常密切(Adachietal., 1986;Yamamoto,1987;Murray,1994;Beauchamp and Boud.,2002;Malivaetal., 2005;杜遠(yuǎn)生等,2006a,2006b,2007;常華進(jìn)等,2008;杜遠(yuǎn)生,2009),其形成環(huán)境可以通過現(xiàn)代大洋中沉積物的化學(xué)變化來判斷(Bostr?m and Peterson,1969;Bostr?metal., 1973)。
本研究以區(qū)域地層學(xué)、硅質(zhì)玉髓層礦相學(xué)及X衍射分析、主微量、稀土元素分析測試為手段,通過剖面地球化學(xué)分析,結(jié)合區(qū)域巖漿作用、構(gòu)造演化,研究了該硅質(zhì)玉髓層的特征、成因及玉化多樣性機(jī)理。
研究區(qū)地處陜西省洛南縣北部,位于華北板塊南緣(圖 1),北鄰華山山脈,南部地區(qū)以鐵爐子—黑溝—欒川斷裂為界與北秦嶺造山帶相鄰(張正偉等,2003;朱賴民等,2009)。
圖 1 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖的構(gòu)造位置(據(jù)Wang et al., 2013;Dong et al., 2014,2016,2017;Nie et al., 2016; 修改)Fig.1 Tectonic location of strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province(after Wang et al., 2013;Dong et al., 2014,2016,2017;Nie et al., 2016)
華北地塊南緣主要出露有古元古代末—新元古代的沉積地層(趙太平等,2002,2004;Zhaoetal., 2009;Dengetal., 2013;Huetal., 2014;Zhangetal., 2016;Mengetal., 2018)。研究區(qū)區(qū)域地層歸屬華北大區(qū)之陜豫皖區(qū)的熊耳—太華—魯山分區(qū)(張克信等,2017),結(jié)晶基底為太華群中—高級變質(zhì)巖,蓋層自下而上分別為熊耳群、白玉溝群、香子坪群、高山河群、龍家園組、巡檢司組、杜關(guān)組、馮家灣組、陶灣群、寒武系、古近系和新近系。中元古代華北地塊南緣處于濱淺海相的沉積環(huán)境,從北到南,水深逐漸增大(關(guān)保德等,1988;胡國輝等,2013)。
中元古界洛南群是華北地塊南緣的重要組成部分,主要分布于陜西洛南及豫西盧靈地區(qū),以巨厚碳酸鹽巖為突出特征(周鼎武等,2002),洛南群不整合過渡沉積于高山河群之上。高山河群為一套以砂巖為主的濱淺海相碎屑巖;“洛南群”是由邱樹玉和劉洪福(1982)提出的,時代與薊縣系相當(dāng)(關(guān)保德等,1988;翦萬籌等,1993;胡國輝等,2013)。洛南群從下而上包括石莊組、龍家園組、巡檢司組、杜關(guān)組和馮家灣組(邱樹玉和劉洪福,1982;蘇文博,2016)(圖 2)。陜西境內(nèi)的洛南群、高山河群以及相鄰的山西、河南地區(qū)的汝陽群和官道口群等同屬于中元古代的統(tǒng)一海盆沉積(李欽仲,1985;李文厚,1991;朱士興等,1994;周鼎武等,2002)。
陜西省洛南縣中元古界洛南群巡檢司組頂部發(fā)育的硅質(zhì)玉髓主要有以下3種類型:
1)似瑪瑙紋透鏡狀燧石: 多呈紫紅色及灰綠色似瑪瑙紋圈層狀(圖 3-A至3-D;圖 4-A,4-B),磨圓較好,常見大小1.0cm×2.0cm~10.0cm×15.0cm不等,最小可見長軸直徑小于1cm,最大可見30.0cm×70.0cm。外表常發(fā)育伊利石化,呈灰至灰綠色,厚1~3mm,內(nèi)部色彩艷麗,呈無色、淺灰白色、翠綠色、綠色、墨綠色、粉紅色、玫瑰紅色及紫紅色等,顏色具有分帶性,環(huán)帶較清晰,常見綠邊紅心者。似瑪瑙紋透鏡狀燧石往往可以制作出比較漂亮的玉髓飾品(圖 3-E,3-F)。
2)角礫狀燧石: 多呈灰綠色(圖 4-C),大多棱角尖銳、形狀不規(guī)則、無磨圓痕跡,燧石大小不一,常見大小為1.0cm×2.0cm~10.0cm×15.0cm不等。
3)似層狀硅質(zhì)玉髓: 常見無色、煙灰色、灰綠色、紫紅色等,主要產(chǎn)出于似層狀硅質(zhì)玉髓層、燧石條帶層以及灰綠色砂泥質(zhì)板巖層中(圖 4-D,4-E)。
該層硅質(zhì)玉髓主要成分為石英(90%以上),隱晶、微晶結(jié)構(gòu)(圖 4-F,4-G),塊狀構(gòu)造,質(zhì)地細(xì)膩較堅硬,玻璃光澤,半透明—微透明,斷口貝殼狀或參差狀,硬度(莫氏)6.6~6.9,密度2.60~2.75g/cm3,雜質(zhì)極微。巖石受后期各期次構(gòu)造應(yīng)力作用,裂隙發(fā)育,玉髓破碎較強(qiáng),完整性較差。此外,洛南群硅質(zhì)玉髓的寶玉石學(xué)特征與南紅瑪瑙和黃龍玉十分相近。
圖 2 陜西洛南縣北部前寒武系地層沉積柱狀圖(據(jù)李文厚,1986;李欽仲,1995;修改)Fig.2 Stratigraphic and sedimentary column of the Precambrian in northern Luonan County,Shaanxi Province (modified from Li,1986;Li,1995)
A—C: 似瑪瑙紋透鏡狀燧石;D—F: 透鏡狀燧石制作的硅質(zhì)玉髓飾品圖 3 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖似瑪瑙紋透鏡狀燧石及其制作的硅質(zhì)玉髓飾品Fig.3 Lenticular flints with colorful quasi-lamellar siliceous agate lines and its siliceous chalcedony ornaments from strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
該套硅質(zhì)玉髓層賦存于中元古界洛南群巡檢司組頂部(Pt2x)的紫紅色—灰綠色薄層狀砂泥質(zhì)板巖中(圖 2),為一套層控礦床(圖 5-A)。賦礦層自下而上特征描述如下:
