劉大偉,譚萬鑫,金 昕,任廷志
變速橢圓齒輪泵的非線性振動(dòng)模型與拍擊特性
劉大偉1,譚萬鑫1,金 昕2,任廷志2
(1. 燕山大學(xué)機(jī)械工程學(xué)院,秦皇島 066004;2. 燕山大學(xué)國家冷軋板帶裝備及工藝工程技術(shù)研究中心,秦皇島 066004)
變速橢圓齒輪泵是一種具有大排量、低脈動(dòng)的新型容積泵,為提升其在高轉(zhuǎn)速下的動(dòng)力學(xué)性能,降低振動(dòng)和噪聲,對(duì)該齒輪泵在周期負(fù)載作用下的拍擊振動(dòng)行為進(jìn)行研究。闡明了基于外部非圓齒輪變速驅(qū)動(dòng)的橢圓齒輪泵流量脈動(dòng)平抑原理,給出了變速橢圓齒輪泵中兩級(jí)非圓齒輪機(jī)構(gòu)的傳動(dòng)比函數(shù);基于集中參數(shù)法,考慮輪齒間的彈性變形、靜態(tài)傳遞誤差、齒側(cè)間隙及周期負(fù)載等因素,構(gòu)建了變速橢圓齒輪泵的非線性拍擊動(dòng)力學(xué)模型,運(yùn)用龍格-庫塔法求解系統(tǒng)的動(dòng)態(tài)響應(yīng),定量分析了變速橢圓齒輪泵的拍擊特性以及關(guān)鍵參數(shù)對(duì)拍擊門檻轉(zhuǎn)速的影響。結(jié)果表明:隨著變速橢圓齒輪泵輸入轉(zhuǎn)速的增加,系統(tǒng)先后經(jīng)歷無拍擊、單邊拍擊和雙邊拍擊狀態(tài),在設(shè)計(jì)參數(shù)下系統(tǒng)的拍擊門檻轉(zhuǎn)速為985 r/min,當(dāng)拍擊發(fā)生后齒間動(dòng)態(tài)嚙合力均方根會(huì)迅速增大;提高泵口壓強(qiáng)或系統(tǒng)制造精度能夠提升拍擊門檻轉(zhuǎn)速,泵口壓強(qiáng)由0增至3.5 MPa,系統(tǒng)的拍擊門檻轉(zhuǎn)速由118 r/min增至1 637 r/min,從動(dòng)橢圓轉(zhuǎn)子靜態(tài)傳遞誤差幅值由7′10-2mm降低至1′10-2mm,拍擊門檻轉(zhuǎn)速由441 r/min提升至985 r/min,而增加轉(zhuǎn)子偏心率,會(huì)導(dǎo)致拍擊門檻轉(zhuǎn)速先緩慢升高后迅速降低,為抑制變速橢圓齒輪泵的拍擊振動(dòng)和噪聲及提升無拍擊狀態(tài)下最大瞬時(shí)流量提供理論依據(jù)。
齒輪;齒輪泵;非線性振動(dòng);拍擊狀態(tài);拍擊門檻
非圓齒輪能夠?qū)崿F(xiàn)兩軸間精確的變速比傳動(dòng),廣泛應(yīng)用于農(nóng)作物移栽機(jī)械[1-3]、汽車差速器[4]、采油機(jī)[5]和人工血泵[6]等。針對(duì)農(nóng)業(yè)上的大流量流體輸送需求,徐高歡等[7]將非圓齒輪與葉片泵融合,提出了一種大排量葉片差速泵,具有良好的流體輸送性能。而利用高階橢圓齒輪替換齒輪泵轉(zhuǎn)子,可以獲得另一種大排量容積泵,針對(duì)該泵的流量脈動(dòng)問題,Liu等[8]通過外部非圓齒輪變速驅(qū)動(dòng),實(shí)現(xiàn)橢圓齒輪泵流量均化,不僅其排量數(shù)倍于同泵腔容積的圓齒輪泵,而且瞬時(shí)流量均勻,在農(nóng)業(yè)、石油、化工、食品、醫(yī)療和交通等領(lǐng)域具有廣闊應(yīng)用前景。但由于非圓齒輪存在特殊內(nèi)部激勵(lì),容易引發(fā)拍擊振動(dòng)和噪聲,嚴(yán)重影響泵的使用性能,因此研究該泵的非線性動(dòng)力學(xué),揭示拍擊發(fā)生機(jī)制,是設(shè)計(jì)高品質(zhì)變速橢圓齒輪泵的關(guān)鍵問題。
國內(nèi)外眾多學(xué)者對(duì)圓齒輪拍擊動(dòng)態(tài)特性進(jìn)行了深入的研究,建立了綜合考慮時(shí)變嚙合剛度、阻尼比、齒側(cè)間隙、誤差等因素齒輪非線性動(dòng)力學(xué)模型,深入分析了嚙合剛度[9]、阻尼[10]、傳遞誤差[11]、摩擦[12]、修形[13]以及激勵(lì)幅值[14]等對(duì)分岔、混沌等非線性特性的影響機(jī)理,為圓齒輪系統(tǒng)的設(shè)計(jì)和優(yōu)化奠定了理論基礎(chǔ)。但非圓齒輪由于瞬心時(shí)變會(huì)引起額外的內(nèi)部激勵(lì),其振動(dòng)行為相對(duì)圓齒輪更加復(fù)雜。Huang等[15-16]設(shè)計(jì)了一種由非圓齒輪控制步態(tài)的仿生六足機(jī)器人并對(duì)其進(jìn)行動(dòng)力學(xué)分析,使其能夠在地面快速移動(dòng)和轉(zhuǎn)向;Okada等[17]針對(duì)一種含非圓齒輪的彈跳機(jī)器人進(jìn)行了動(dòng)力學(xué)分析,并對(duì)其彈跳性能進(jìn)行了優(yōu)化;李憲奎等[18]研究了橢圓齒輪驅(qū)動(dòng)連鑄機(jī)非正弦振動(dòng)時(shí)的低頻共振現(xiàn)象。葉秉良等[19]提出了橢圓齒輪-不完全非圓齒輪行星系旋轉(zhuǎn)式水稻缽苗移栽機(jī)構(gòu),并對(duì)其動(dòng)力學(xué)仿真計(jì)算得出支座振動(dòng)的主要因素。王麗紅等[20]中提出了一種用于番茄果秧分離的非圓齒輪振動(dòng)發(fā)生器,通過傳動(dòng)比設(shè)計(jì)實(shí)現(xiàn)特定振動(dòng)規(guī)律。上述研究中主要關(guān)注整個(gè)機(jī)械系統(tǒng)的動(dòng)力學(xué)特性,因此在動(dòng)力學(xué)建模中只計(jì)入了非圓齒輪變速轉(zhuǎn)動(dòng)引起的動(dòng)態(tài)慣性扭矩,而忽略了輪齒的彈性變形。
針對(duì)非圓齒輪的非線性傳動(dòng)比導(dǎo)致齒間彈性變形不易表征的問題,劉大偉等[21]提出了基于彈性轉(zhuǎn)角分離的非圓齒輪扭振模型,分析了時(shí)變瞬心、轉(zhuǎn)速和負(fù)載等參數(shù)對(duì)非圓齒輪動(dòng)態(tài)響應(yīng)的影響,應(yīng)用該方法,Liu等[22-23]分別建立了非圓面齒輪的彎-扭-軸耦合振動(dòng)模型以及兩級(jí)非圓齒輪純扭振模型,并得到振動(dòng)響應(yīng)隨齒輪參數(shù)的演變規(guī)律;Gao等[24]研究了橢圓齒輪參數(shù)振動(dòng)與穩(wěn)定性,但以上模型中忽略了齒側(cè)間隙,無法反映齒輪的拍擊行為以及由此產(chǎn)生的振動(dòng)和噪聲。Liu等[25]引入齒側(cè)間隙,建立了一對(duì)橢圓齒輪的非線性振動(dòng)模型,通過仿真得到了齒輪扭矩、轉(zhuǎn)速的振動(dòng)規(guī)律以及輪齒發(fā)生分離的臨界值,進(jìn)一步通過試驗(yàn)方法測(cè)試了橢圓齒輪的實(shí)際扭矩、轉(zhuǎn)速[26]及噪聲[27]等特性,發(fā)現(xiàn)橢圓齒輪的非勻速旋轉(zhuǎn)將使輪齒在低速時(shí)發(fā)生輪齒分離,當(dāng)轉(zhuǎn)速超過臨界轉(zhuǎn)速時(shí),系統(tǒng)將產(chǎn)生嚴(yán)重的拍擊和噪聲。董長(zhǎng)斌等[28]著重分析了含間隙時(shí)橢圓齒輪的主要參數(shù)對(duì)齒輪振動(dòng)性質(zhì)的影響規(guī)律。針對(duì)空間非圓齒輪,Lin等[29-30]研究了一種曲線面齒輪的非線性振動(dòng)問題,揭示了不同條件下該齒輪會(huì)發(fā)生多周期、擬周期和混沌振動(dòng)現(xiàn)象。上述研究表明:非圓齒輪由于時(shí)變瞬心的影響,會(huì)比圓齒輪更容易產(chǎn)生拍擊振動(dòng)和噪聲,研究非圓齒輪的拍擊動(dòng)力學(xué),抑制拍擊振動(dòng),對(duì)提升含非圓齒輪的機(jī)械系統(tǒng)動(dòng)態(tài)特性具有重要的意義。但目前考慮齒側(cè)間隙的非圓齒輪拍擊動(dòng)力學(xué)研究,尚局限于一對(duì)齒輪副,無法解釋非圓齒輪輪系的拍擊行為。
為此,本文針對(duì)包含兩級(jí)非圓齒輪傳動(dòng)機(jī)構(gòu)的變速橢圓齒輪泵,考慮輪齒彈性變形和齒側(cè)間隙,建立了周期負(fù)載下兩級(jí)非圓齒輪的拍擊振動(dòng)模型,定量分析該泵的拍擊振動(dòng)行為及主要參數(shù)對(duì)拍擊狀態(tài)、拍擊門檻轉(zhuǎn)速等參數(shù)的影響規(guī)律,擬為抑制變速橢圓齒輪泵的拍擊振動(dòng)和噪聲提供理論依據(jù)。
高階橢圓齒輪泵的內(nèi)部結(jié)構(gòu)與普通齒輪泵相似,區(qū)別在于轉(zhuǎn)子為一對(duì)橢圓齒輪,如圖1a所示,它通過橢圓齒輪向徑最長(zhǎng)處的輪齒對(duì)液體進(jìn)行封閉,儲(chǔ)液腔為圖1b中的月牙部分,故相對(duì)于相同泵腔容積和模數(shù)的圓齒輪泵,非圓齒輪泵具有大排量的優(yōu)勢(shì)。
伴隨大排量,橢圓齒輪泵會(huì)產(chǎn)生劇烈的流量脈動(dòng),橢圓齒輪轉(zhuǎn)子旋轉(zhuǎn)一周,瞬時(shí)流量的波動(dòng)次數(shù)與橢圓齒輪階數(shù)相同。Liu等[8]提出采用非圓齒輪變速驅(qū)動(dòng)流量脈動(dòng)平抑原理,如圖2所示,在非圓齒輪泵外部增加一對(duì)特殊的非圓齒輪,通過改變齒輪泵的瞬時(shí)轉(zhuǎn)速消除流量脈動(dòng)。
以實(shí)現(xiàn)均勻流量為目標(biāo),根據(jù)橢圓齒輪泵的瞬時(shí)流量公式,反求的外部非圓齒輪的傳動(dòng)比為