底板層: 為一套米黃色、土黃色、淺灰白色中薄層狀重結(jié)晶白云巖(圖 5-B),厚度1.0~8.0m不等。主要礦物組成為重結(jié)晶白云石(含量大于95%),含少量硅質(zhì)、方解石等,質(zhì)地細(xì)膩,可制成玉石品雕刻件。細(xì)晶粒狀變晶結(jié)構(gòu),中薄層狀構(gòu)造,層理清晰、產(chǎn)狀穩(wěn)定,可作為硅質(zhì)玉髓礦體底板圍巖找礦標(biāo)志。巖石受后期各期次構(gòu)造應(yīng)力作用,裂隙發(fā)育,沿裂隙面多見鐵染,呈鐵銹紅色。
第1層: 為紫紅色砂泥質(zhì)板巖層(圖 5-C),層厚1.0~4.0m,最厚8.0m,主要由黏土質(zhì)礦物組成,質(zhì)軟,塑性強(qiáng)。主要為似瑪瑙紋透鏡狀燧石,本層為主礦(化)層,含礦率不穩(wěn)定,與下伏米黃色重結(jié)晶白云巖呈整合接觸。
第2層: 為灰綠色砂泥質(zhì)板巖層(圖 5-C),發(fā)育灰綠色角礫狀燧石(圖 5-D)及似層狀硅質(zhì)玉髓(圖 5-E),似層狀硅質(zhì)玉髓呈灰綠色、紫紅色等。本層厚度相對較薄,厚度0.2~2.0m,最厚4.0m。本層展布不連續(xù),局部地區(qū)缺失本層,厚度穩(wěn)定性差、含礦率變化較大。本層為硅質(zhì)玉髓礦(化)層,與下伏紫紅色砂泥質(zhì)板巖呈整合接觸(圖 5-E)。
頂板層: 無色—煙灰色燧石條帶(圖 5-D),厚度0.1~0.5m,最厚2.0m,主要成分為隱晶質(zhì)玉髓,透明至半透明,主要呈似層狀產(chǎn)出,本層分布較穩(wěn)定,局部地區(qū)缺失本層,位于礦化帶頂部層位,層理清晰,巖石破碎程度較高,不規(guī)則裂隙極其發(fā)育,與下伏砂泥質(zhì)板巖呈整合接觸,與上覆白云巖呈平行不整合接觸,局部沿不整合面呈斷層接觸。
本次X衍射測試共計6塊硅質(zhì)玉髓巖石樣品,野外采集較為新鮮的巖石樣品。為了研究不同顏色硅質(zhì)玉髓礦物組成的差異性,分別采集2塊灰白色(LN-1, LN-2)、2塊灰綠色(LN-3,LN-4)、2塊紫紅色(LN-5, LN-6)樣品,X衍射測試分析在西安地質(zhì)礦產(chǎn)研究所實驗室完成,X衍射測試結(jié)果見表 1。
表 1 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓X衍射礦物含量Table 1 X-diffraction mineral content of siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
6塊硅質(zhì)玉髓巖石樣品,礦物組成99%以上為石英,4個灰白色、紫紅色硅質(zhì)玉髓樣品沒有測得其他礦物成分,說明其他礦物含量已經(jīng)低于儀器測試下限;2個灰綠色硅質(zhì)玉髓樣品測得有非常少量的伊利石、綠泥石及斜長石。
A,B—紫紅色、灰綠色似瑪瑙紋圈層狀燧石(A: 洛南縣三神廟;B: 張華溝);C—灰綠色角礫狀燧石(喬家);D—無色—煙灰色燧石條帶(東安溝);E—紫紅色、灰綠色似層狀硅質(zhì)玉髓(東安溝);F—洛南群硅質(zhì)玉髓隱晶、微晶結(jié)構(gòu)及溶蝕孔隙(見紅圈內(nèi));G—洛南群硅質(zhì)玉髓隱晶、微晶結(jié)構(gòu),正交光圖 4 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓類型及產(chǎn)出狀態(tài)Fig.4 Types and output states of siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
A—硅質(zhì)玉髓賦礦層(紅色線條之間)宏觀展布(張華溝);B—底板層的米黃色白云巖(張華溝);C—主要賦礦層宏觀特征(東安溝);D—灰綠色砂泥質(zhì)板巖層中的角礫狀燧石(喬家);E— 紫紅色與灰綠色砂泥質(zhì)巖整合接觸(張華溝)圖 5 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓賦礦層Fig.5 Ore beds of siliceous chalcedony in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
本次研究共采集10塊硅質(zhì)玉髓樣品(LN-01—LN-10),野外采樣時盡量避開了風(fēng)化松散及氧化嚴(yán)重的部分巖石,采集較為新鮮的巖石樣品。所有樣品首先在鑄鐵材料的壓機(jī)上壓碎至20~40目并精選出純凈細(xì)小的硅質(zhì)玉髓顆粒,再用瑪瑙研缽磨至200目以下。全巖地球化學(xué)分析在西北大學(xué)大陸動力學(xué)國家重點(diǎn)實驗室完成,主量元素采用XRF(X射線熒光光譜分析)在RIX-2100X熒光光譜儀分析獲得,全巖微量元素測試在ELAN6100DRC等離子體質(zhì)譜儀(ICP-MS)上測定。測試中用AGV-2、BHVO-2、BCR-2及GSP-1為標(biāo)樣進(jìn)行監(jiān)控,元素的分析誤差小于5%~10%。本研究樣品均采用澳大利亞后太古代平均頁巖(PAAS)進(jìn)行標(biāo)準(zhǔn)化(McLennan,1989),表達(dá)式為: Ce/Ce*=2×CeN/(LaN+PrN);Eu/Eu*=EuN/(SmN×GdN)1/2。
3.2.1 主量元素
主量元素測試結(jié)果見表 2,研究區(qū)10塊硅質(zhì)玉髓樣品具有較高的SiO2值(均值95.37%),樣品Al2O3含量在0.03%~2.53%之間,F(xiàn)e2O3含量介于0.03%~1.05%之間,MnO和TiO2含量幾乎都小于0.01%,含量極低。
3.2.2 微量元素
3.2.3 稀土元素
稀土元素測試結(jié)果及稀土元素PAAS標(biāo)準(zhǔn)化分布曲線見 表 4 和圖 6。樣品稀土元素標(biāo)準(zhǔn)化配分曲線呈平坦?fàn)睢髢A趨勢分布,稀土元素總量(ΣREE)介于0.68~24.90之間,整體含量偏低;樣品δEu呈負(fù)異常—無異常顯示(0.78~0.96);除LN-07號樣品(0.49)外,δCe主體呈弱負(fù)異?!惓o@示(0.86~1.41)。
表 2 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓主量元素含量(%)Table 2 Major elements content(%)of siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
為了進(jìn)一步研究洛南群巡檢司組與杜關(guān)組界線處賦礦層上下地質(zhì)背景特征,筆者選擇洛南縣陶家灣剖面,對巡檢司組與杜關(guān)組界線上下從下而上連續(xù)采樣分析主微量元素縱向的變化,采樣剖面位于陶家灣村南側(cè)100m處,具體點(diǎn)位: N34°14′55.2″,E110°08′14.5″。共采集10個樣品(LN-11—LN-20): 下面4個樣品巖性為巡檢司組米黃色白云巖,中間4個樣品巖性依次為巡檢司組灰綠色板巖、紫紅色硅質(zhì)巖、綠色硅質(zhì)巖和灰色硅質(zhì)巖,上面2個樣品巖性為灰色白云巖(圖 7)。
表 3 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓樣品部分微量元素含量(10-6)Table 3 Partial trace elements content(10-6)of siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
表 4 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓樣品稀土元素含量(10-6)Table 4 Rare earth elements content(10-6)of siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
鏡下觀察洛南群不同顏色硅質(zhì)玉髓,其中,綠色硅質(zhì)玉髓鏡下發(fā)現(xiàn)有針狀伊利石、片狀綠泥石(圖 8-A);紫紅色硅質(zhì)玉髓鏡下發(fā)現(xiàn)有少量不透明的鐵磁性礦物,推測為赤鐵礦或針鐵礦(圖 8-B),具體有待繼續(xù)深化研究。
圖 6 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓樣品標(biāo)準(zhǔn)化稀土模式曲線(標(biāo)準(zhǔn)化數(shù)據(jù)據(jù)McLennan,1989)Fig.6 REE pattern of analyzed samples normalized to PAAS of siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province(normalization data is from McLennan,1989)
圖 7 陜西洛南縣薊縣系洛南群巡檢司組與杜關(guān)組界線上下采樣位置及值變化Fig.7 Variation of Sr/Ba ratio and sampling positions at upper and lower boundary between the Xunjiansi Formation and Duguan Formation of Jixianian Luonan Group in Luonan Country,Shaanxi Province
硅質(zhì)巖常量元素Al、Fe、Mn的含量對于區(qū)分非熱液與熱液硅質(zhì)巖具有重要意義,F(xiàn)e、Mn的富集主要與熱液的參與有關(guān),Al的富集則與陸源物質(zhì)的注入有關(guān)(杜遠(yuǎn)生等,2006a,2006b,2007;杜遠(yuǎn)生,2009)。海相沉積物中Al/(Al+Fe+Mn)值是衡量沉積物中熱液沉積物含量的標(biāo)志,該比值隨著遠(yuǎn)離洋脊擴(kuò)張中心距離的增加而增大(Bostr?m and Peterson,1969),典型陸源物質(zhì)均值為0.619,海洋生物成因均值為0.4,洋隆玄武巖類僅為0.01(杜遠(yuǎn)生,2009)。
對現(xiàn)代熱水沉積物和古代類似沉積物研究表明,熱水沉積物Al/(Al+Fe+Mn)值一般小于0.35(Bostr?metal., 1973)。本區(qū)10個硅質(zhì)玉髓樣品Al/(Al+Fe+Mn)值除LN-04號和LN-07號(0.16和0.18)外,其余樣品均介于0.56~0.85之間(表 2),該套硅質(zhì)玉髓總體含有較高的陸源來源,可能受到了一定程度的熱液作用影響。
表 5 陜西洛南縣薊縣系洛南群巡檢司組與杜關(guān)組界線上下樣品主量元素含量(%)Table 5 Major elements content(%)of samples above and below section boundary of the Xunjiansi Formation and Duguan Formation of Jixianian Luonan Group in Luonan Country,Shaanxi Province
表 6 陜西洛南縣薊縣系洛南群巡檢司組與杜關(guān)組剖面界線上下樣品部分微量元素含量(10-6)Table 6 Partial trace elements content(10-6) of samples above and below section boundary of Xunjiansi Formation and Duguan Formation of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
A—灰綠色硅質(zhì)玉髓鏡下特征;B—紫紅色硅質(zhì)玉髓鏡下反射光特征圖 8 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖灰綠色及紫紅色硅質(zhì)玉髓鏡下特征Fig.8 Microscopic features of greyish-green and fuchsia siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
Al-Fe-Mn三角判別圖解可用于判別熱液與非熱液硅質(zhì)巖(Adachietal., 1986;Yamamoto,1987),將硅質(zhì)玉髓樣品數(shù)據(jù)投入Al-Fe-Mn圖解(圖 9-a),2個樣品落入熱液成因區(qū),其余樣品均落入非熱液成因區(qū)及其附近范圍內(nèi)。在微量元素組合Th-U圖解(圖 9-b)中,本區(qū)10個樣品也有2個樣品落入熱水沉積區(qū),說明研究區(qū)硅質(zhì)玉髓主體受陸源物質(zhì)影響較大,熱液作用也起到了一定的影響,考慮到燕山期華山花崗巖巖體距離研究區(qū)僅10余千米,燕山期富SiO2的花崗質(zhì)巖漿侵入也可以部分成為硅質(zhì)來源。