式中12分別為外部主動(dòng)非圓齒輪1和從動(dòng)非圓齒輪2的角速度,rad/s;為橢圓齒輪泵轉(zhuǎn)子偏心率,無量綱;為橢圓齒輪泵兩轉(zhuǎn)子中心距的一半,m;為泵腔半徑,m;3為主動(dòng)橢圓齒輪3的節(jié)曲線向徑,m;3為主動(dòng)橢圓齒輪3的轉(zhuǎn)角,rad。外部從動(dòng)非圓齒輪2與主動(dòng)橢圓齒輪3固定在同一個(gè)軸上,二者的轉(zhuǎn)角相等,從公式(1)可以看出,外部非圓齒輪的傳動(dòng)比是以從動(dòng)非圓齒輪轉(zhuǎn)角為自變量構(gòu)建的,而泵內(nèi)部橢圓齒輪的傳動(dòng)比自變量是主動(dòng)橢圓齒輪轉(zhuǎn)角,其表達(dá)式為
式中34分別為主動(dòng)橢圓轉(zhuǎn)子3和從動(dòng)橢圓轉(zhuǎn)子4的角速度,rad/s;4為從動(dòng)橢圓齒輪4節(jié)曲線向徑,m;為橢圓齒輪階數(shù),無量綱。
根據(jù)式(1)、(2)設(shè)計(jì)的橢圓齒輪泵,可以完全平抑因橢圓形轉(zhuǎn)子產(chǎn)生的低頻大幅脈動(dòng),從而實(shí)現(xiàn)橢圓齒輪泵的穩(wěn)定大流量輸送[8]。
為研究泵在不同工況下的振動(dòng)性能,對(duì)其傳動(dòng)系統(tǒng)進(jìn)行動(dòng)力學(xué)建模。變速橢圓齒輪泵的傳動(dòng)系統(tǒng)為兩級(jí)非圓齒輪機(jī)構(gòu),考慮輪齒彈性及齒側(cè)間隙,基于集中參數(shù)法建立兩級(jí)非圓齒輪機(jī)構(gòu)的動(dòng)力學(xué)模型,建模中做如下假設(shè):
1)考慮非線性阻尼對(duì)系統(tǒng)動(dòng)態(tài)響應(yīng)影響較小,忽略齒側(cè)間隙對(duì)嚙合阻尼的影響,認(rèn)為阻尼為線性;
2)軸的剛度遠(yuǎn)大于齒輪嚙合剛度;
3)忽略齒輪彈性振動(dòng)對(duì)傳動(dòng)比的影響。
非圓齒輪簡(jiǎn)化成集中質(zhì)量,考慮非圓齒輪靜態(tài)傳遞誤差和齒側(cè)間隙的嚙合輪齒通過圖3中靜態(tài)傳遞誤差、彈簧、阻尼和間隙元件的組合機(jī)構(gòu)表示,其中彈簧和阻尼的受力方向與輪齒嚙合力方向相同。
1.靜態(tài)傳遞誤差 2.間隙 3.直線彈簧4.直線阻尼
1.Static transfer error 2.Clearance 3.Linear spring 4.Linear damping
圖3 嚙合輪齒的等效機(jī)構(gòu)
Fig.3 Equivalent mechanism of meshing gear teeth
根據(jù)以上假設(shè)和簡(jiǎn)化,可得到兩級(jí)含間隙非圓齒輪機(jī)構(gòu)的力學(xué)模型,如圖4所示。非圓齒輪集中質(zhì)量的輪廓線由非圓齒輪齒廓的漸屈線表示,在本文中將該漸屈線稱為非圓齒輪基圓。根據(jù)假設(shè)3),在任意時(shí)刻嚙合輪齒等效機(jī)構(gòu)都與兩非圓齒輪的基圓相切。
1.外部主動(dòng)非圓齒輪 2.外部從動(dòng)非圓齒輪 3.齒輪泵主動(dòng)橢圓轉(zhuǎn)子 4.齒輪泵從動(dòng)橢圓轉(zhuǎn)子
1.External driving noncircular gear 2.External driven noncircular gear 3.Driving elliptical rotor of gear pump 4.Driven elliptical rotor of gear pump
注:r1、r2、r3、r4分別為齒輪1、2、3、4的瞬時(shí)基圓半徑,m;k1、c1為齒輪1、2間的嚙合剛度和阻尼,N·m-1,N·(s·m-1);k2、c2為轉(zhuǎn)子3、4間的嚙合剛度和阻尼,N·m-1,N·(s·m-1);1、2分別為為齒輪1、2和轉(zhuǎn)子3、4齒側(cè)間隙的一半,m;1、2分別為齒輪1、2上和轉(zhuǎn)子3、4上的靜態(tài)傳遞誤差幅值,m;T為輸入轉(zhuǎn)矩,N·m;T3、T4為齒輪3、4上的負(fù)載轉(zhuǎn)矩,N·m。
Note:r1,r2,r3andr4are instantaneous base circle radii of gears 1, 2, 3 and 4 respectively, m,k1,c1are the meshing stiffness and damping between gears 1 and 2, N·m-1, N·(s·m-1),k2、c2are the meshing stiffness and damping between rotors 3 and 4, N·m-1, N·(s·m-1),1and2are half of the backlash of gears 1 and 2 and rotors 3 and 4 respectively, m,1and2are the static transfer error amplitudes on gears 1 and 2 and rotors 3 and 4 respectively, m,Tis the input torque, N·m,T3andT4are the load torque on gears 3 and 4, N·m.