A—Al-Fe-Mn三角圖(底圖據(jù)Adachi et al., 1986)。B—不同類型沉積物Th-U圖解(底圖據(jù)Bostr?m et al.,1979): Ⅰ—TAG熱水沉積物區(qū),Ⅱ—Galapagos熱水沉積物區(qū),Ⅲ—Amphitrite熱水沉積物區(qū),Ⅳ—紅海熱水沉積物區(qū),Ⅴ—中太平洋中脊熱水沉積區(qū),Ⅵ—Langban熱水沉積物區(qū),Ⅶ—錳結(jié)核區(qū),Ⅷ—普通深海沉積物區(qū),Ⅸ—鋁土礦區(qū),Ⅹ—古老石化的熱水沉積物區(qū)圖 9 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓硅質(zhì)來源判別圖解Fig.9 Discrimination diagram of origin of silicons in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
硅質(zhì)巖的稀土元素對沉積盆地構(gòu)造背景具有明顯指示意義,稀土元素總量(ΣREE)和物源性質(zhì)、沉積速率及火山、熱液影響有關(guān),可用于判斷沉積物和形成環(huán)境,稀土元素總量取決于沉積時各來源的相對影響程度(杜遠(yuǎn)生,2009)。硅質(zhì)巖中的LaN/CeN值主要與硅質(zhì)巖的形成環(huán)境等因素有關(guān),大陸邊緣的LaN/CeN值為0.5~1.5,大洋盆地為1.0~2.5,洋中脊為3.5左右(杜遠(yuǎn)生等,2007)。典型開放洋盆中海水的Ce極度虧損(Haraetal., 2010),但受陸源物質(zhì)影響,大陸邊緣、局限海盆或洋盆無明顯的Ce負(fù)異常顯示(Shimizu and Masuda,1977;Germanetal., 1990;Murray,1994),其中大陸邊緣硅質(zhì)巖的δCe平均值為0.67~1.35(Murray,1994)。形成于被動大陸邊緣環(huán)境中的硅質(zhì)巖,受大量陸源物質(zhì)輸入影響呈負(fù)Eu異常顯示(Girtyetal., 1996;Heetal., 2010)。研究區(qū)硅質(zhì)玉髓樣品ΣREE介于0.68~24.90之間,總體含量偏低(表 4)。樣品LaN/CeN值介于0.34~1.47之間,與大陸邊緣硅質(zhì)巖特征相似。δCe值介于0.86~1.41之間(除LN-07號樣品外;表 4),δEu值在0.78~0.96之間變化(表 3),說明研究區(qū)硅質(zhì)玉髓樣品形成于大陸邊緣的構(gòu)造環(huán)境。
A—Fe2O3/(100-SiO2) vs. Al2O3/(100-SiO2)圖解;B—100×(Fe2O3/SiO2) vs. 100×(Al2O3/SiO2)圖解圖 10 陜西洛南縣薊縣系洛南群層控玉化硅質(zhì)巖硅質(zhì)玉髓構(gòu)造環(huán)境判別圖解(底圖據(jù)Murray,1994)Fig.10 Discrimination diagram of tectonic setting of siliceous chalcedonies in strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province(base maps from Murray,1994)
Murray(1994)提出Al與陸源Si的關(guān)系十分密切,可以作為陸源物質(zhì)注入的良好標(biāo)志,F(xiàn)e在洋中脊附近的沉積物中富集,可以作為洋盆擴(kuò)張中心熱液注入的標(biāo)志。利用已知不同沉積環(huán)境的硅質(zhì)巖化學(xué)成分比值變化規(guī)律,擬定Fe2O3/(100-SiO2)vs. Al2O3/(100-SiO2)圖解(圖 10-A)及100×(Fe2O3/SiO2) vs. 100×(Al2O3/SiO2)圖解(圖 10-B),圈定了大陸邊緣和洋中脊硅質(zhì)巖投影區(qū)(Murray,1994;杜遠(yuǎn)生等,2007)。研究區(qū)硅質(zhì)玉髓樣品數(shù)據(jù)點(diǎn)整體落入大陸邊緣環(huán)境及其附近范圍內(nèi)(圖10),這也為該區(qū)硅質(zhì)玉髓形成于大陸邊緣的構(gòu)造背景提供了證據(jù)。
4.3.1 似層狀硅質(zhì)玉髓成因
似層狀硅質(zhì)玉髓層是由于快速海退引起的淡水淋濾硅化作用形成的海底硬底構(gòu)造或硅質(zhì)殼。
硅質(zhì)玉髓層發(fā)育于杜關(guān)組和巡檢司組界線處,由于杜關(guān)組和巡檢司組之間為平行不整合關(guān)系(圖 2)(李欽仲,1995),說明二者之間發(fā)生了快速海退;硅質(zhì)玉髓樣品表面發(fā)育有溶蝕孔隙(圖 4-F),反映其經(jīng)歷了淡水淋濾溶解作用。
圖 11 在25℃時pH值對CaCO3和SiO2的影響(據(jù)Friedman,1962)Fig.11 The effect of pH on CaCO3 and SiO2 at 25℃ (after Friedman,1962)
洛南群硅質(zhì)玉髓發(fā)育于具有一定量SiO2的淡水沉積環(huán)境,當(dāng)碳酸鹽通過有機(jī)或無機(jī)化學(xué)作用沉淀之后,海水中SiO2濃度相對增大,這便有利于SiO2沉淀并交代碳酸鹽沉積物,形成海底硬底構(gòu)造或硅質(zhì)殼。前人提出水盆地中的pH值大小以及CaCO3或SiO2溶解量決定了碳酸鹽和二氧化硅的溶解與沉淀,并繪制了CaCO3與SiO2在不同pH值時的溶解量曲線(Friedman,1962),可將它們的溶解與沉淀劃分為4個區(qū)(圖 11)。毫無疑問,當(dāng)有利于SiO2的沉淀時,CaCO3溶解;當(dāng)有利于SiO2溶解時,CaCO3則沉淀;當(dāng)pH值在8附近時,則溶液中過量的CaCO3和SiO2可同時沉淀。需要指出的是,與白云巖形成機(jī)理相似,SiO2幾乎從不自行沉淀構(gòu)成單純的硅質(zhì)巖,而總是去交代碳酸鹽沉積物。
4.3.2 似瑪瑙紋透鏡狀燧石及彩色似層狀硅質(zhì)玉髓成因
似瑪瑙紋透鏡狀燧石及彩色似層狀硅質(zhì)玉髓是由于沉積期及沉積期后成巖作用氧化還原條件變化致色形成,后期熱液侵入烘烤引起的紫紅色與綠色致色微量元素礦物轉(zhuǎn)變也是致色成因之一。
硅質(zhì)巖的玉化與沉積期及沉積期后成巖作用密切相關(guān)。似瑪瑙紋透鏡狀燧石及彩色似層狀硅質(zhì)玉髓多呈紫紅色、灰綠色,似瑪瑙紋透鏡狀燧石顏色具有環(huán)帶性,常見為綠邊紅心環(huán)帶。洛南群硅質(zhì)玉髓,還含有少量的Al、K、Mg、Fe等元素,著色可能為不同價態(tài)的鐵元素(Fe2+、Fe3+)所致。一般來說,F(xiàn)e2+代表還原條件,可致灰綠色;Fe3+代表氧化條件,可致紫紅色。分析認(rèn)為,沉積期及沉積期后成巖作用氧化還原條件變化,可以作為似瑪瑙紋透鏡狀燧石及彩色似層狀硅質(zhì)玉髓致色原因。考慮到燕山期華山花崗巖巖體距離研究區(qū)僅10余千米,燕山期富SiO2的花崗質(zhì)巖漿侵入烘烤加溫,后期熱液侵入烘烤引起的紫色與綠色致色微量元素礦物轉(zhuǎn)變也是致色成因之一。
鏡下綠色硅質(zhì)玉髓鏡下發(fā)現(xiàn)有針狀伊利石、片狀綠泥石(圖8-A),紫紅色硅質(zhì)玉髓鏡下發(fā)現(xiàn)有少量不透明的鐵磁性礦物(圖8-B),說明了致色礦物或者元素的轉(zhuǎn)變,具體成因有待進(jìn)一步深入研究。
該套硅質(zhì)玉髓縱向上賦存于中元古界薊縣系洛南群巡檢司組頂部(Pt2x)的紫紅色、灰綠色薄層狀砂泥質(zhì)板巖層中(圖 2),主礦化層厚1~4m,為一套層控礦床(圖 5-A)。平面上沿白花嶺—水岔—路家街復(fù)式向斜呈環(huán)帶狀分布,主體分布于向斜的南北兩翼。目前玉髓礦區(qū)主要在洛南縣石坡鎮(zhèn)黑山紅廟和洛南縣石門鎮(zhèn)張華溝腦2個區(qū)域,面積合計約5.67km2,預(yù)測礦區(qū)面積約100km2。
1)陜西洛南縣薊縣系硅質(zhì)玉髓主要發(fā)育于洛南群巡檢司組頂部與杜關(guān)組界線附近的紫紅色、灰綠色薄層狀砂泥質(zhì)板巖中,具有層控特征,主要有紫紅色及灰綠色似瑪瑙紋圈層狀透鏡體及似層狀硅質(zhì)玉髓2種產(chǎn)出特征。
2)薊縣系洛南群硅質(zhì)玉髓層的硅質(zhì)來源主要為陸源來源,也有后期熱液作用來源的部分加入,硅質(zhì)玉髓層是由于快速海退引起的淡水淋濾硅化作用形成的海底硬底構(gòu)造。
3)似瑪瑙紋透鏡狀燧石及彩色似層狀硅質(zhì)玉髓層是由于沉積期及沉積期后成巖作用氧化還原條件變化致色形成,后期熱液侵入烘烤引起的紫色與綠色致色微量元素礦物轉(zhuǎn)變也是成因之一。
參考文獻(xiàn)(References)
常華進(jìn),儲雪蕾,馮連君,黃晶,張啟銳. 2008. 湖南安化留茶坡硅質(zhì)巖的REE地球化學(xué)特征及其意義. 中國地質(zhì), 35(5): 879-887. [Chang H J,Chu X L,F(xiàn)eng L J,Huang J,Zhang Q R. 2008. REE geochemistry of the Liuchapo chert in Anhua,Hunan. Geology in China, 35(5): 879-887]
鄧宏文,錢凱. 1993. 沉積地球化學(xué)與環(huán)境分析. 甘肅蘭州: 甘肅科學(xué)技術(shù)出版社,1-262. [Deng H W,Qian K. 1993. Sedimentary Geochemistry and Environmental Analysis. Gansu Lanzhou: Gansu Science and Technology Press,1-262]
丁林,鐘大賚. 1995. 滇西昌寧—孟連帶古特提斯洋硅質(zhì)巖稀土元素和鈰異常特征. 中國科學(xué)(B輯), 25(1): 93-100. [Ding L,Zhong D L. 1995. Abnormal characteristics of Ce and rare earth elements in the cherts from Changning-Menglian Paleo-Tethys suture zone. Science in China(Series B), 25(1): 93-100]
杜貴超,倉輝,胡雙全,曹卿榮,高鵬鵬. 2017. 泰國呵叻盆地二疊系碳酸鹽巖元素地球化學(xué)特征與古環(huán)境意義. 世界地質(zhì), 36(1): 135-143. [Du G C,Cang H,Hu S Q,Cao Q R,Gao P P. 2017. Geochemical characteristics and its paleo-environmental significance of Permian carbonate rocks in Khorat Basin,Thailand. Global Geology, 36(1): 135-143]
杜遠(yuǎn)生,朱杰,顧松竹. 2006a. 北祁連肅南—帶奧陶紀(jì)硅質(zhì)巖沉積地球化學(xué)特征及其多島洋構(gòu)造意義. 地球科學(xué): 中國地質(zhì)大學(xué)學(xué)報, 31(1): 101-109. [Du Y S,Zhu J,Gu S Z. 2006a. Sedimentary geochemistry and tectonic significance of Odovician cherts in Sunan,North Qilian Mountains. Earth Science: Journal of China University of Geosciences, 31(1): 101-109]
杜遠(yuǎn)生,朱杰,顧松竹. 2006b. 北祁連永登石灰溝奧陶紀(jì)硅質(zhì)巖地球化學(xué)特征及大地構(gòu)造意義. 地質(zhì)論評, 52(2): 184-189. [Du Y S,Zhu J,Gu S Z. 2006b. Sedimentary geochemistry of cherts from the Middle-Upper Ordovician in Shihuigou Area,North Qilian Orogenic Belt and its tectonic implications. Geological Review, 52(2): 184-189]
杜遠(yuǎn)生,朱杰,顧松竹,徐亞軍,楊江海. 2007. 北祁連造山帶寒武系—奧陶系硅質(zhì)巖沉積地球化學(xué)特征及其對多島洋的啟示. 中國科學(xué), 37(10): 1314-1329. [Du Y S,Zhu J,Gu S Z,Xu Y J,Yang J H. 2007. Sedimentary geochemistry of cherts from the Cambrian-Ordovician in North Qilian Orogenic Belt and its implications for the multi-island ocean. Science in China(Series D), 37(10): 1314-1329]