圖4 兩級(jí)非圓齒輪力學(xué)模型
Fig.4 Mechanical model of two-stage noncircular gears
在齒輪傳動(dòng)過程中,齒輪的實(shí)際轉(zhuǎn)角由剛性轉(zhuǎn)角和彈性轉(zhuǎn)角兩部組成,其中剛性轉(zhuǎn)角為兩齒輪按照理想傳動(dòng)比轉(zhuǎn)過的角度,彈性轉(zhuǎn)角為輪齒彈性變形產(chǎn)生的轉(zhuǎn)角,輪齒間的相對(duì)位移和嚙合力均可由彈性轉(zhuǎn)角表示,則圖4中兩對(duì)非圓齒輪之間的相對(duì)位移為
式中θ(=1,2,3,4)為非圓齒輪的彈性轉(zhuǎn)角,rad;瞬時(shí)基圓半徑由下式求得。
式中0為刀具的齒形角,rad;r(=1,2,3,4)為非圓齒輪的瞬時(shí)節(jié)曲線向徑,m;1和2分別為非圓齒輪1、2和非圓齒輪3、4的節(jié)曲線向徑與其切線在正方向上的夾角,rad;正、負(fù)號(hào)分別代表齒輪的左、右齒廓。
考慮齒側(cè)間隙,齒輪1、2間的相對(duì)彈性位移為
同理,齒輪3、4間的相對(duì)彈性位移表示為
根據(jù)假設(shè)(1),不考慮齒側(cè)間隙對(duì)嚙合阻尼的影響,對(duì)式(3)求導(dǎo),可得兩對(duì)非圓齒輪的相對(duì)速度為
則兩對(duì)非圓齒輪間的動(dòng)態(tài)嚙合力分別為
式中12為齒輪2對(duì)齒輪1的作用力,N;34為齒輪4對(duì)齒輪3的作用力,N。
在圖4中非圓齒輪1與電機(jī)相連,以角速度1勻速轉(zhuǎn)動(dòng)。由于非圓齒輪變傳動(dòng)比特點(diǎn),非圓齒輪2、3和4均為非勻速運(yùn)動(dòng),因此轉(zhuǎn)動(dòng)過程必然會(huì)產(chǎn)生慣性力。根據(jù)假設(shè)2),固定在同一根傳動(dòng)軸上的非圓齒輪2和3具有相同的運(yùn)動(dòng)規(guī)律,即剛性轉(zhuǎn)角和彈性轉(zhuǎn)角相同,則非圓齒輪2或轉(zhuǎn)子3的剛性角速度和角加速度為
式中2為從動(dòng)非圓齒輪2或轉(zhuǎn)子3的剛性角速度,rad/s;2為非圓齒輪2的剛性轉(zhuǎn)角,rad;2為非圓齒輪2或3的剛性角加速度,rad/s2;非圓齒輪4的剛性角速度和角加速度為
式中4為從動(dòng)橢圓齒輪4剛性角速度,rad/s;4為非圓齒輪4的剛性角加速度,rad/s2;其中2=3。
轉(zhuǎn)子的負(fù)載扭矩包括泵口壓強(qiáng)作用在轉(zhuǎn)子上產(chǎn)生的扭矩T和轉(zhuǎn)子轉(zhuǎn)動(dòng)帶來的黏性摩擦力T,考慮到齒間和軸承的摩擦等對(duì)齒輪傳動(dòng)效率的影響,取兩級(jí)非圓齒輪間傳遞效率為95%計(jì)算系統(tǒng)的負(fù)載扭矩。
式中L3、L4為轉(zhuǎn)子3、4上的負(fù)載扭矩,N·m;c3、c4為由轉(zhuǎn)子與泵體內(nèi)壁因相對(duì)轉(zhuǎn)動(dòng)而產(chǎn)生的粘性摩檫阻力矩,N·m;P3、P4為泵口壓強(qiáng)作用在轉(zhuǎn)子3、4上的負(fù)載轉(zhuǎn)矩N·m;將兩橢圓轉(zhuǎn)子簡(jiǎn)化成直徑為中心距、厚度為齒厚的兩圓柱,代入扭轉(zhuǎn)阻尼器阻力公式得c3、c4為
式中為油液黏度,MPa·s;為轉(zhuǎn)子3、4齒寬,m;為轉(zhuǎn)子端面與泵腔間隙,m。
泵口壓強(qiáng)作用在轉(zhuǎn)子3、4上的負(fù)載(圖5)轉(zhuǎn)矩P3、P4為
式中為橢圓齒輪泵的出口壓強(qiáng),MPa。
注:3、4為高壓液體作用在轉(zhuǎn)子3、4上的壓力,N;3、4為橢圓齒輪泵轉(zhuǎn)子與泵殼內(nèi)壁接觸點(diǎn);3、4為橢圓齒輪泵主從動(dòng)齒輪嚙合點(diǎn);3、4分別為線段33、44中點(diǎn)。
Note:3and4are the pressure of high pressure liquid acting on rotor 3 and 4 respectively, N,3and4are the contact points between the rotor and the inner wall of the pump shell,3and4are meshing points of driving and driven gears of elliptical gear pump,3and4are the midpoint of33and44respectively.