杜遠(yuǎn)生. 2009. 北祁連造山帶加里東—早海西沉積地質(zhì)學(xué)研究. 武漢: 中國地質(zhì)大學(xué)出版社,2-32. [Du Y S. 2009. The Study of Early Hercynian Sedimentary Geology Research of Northern Qilian Orogenic Belt during Caledonian-Early Hercynian. Wuhan: China University of Geosciences Press,2-32]
關(guān)保德,耿午辰,戎治權(quán),杜慧英. 1988. 河南東秦嶺北坡中—上元古界. 鄭州: 河南科學(xué)技術(shù)出版社,41-49. [Guan B D,Geng W C,Rong Z Q,Du H Y. 1988. The Middle-Upper Proterozoic in the North Slope of the East Qinling Mountains,Henan Province. Zhengzhou: Henan Science and Technology Press,41-49]
胡國輝,趙太平,周艷艷,王世炎. 2013. 華北克拉通南緣中—新元古代沉積地層對比研究及其地質(zhì)意義. 巖石學(xué)報, 29(7): 2491-2507. [Hu G H,Zhao T P,Zhou Y Y,Wang S Y. 2013. Meso-Neoproterozoic sedimentary formation in the southern margin of the North China Carton and its geological implications. Acta Petorlogica Sinica, 29(7): 2491-2507]
翦萬籌,胡云緒,華洪,劉洪福. 1993. 一個中元古代具殼后生動物群—“洛南生物群”的初步報道. 西北大學(xué)學(xué)報(自然科學(xué)版),33(1): 77-81. [Jian W C,Hu Y X,Hua H,Liu H F. 1993. “Luonan Fauna”: a Middle Proterozoic shell-bearing Metazoan assemblage. Journal of Northwest University(Natural Science Edition),33(1): 77-81]
李進(jìn)龍,陳東敬. 2003. 古鹽度定量研究方法綜述. 油氣地質(zhì)與采收率, 10(5): 1-3,5. [Li J L,Chen D J. 2003. Summary of quantified research method on paleosalinity. Petroleum Geology and Recovery Efficiency, 10(5): 1-3,5]
李欽仲. 1985. 華北地臺南緣(陜西部分)晚前寒武紀(jì)地層研究. 陜西西安: 西安交通大學(xué)出版社,44-46. [Li Q Z. 1985. Study on the Late Precambrian Strata in the Southern Margin of the North China Platform(Shaanxi Province). Shaanxi Xi’an: Xi’an Jiao Tong University Press,44-46]
李欽仲. 1995. 中國南北方元古代地層之銜接部位─小秦嶺元古界剖面特征. 陜西地質(zhì), 13(2): 72-77. [Li Q Z. 1995. The joint portion of the Proterozoic Strata in the South and North of China. Geo-logy in Shaanxi, 13(2): 72-77]
李文厚. 1986. 陜西洛南縣北部晚前寒武紀(jì)地層、巖石學(xué)特征及沉積學(xué)研究. 西北大學(xué)碩士畢業(yè)論文: 1-95. [Li W H. 1986. Late Precambrian stratigraphy,petrology and sedimentological study in northern Luonan County,Shaanxi Province. Masteral dissertation of Northwest University: 1-95]
李文厚. 1991. 華北地臺南緣高山河群碎屑巖潮坪沉積. 沉積學(xué)報, 9(3): 98-105. [Li W H. 1991. Clasolite Tidal flat deposits of Gaoshanhe Group in the southern margin of the North China Platform. Acta Sedimentologica Sinica, 9(3): 98-105]
劉剛,周東升. 2007. 微量元素分析在判別沉積環(huán)境中的應(yīng)用: 以江漢盆地潛江組為例. 石油實驗地質(zhì), 29(3): 307-311. [Liu G,Zhou D S. 2007. Application of microelements analysis in identifying sedimentary environment: taking Qianjiang Formation in the Jianghan Basin as an example. Petroleum Geology & Experiment, 29(3): 307-311]
邱樹玉,劉洪福. 1982. 小秦嶺地區(qū)(陜西境內(nèi))晚前寒武紀(jì)的疊層石及其地層意義. 西北大學(xué)學(xué)報,前寒武紀(jì)地質(zhì)專輯,12(增刊): 127-195. [Qiu S Y,Liu H F. 1982. The Late Precambrian stromatolites in the Xiaoqinling area(Shaanxi Province)and their stratigraphic significance. Journal of Northwest University,Precambrian Geological Album,12(s1): 127-195]
史忠生,陳開遠(yuǎn),史軍,柳保軍,何胡軍,劉剛. 2003. 運(yùn)用鍶鋇比判定沉積環(huán)境的可行性分析. 斷塊油氣田, 10(2): 12-16. [Shi Z S,Chen K Y,Shi J,Liu B J,He H J,Liu G. 2003. Feasibility analysis of the application of the ratio of Strontium to Barium on the identifying sedimentary environment. Fault-Block Oil & Gas Field, 10(2): 12-16]
蘇文博. 2016. 華北及揚(yáng)子克拉通中元古代年代地層格架厘定及相關(guān)問題探討. 地學(xué)前緣, 23(6): 156-185. [Su W B. 2016. Revision of the Mesoproterozoic chronostratigraphic subdivision both of North China and Yangtze Cratons and the relevant issues. Earth Science Frontiers, 23(6): 156-185]
孫鎮(zhèn)城,楊藩,張枝煥,李守軍,李東明,彭立才,曾學(xué)魯,徐鈺林,茅紹智,王強(qiáng). 1997. 中國中新生代咸化湖泊沉積環(huán)境與油氣生成. 北京: 石油工業(yè)出版社,1-194. [Sun Z C,Yang F,Zhang Z H,Li S J,Li D M,Peng L C,Zeng X L,Xu Y L,Mao S Z,Wang Q. 1997. Sedimentary Environment and Oil and Gas Generation in the Mesozoic-Cenozoic Saline Lake in China. Beijing: Petroleum Industry Press,1-194]
張鋒軍,杜少喜,王淼,楊運(yùn)軍. 2017. 洛南紫綠瑪瑙地質(zhì)特征及其綜合開發(fā)利用. 地球科學(xué)前沿, 7(4): 513-525. [Zhang F J,Du S X,Wang M,Yang Y J. 2017. Luonan purple green agate geological characteristics and their comprehensive exploitation and utilization. Advances in Geosciences, 7(4): 513-525]
張克信,何衛(wèi)紅,徐亞東,宋博文,駱滿生. 2017. 中國沉積巖建造與沉積大地構(gòu)造. 北京: 地質(zhì)出版社,221-222. [Zhang K X,He W H,Xu Y D,Song B W,Luo M S. 2017. Sedimentary Rock Formation and Sedimentary Tectonics in China. Beijing: Geological Publishing House,221-222]
張正偉,楊懷洲,朱炳泉. 2003. 東秦嶺沉積建造演化與成礦. 地球?qū)W報, 24(4): 293-298. [Zhang Z W,Yang H Z,Zhu B Q. 2003. The development sedimentary buildups and mineralization in the Eastern Qinling Mountain. Acta Geoscientia Sinica, 24(4): 293-298]
趙太平,金成偉,翟明國,夏斌,周美夫. 2002. 華北陸塊南部熊耳群火山巖的地球化學(xué)特征與因. 巖石學(xué)報, 18(1): 59-69. [Zhao T P,Jin C W,Zhai M G,Xia B,Zhou M F. 2002. Geochemistry and petrogenesis of the Xiong’er Group in the Southern Regions of the North China Craton. Acta Petorlogica Siniea, 18(1): 59-69]
趙太平,翟明國,夏斌,李惠民,張毅星,萬渝生. 2004. 熊耳群火山巖鋯石 SHRIMP 年代學(xué)研究: 對華北克拉通蓋層發(fā)育初始時間的制約. 科學(xué)通報, 49(22): 2342-2349. [Zhao T P,Zhai M G,Xia B,Li H M,Zhang Y X,Wan Y S. 2004. Zircon SHRIMP geochronology of Xiong’er Group volcanic rocks: constraints on the initial time of the caprock development in North China Craton. Chinese Science Bulletin, 49(22): 2342-2349]
周鼎武,李文厚,張云翔. 2002. 區(qū)域地質(zhì)綜合研究的方法與實踐. 北京: 科學(xué)出版社,70-71. [Zhou D W,Li W H,Zhang Y X. 2002. Methods and Practice of Comprehensive Research on Regional Geo-logy. Beijing: Science Press,70-71]
朱賴民,張國偉,郭波,李犇. 2009. 華北地塊南緣鉬礦床黃鐵礦流體包裹體氦、氬同位素體系及其對成礦動力學(xué)背景的示蹤. 科學(xué)通報, 54(12): 1725-1735. [Zhu L M,Zhang G W,Guo B,Li B. 2009. He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background. Chinese Science Bulletin, 54(12): 1725-1735]
朱士興,邢裕盛,張鵬遠(yuǎn). 1994. 華北地臺中、上元古界生物地層序列. 北京: 地質(zhì)出版社,192-200. [Zhu S X,Xing Y S,Zhang P Y. 1994. Sequences of Biostratigraphy of the Middle and Upper Proterozoic in the North China Platform. Beijing: Geological Publishing House,192-200]
Adachi M,Yamamoto K,Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1): 125-148.