圖5 橢圓齒輪泵受力分析
Fig.5 Force analysis of elliptical gear pump
在圖4中非圓齒輪1以角速度為1勻速轉(zhuǎn)動(dòng),其他非圓齒輪的剛性轉(zhuǎn)角規(guī)律可由式(9)~(10)確定。根據(jù)各非圓齒輪的受力平衡,可以推導(dǎo)出兩級(jí)非圓齒輪的運(yùn)動(dòng)微分方程為
式中2、3、4為非圓齒輪2、3、4的轉(zhuǎn)動(dòng)慣量,kg·m2。
基于兩級(jí)非圓齒輪運(yùn)動(dòng)微分方程,運(yùn)用龍格-庫塔法數(shù)值求解系統(tǒng)的動(dòng)態(tài)響應(yīng),對(duì)系統(tǒng)的拍擊振動(dòng)進(jìn)行仿真分析,以揭示系統(tǒng)拍擊振動(dòng)規(guī)律。引入3個(gè)參數(shù)表征系統(tǒng)的拍擊行為,其中r表示拍擊狀態(tài),當(dāng)r取0、1、2時(shí)分別表示無拍擊、單邊拍擊和雙邊拍擊;齒間動(dòng)態(tài)嚙合力均方根F表示拍擊振動(dòng)強(qiáng)度;變速橢圓齒輪泵中任意齒輪發(fā)生拍擊時(shí)齒輪1的臨界轉(zhuǎn)速n為拍擊門檻轉(zhuǎn)速。
以圖2中變速橢圓齒輪泵為研究對(duì)象,進(jìn)行拍擊動(dòng)力學(xué)仿真,其主要參數(shù)如表1所示。考慮實(shí)際工程中基頻穩(wěn)態(tài)響應(yīng)占據(jù)主導(dǎo)地位,出于簡(jiǎn)化計(jì)算的目的,時(shí)變嚙合剛度和靜態(tài)傳遞誤差均為僅考慮平均分量和基頻分量的簡(jiǎn)諧函數(shù),并且誤差的平均分量為0。通過控制變量法,研究變速橢圓齒輪泵拍擊行為的演變規(guī)律,依次改變輸入轉(zhuǎn)速1,泵口壓強(qiáng),齒輪靜態(tài)傳遞誤差12以及轉(zhuǎn)子偏心率等參數(shù)的取值,計(jì)算相應(yīng)的拍擊狀態(tài)值r,齒間動(dòng)態(tài)嚙合力均方根F以及拍擊門檻轉(zhuǎn)速n等,仿真中當(dāng)泵系統(tǒng)參數(shù)中的任何一個(gè)變化時(shí),其他參數(shù)均取表1中初始設(shè)計(jì)值[8]。
表1 變速橢圓齒輪泵的基本設(shè)計(jì)參數(shù)
圖6中給出了轉(zhuǎn)速1分別為500、1 500和2 500 r/min時(shí)齒輪2彈性轉(zhuǎn)角2和轉(zhuǎn)子4彈性轉(zhuǎn)角4的時(shí)域圖,從兩個(gè)圖中整體來看,隨著轉(zhuǎn)速的增加,兩對(duì)非圓齒輪的振動(dòng)均加劇,并且轉(zhuǎn)子4比齒輪2的振動(dòng)更劇烈。當(dāng)轉(zhuǎn)速1為500 r/min時(shí),2和4均小于0,系統(tǒng)不發(fā)生拍擊;當(dāng)轉(zhuǎn)速1為1 500 r/min時(shí),2為0和負(fù)值,4出現(xiàn)正值和負(fù)值,表明齒輪1、2間發(fā)生了單邊拍擊,轉(zhuǎn)子3、4間發(fā)生了雙邊拍擊。當(dāng)轉(zhuǎn)速為2 500 r/min時(shí),2和4正負(fù)交替出現(xiàn)表明兩級(jí)非圓齒輪間均為雙邊拍擊。
進(jìn)一步對(duì)彈性轉(zhuǎn)角進(jìn)行傅里葉變換得到不相同轉(zhuǎn)速下彈性轉(zhuǎn)角頻譜圖,由圖7發(fā)現(xiàn),兩對(duì)齒輪的主要頻率成分為1=21/60的時(shí)變瞬心激勵(lì)頻率、2=1Z/60的輪齒嚙合激勵(lì)頻率、兩者的倍頻以及和差型頻率。對(duì)比圖7中兩個(gè)齒輪的幅值-頻率圖發(fā)現(xiàn),轉(zhuǎn)子4中時(shí)變瞬心頻率對(duì)應(yīng)的幅值遠(yuǎn)大于齒輪2,而兩個(gè)齒輪中嚙合頻率對(duì)應(yīng)的幅值接近,其原因?yàn)闄E圓齒輪轉(zhuǎn)子3、4的偏心程度遠(yuǎn)大于外部驅(qū)動(dòng)齒輪1、2,從而導(dǎo)致轉(zhuǎn)子4比齒輪2的振動(dòng)程度更大,該現(xiàn)象在圖6中也可以清晰地觀察到。
注:1為時(shí)變瞬心激勵(lì),Hz;2為輪齒嚙合激勵(lì),Hz。
Note:1is time varying instantaneous center excitation, Hz,2is tooth meshing excitation, Hz.
圖7 齒輪2和轉(zhuǎn)子4的彈性轉(zhuǎn)角頻譜圖
Fig.7 Spectrum of elastic rotation angle for gear2 and rotor4
改變輸入轉(zhuǎn)速1,計(jì)算得到兩對(duì)齒輪的拍擊狀態(tài)如圖8a、8b所示。從整體來看,隨著轉(zhuǎn)速的升高,兩對(duì)齒輪會(huì)依次經(jīng)歷無拍擊、單邊拍擊和雙邊拍擊狀態(tài)。當(dāng)轉(zhuǎn)速1為985 r/min時(shí),轉(zhuǎn)子3、4由無拍擊狀態(tài)變化到單邊拍擊狀態(tài),系統(tǒng)的拍擊門檻轉(zhuǎn)速n=985 r/min。隨著轉(zhuǎn)速繼續(xù)增大,轉(zhuǎn)子3、4率先進(jìn)入雙邊拍擊狀態(tài),原因是轉(zhuǎn)子4的振動(dòng)程度遠(yuǎn)大于齒輪2,故在高轉(zhuǎn)速下轉(zhuǎn)子3、4相對(duì)齒輪1、2更容易誘發(fā)雙邊拍擊。
圖8c為兩對(duì)齒輪的齒間動(dòng)態(tài)嚙合力F隨轉(zhuǎn)速的變化規(guī)律,當(dāng)轉(zhuǎn)速小于985 r/min時(shí),兩對(duì)齒輪處于無拍擊狀態(tài),隨著轉(zhuǎn)速的提升,F緩慢地線性增加,而當(dāng)轉(zhuǎn)速大于985 r/min后,齒輪發(fā)生拍擊振動(dòng),F整體上隨轉(zhuǎn)速提高而快速上升,說明拍擊會(huì)引起齒間動(dòng)態(tài)嚙合力大幅增加。另外由于拍擊行為的復(fù)雜性,F在局部還會(huì)出現(xiàn)小的振動(dòng)。
進(jìn)一步計(jì)算泵口壓強(qiáng),齒輪靜態(tài)傳遞誤差1、2以及轉(zhuǎn)子偏心率不同時(shí),泵的拍擊狀態(tài)參數(shù)r,以及齒間動(dòng)態(tài)嚙合力均方根F,發(fā)現(xiàn)隨著1、2和的增加以及的減小,泵中兩對(duì)齒輪都會(huì)依次發(fā)生無沖擊、單邊沖擊和雙邊沖擊3種振動(dòng)行為,在無沖擊時(shí),兩對(duì)齒輪上F隨1、2、或的增長(zhǎng)而緩慢地線性增加,而一旦出現(xiàn)拍擊,F將快速增加,從而引起系統(tǒng)產(chǎn)生強(qiáng)烈的振動(dòng)和噪聲。為了抑制拍擊的發(fā)生,分別求出了拍擊門檻轉(zhuǎn)速n隨系統(tǒng)參數(shù)的變化規(guī)律,如圖9、10所示。
圖9a為不同泵口壓強(qiáng)下系統(tǒng)的拍擊門檻轉(zhuǎn)速,隨著泵口壓強(qiáng)增大,拍擊門檻轉(zhuǎn)速n提升,泵口壓強(qiáng)由0增至3.5 MPa,系統(tǒng)的拍擊門檻轉(zhuǎn)速由118 r/min增至1 637 r/min,這與圓齒輪拍擊門檻轉(zhuǎn)速的變化規(guī)律相同,負(fù)載增加能有效抑制輪齒的分離,降低拍擊振動(dòng)的發(fā)生。但對(duì)于變速橢圓齒輪泵來說,齒輪2和轉(zhuǎn)子4的非勻速轉(zhuǎn)動(dòng)將產(chǎn)生周期性慣性扭矩,當(dāng)轉(zhuǎn)速增加到一定程度后,兩齒輪上負(fù)載扭矩與慣性扭矩之和必然會(huì)出現(xiàn)正、負(fù)交替現(xiàn)象,從而引起拍擊,因此對(duì)變速橢圓齒輪泵,即便泵口具有較大壓強(qiáng),也應(yīng)計(jì)算相應(yīng)的拍擊門檻轉(zhuǎn)速,以防止拍擊振動(dòng)發(fā)生。
分別改變齒輪1、2間靜態(tài)傳遞誤差1和轉(zhuǎn)子3、4間靜態(tài)傳遞誤差2,得到系統(tǒng)拍擊門檻轉(zhuǎn)速n如圖9b所示。隨著1和2增大,拍擊門檻轉(zhuǎn)速n均呈下降趨勢(shì),當(dāng)轉(zhuǎn)子4靜態(tài)傳遞誤差幅值由1′10-2mm升高至7′10-2mm時(shí),拍擊門檻轉(zhuǎn)速由985 r/min降低至441 r/min,故加工精度降低容易誘發(fā)拍擊現(xiàn)象。相對(duì)外部非圓齒輪1和2來說,內(nèi)部轉(zhuǎn)子3和4的靜態(tài)傳遞誤差對(duì)n影響更大,為提高拍擊門檻轉(zhuǎn)速,內(nèi)部轉(zhuǎn)子3、4的精度應(yīng)比外部非圓齒輪1、2更高。
轉(zhuǎn)子偏心率越大變速橢圓齒輪泵排量越大,泵腔容積的利用率越高。圖10a給出了偏心率∈[0.05,0.6]時(shí)拍擊門檻轉(zhuǎn)速的變化規(guī)律。當(dāng)偏心率從0.05增大到0.15時(shí),拍擊門檻轉(zhuǎn)速n出現(xiàn)小幅上升趨勢(shì),隨著偏心率繼續(xù)增大,拍擊門檻轉(zhuǎn)速n大幅下降。
為解釋以上現(xiàn)象,求出了在系統(tǒng)參數(shù)下1為600 r/min時(shí)系統(tǒng)的齒間嚙合力隨的變化曲線,如圖10b所示,當(dāng)偏心率從0.05增大到0.15時(shí),兩齒輪間的平均嚙合力與嚙合力峰間值均程上升趨勢(shì),峰間值雖然上升速度快,但幅值不大,齒間整體嚙合力隨增大而緩慢增大,從而對(duì)拍擊產(chǎn)生一定的抑制作用,使n小幅上升;隨著繼續(xù)增大,平均嚙合力緩慢增長(zhǎng),而嚙合力峰間值依然快速增長(zhǎng),導(dǎo)致振動(dòng)加劇,齒輪容易脫齒,相應(yīng)n大幅下降。故增大偏心率雖然能提升變速橢圓齒輪泵排量,但其轉(zhuǎn)速受拍擊振動(dòng)限制,實(shí)際工作中的有效流量并不一定得到提升,因此偏心率的設(shè)計(jì)必須同時(shí)兼顧泵的排量和臨界轉(zhuǎn)速。