Beauchamp B,Boud A. 2002. Growth and demise of Permian biogenic chert along Northwest Pangea: evidence for End Permian Collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 184(1-2): 37-63.
Bostr?m K,Kraaemer T,Gartner S. 1973. Provenance and accumulation rates of opaline silica,Al,Ti,F(xiàn)e,Mn,Cu,Ni,and Co in pacific pelagic sediments. Chemical Geology, 11(2): 123-148.
Bostr?m K,Peterson M N A. 1969. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7(5): 427-447.
Deng X H,Chen Y J,Santosh M,Yao J M. 2013. Genesis of the 1.76Ga Zhaiwa Mo-Cu and its link with the Xiong’er volcanics in the North China Craton: implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Research,227(S1): 337-348.
Dong Y P,Yang Z,Liu X M,Zhang X N,He D F,Li W,Zhang F F,Sun S S,Zhang H F,Zhang G W. 2014. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China craton: constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 255: 77-95.
Dong Y P,Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central China. Gondwana Research, 29: 1-40.
Dong Y P,Sun S S,Yang Z,Liu X M,Zhang F F,Li W,Cheng B,He D F,Zhang G W. 2017. Neoproterozoic subduction-accretionary tecto-nics of the South Qinling Belt,China. Precambrian Research, 293: 73-90.
Emilio C. 2002. Aquifer overexploitation: what does it mean?Hydrogeo-logy Journal, 10(2): 254-277.
Friedman G M. 1962. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies. Journal of Sedimentary Research, 32(1): 15-25.
German C R,Klinkhamer G P,Edmond J M,Mura A,Elderfield H. 1990. Hydrothermal scavenging of rare earth elements in the ocean. Nature, 345: 516-518.
Girty G H,Ridge D L,Knaack C,Johnson D,AL-Riyami R K. 1996. Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California. Journal of Sedimentary Research, 66(1): 107-118.
Hara H,Kurihara T,Kuroda J. 2010. Geological and geochemical aspects of A Devonian siliceous succession in Northern Thailand: implications for the opening of the Paleo-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(2): 452-464.
He B,Xu Y G,Zhong Y T,Guan J P. 2010. The Guadalupian-Lopingian boundary mudstones at Chaotian(SW China)are clastic rocks rather than acidic tuffs: implication for a temporal coincidence between the End-Guadalupian mass extinction and the Emeishan volcanism. Lithos, 119(1-2): 10-19.
Hu G,Zhao T,Zhou Y. 2014. Depositional age,provenance and tectonic setting of the Proterozoic Ruyang Group,southern margin of the North China Craton. Precambrian Research, 246(6): 296-318.
Maliva R G,Knoll A H,Simonson B M. 2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117(7): 835.
Marin-Carbonne J,Chaussidon M,Boiron M C,Robert F. 2011. A combined in situ oxygen,silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group(3.35Ga,South Africa): new constraints on fluid circulation. Chemical Geology, 286(3-4): 59-71.
Marin-Carbonne J,Chaussidon M,Robert F. 2012. Micrometer-scale chemical and isotopic criteria(O and Si)on the origin and history of Precambrian cherts: implications for paleotemperature reconstructions. Geochimica et Cosmochimica Acta, 92(9): 129-147.
McLennan S M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200.
Meng Y,Zuo P,Zheng D,Sun F,Wang P,Wang Z,Li Y. 2018. The earliest clastic sediments overlying the Xiong’er volcanic rocks: implications for the Mesoproterozoic tectonics of the southern North China Craton. Precambrian Research, 305: 268-282.
Murray R W,Buchholtz Ten Brink M R,Gerlach D C,Jones D L. 1991. Rare earth,major,and trace element in chert from franciscan complexand monterey group: assessing REE Source to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55(7): 1875-1895.
Murray R W,Marilyn R,Buchholtz Ten Brink M R. 1992. Interoceanic variation in the rare earth,major,and trace element depositional chemistry of chert: perspectives gained from the DSDP and ODP Record. Geochimica et Cosmochimica Acta, 56(5): 1897-1913.
Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and application. Sedimentary Geo-logy, 90(3-4): 213-232.
Nie H,Yao J,Wan X,Zhu X Y,Siebel W,Chen F K. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167-179.
Rais W R,Buckley F. 1988. Degree of pyritization of iron as a palaeoenvironmental indicator of bottom water oxygenation. Journal of Sedimentary Petrology, 58(5): 812-819.
Robert F,Marc C. 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443: 969-972.
Shimizu H,Masuda A. 1977. Cerium in chert as indication of marine environment of its formation. Nature,266: 346-348.
Taylor S R,McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications,9-56.
Wang H,Wu Y B,Gao S,Liu X C,Liu Q,Qin Z W,Xie S W,Zhou L,Yang S H. 2013. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Research, 23: 13-30.
Yamamoto K. 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto. Sedimentary Geology, 52(1-2): 65-108.
Zhang H F,Zhang J,Zhang G W,Santosh M,Yu H,Yang Y H,Wang J L. 2016. Detrital zircon U-Pb,Lu-Hf,and O isotopes of the Wufoshan Group: implications for episodic crustal growth and reworking of the southern North China craton. Precambrian Research, 273: 112-128.
Zhao G C,He Y H,Sun M. 2009. The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181.