根據(jù)表1參數(shù)設(shè)計(jì)的變速橢圓齒輪泵試驗(yàn)裝置如圖11所示,由橢圓齒輪泵、變速非圓齒輪和變頻電機(jī)組成。橢圓齒輪轉(zhuǎn)子3、4通過軸承安裝在泵體內(nèi)部,故轉(zhuǎn)子3、4的扭振將通過軸承座傳遞到泵體上,將兩個(gè)加速度傳感器分別布置在泵體側(cè)面和上面,使兩個(gè)加速度傳感器軸線相互垂直且垂直于轉(zhuǎn)子3、4軸線。泵的出油口置于空氣中,設(shè)置采樣頻率為1 000 Hz,調(diào)節(jié)輸入轉(zhuǎn)速得到系統(tǒng)不同流量下的振動(dòng)數(shù)據(jù)。
將采集到的數(shù)據(jù)降噪濾波后進(jìn)行傅里葉變換,得到泵體加速度的幅值-頻域曲線。由于理論計(jì)算得到的是齒輪扭振響應(yīng),試驗(yàn)測(cè)得的是泵體振動(dòng)數(shù)據(jù),二者在振動(dòng)幅值上無法對(duì)應(yīng),因此對(duì)振動(dòng)頻率成分進(jìn)行對(duì)比。圖12a給出了電機(jī)轉(zhuǎn)速為130 r/min時(shí)泵體加速度頻譜圖,測(cè)得系統(tǒng)主要含8、48.2和100 Hz的頻率成分。繼續(xù)調(diào)節(jié)電機(jī)轉(zhuǎn)速得到輸入轉(zhuǎn)速1=300 r/min時(shí)系統(tǒng)得頻譜圖如圖12b所示,對(duì)比圖12a發(fā)現(xiàn)調(diào)節(jié)轉(zhuǎn)速后系統(tǒng)所受激勵(lì)組成基本不變,激勵(lì)幅值增大,與圖7理論計(jì)算的變化趨勢(shì)相符。圖13為輸入轉(zhuǎn)速1=130 r/min理論計(jì)算所得頻域圖,其中時(shí)變瞬心激勵(lì)頻率1=4.33 Hz、輪齒嚙合激勵(lì)頻率2=47.67 Hz,對(duì)比輸入轉(zhuǎn)速1=130 r/min時(shí)系統(tǒng)理論計(jì)算頻譜和試驗(yàn)所得頻譜,發(fā)現(xiàn)試驗(yàn)所得泵體加速度激勵(lì)組成與理論計(jì)算基本吻合,但試驗(yàn)所得頻譜只有時(shí)變瞬心激勵(lì)二倍頻,無其基頻。
出現(xiàn)上述偏差的原因?yàn)椋?)理論計(jì)算為單個(gè)轉(zhuǎn)子的彈性轉(zhuǎn)角加速度動(dòng)態(tài)特性,而實(shí)驗(yàn)所測(cè)為兩轉(zhuǎn)子扭振傳遞到泵體上疊加后的振動(dòng)特性;2)時(shí)變瞬心激勵(lì)周期較輪齒嚙合激勵(lì)周期更長(zhǎng),其加速度幅值較小,更易受到振動(dòng)噪聲的干擾;3)齒輪的振動(dòng)經(jīng)過軸承座傳遞到泵體上衰減較大,測(cè)量存在誤差,故實(shí)驗(yàn)值與理論值具有一定的偏差。
本文所研究的變速橢圓齒輪泵,具有大排量、低脈動(dòng)的突出優(yōu)勢(shì),可用于農(nóng)業(yè)灌溉、液態(tài)肥料輸送,農(nóng)機(jī)燃油供給以及植保等場(chǎng)合。
1)變速橢圓齒輪泵中,泵內(nèi)轉(zhuǎn)子的振動(dòng)比外部非圓齒輪的振動(dòng)更大,且兩級(jí)非圓齒輪的振動(dòng)中都包含時(shí)變瞬心激勵(lì)頻率、輪齒嚙合激勵(lì)頻率以及二者的倍頻與差、和頻率成分。
2)隨著輸入轉(zhuǎn)速的增大,兩級(jí)非圓齒輪會(huì)依次經(jīng)歷無拍擊、單邊拍擊和雙邊拍擊狀態(tài),當(dāng)輸入轉(zhuǎn)速低于985 r/min時(shí),系統(tǒng)處于無拍擊狀態(tài),齒間動(dòng)態(tài)嚙合力呈線性緩慢增加,一旦出現(xiàn)拍擊,齒間動(dòng)態(tài)嚙合力將迅速增大。
3)提高泵口壓強(qiáng)或齒輪的制造精度,能提升變速橢圓齒輪泵的拍擊門檻轉(zhuǎn)速,泵口壓強(qiáng)由0增至3.5 MPa,系統(tǒng)的拍擊門檻轉(zhuǎn)速由118 r/min增至1 637 r/min。將轉(zhuǎn)子4靜態(tài)傳遞誤差幅值由7′10-2mm降低至1′10-2mm,拍擊門檻轉(zhuǎn)速由441 r/min提升至985 r/min,而在兩對(duì)非圓齒輪中,提高泵內(nèi)轉(zhuǎn)子的精度對(duì)拍擊的抑制更為顯著。
隨著轉(zhuǎn)子偏心率增大,拍擊門檻轉(zhuǎn)速會(huì)先緩慢上升然后快速降低,拍擊門檻最大值出現(xiàn)在偏心率為0.15附近,增大偏心率雖然可以增大泵的排量,但由于拍擊門檻轉(zhuǎn)速的下降,泵的流量不一定能得到提升。
[1] 孫良,沈嘉豪,周譽(yù)株,等. 非圓齒輪-連桿組合傳動(dòng)式蔬菜缽苗移栽機(jī)構(gòu)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):26-33.
Sun Liang, Shen Jiahao, Zhou Yuzhu, et al. Design of non-circular gear linkage combination driving type vegetable pot seedling transplanting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 26-33. (in Chinese with English abstract)
[2] 吳國環(huán),俞高紅,項(xiàng)筱潔,等. 三移栽臂水稻缽苗移栽機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):15-22.
Wu Guohuan, Yu Gaohong, Xiang Xiaojie, et al. Design and test of rice potted-seedling transplanting mechanism with three transplanting arms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 15-22. (in Chinese with English abstract)
[3] 王永維,何焯亮,王俊,等. 旱地蔬菜缽苗自動(dòng)移栽機(jī)栽植性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):19-25.
Wang Yongwei, He Zhuoliang, Wang Jun, et al. Experiment on transplanting performance of automatic vegetable pot seedling transplanter for dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 19-25. (in Chinese with English abstract)
[4] 賈巨民,高波. 越野汽車雙聯(lián)非圓行星齒輪差速器的研究[J]. 中國機(jī)械工程,2012,23(3):346-348.
Jia Jumin, Gao Bo. A novel noncircular planetary differential for off-road vehicles[J]. China Mechanical Engineering, 2012, 23(3): 346-348. (in Chinese with English abstract)
[5] Xu G Y, Hua D Z, Dai W J, et al. Design and performance analysis of a coal bed gas drainage machine based on incomplete non-circular gears[J]. Energies, 2017, 10(12): 1933.
[6] Tao D, Wang Y, Chen J, et al. Design and analysis of non-circular gear slider-crank mechanisms used as driver for pulsating blood flow generators[J]. China Mechanical Engineering, 2017, 28(16): 1914-1920, 1927.
[7] 徐高歡,孫培峰,謝榮盛. 自由節(jié)曲線非圓齒輪驅(qū)動(dòng)六葉片差速泵多目標(biāo)參數(shù)優(yōu)化及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(16):17-24.
Xu Gaohuan, Sun Peifeng, Xie Rongsheng. Multi-objective parameters optimization and experiments of six-blade differential pump driven by non-circular gear with free pitch curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 17-24. (in Chinese with English abstract)
[8] Liu D W, Ba Y B, Ren T Z. Flow fluctuation abatement of high-order elliptical gear pump by external noncircular gear drive[J]. Mechanism and Machine Theory, 2019, 134: 338-348.
[9] 王立華,李潤(rùn)方,林騰蛟,等. 齒輪系統(tǒng)時(shí)變剛度和間隙非線性振動(dòng)特性研究[J]. 中國機(jī)械工程,2003,14(13):1143-1146.
Wang Lihua, Li Runfang, Lin Tengjiao, et al. Research on nonlinear vibration characteristics due to time- varying mesh stiffness and gear backlash in gear system[J]. China Mechanical Engineering. 2003, 14(13): 1143-1146. (in Chinese with English abstract)
[10] Xu L, Lu M W, Cao Q. Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental harmonic balance method[J]. Physics Letters A, 2002, 301(1/2): 65-73.
[11] 陳安華,羅善明,王文明,等. 齒輪系統(tǒng)動(dòng)態(tài)傳遞誤差和振動(dòng)穩(wěn)定性的數(shù)值研究[J]. 機(jī)械工程學(xué)報(bào),2004, 40(4):21-25.
Chen Anhua, Luo Shanming, Wang Wenming, et al. Numerical investigations on dynamic transmission error and stability of a geared rotor-bearing system[J]. Journal of Mechanical Engineering, 2004, 40(4): 21-25. (in Chinese with English abstract)
[12] Vaishya M, Singh R. Analysis of periodically varying gear mesh systems with coulomb friction using floquet theory[J]. Journal of Sound & Vibration, 2001, 243(3): 525-545.
[13] 陳思雨. 圓柱齒輪傳動(dòng)齒面形狀與非線性特性關(guān)聯(lián)規(guī)律分析及實(shí)驗(yàn)研究[D]. 長(zhǎng)沙:中南大學(xué),2012.
Chen Siyu. Numerical and Experimental Analysis of Nonlinear Gear Transmission System Coupled With Gear Profile Appearances[D]. Changsha: Central South University, 2012. (in Chinese with English abstract)
[14] 張鎖懷,沈允文,董海軍,等. 單級(jí)齒輪系統(tǒng)拍擊特性研究[J]. 機(jī)械工程學(xué)報(bào),2003, 39(3):28-31.
Zhang Suohuai, Shen Yunwen, Dong Haijun, et al. Research on rattling dynamics of one-stage gear system[J]. Journal of Mechanical Engineering, 2003, 39(3): 28-31. (in Chinese with English abstract)
[15] Huang K J, Chen S C, Komsuoglu H, et al. Design and performance evaluation of a bio-Inspired and single-motor-driven hexapod robot with dynamical gaits[J]. Journal of Mechanisms and Robotics, 2015, 7(3): 031017.
[16] Huang K J, Chen S C, Komsuoglu H, et al. A bio-inspired hexapod robot with noncircular gear transmission system[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2012: 33-38.
[17] Okada M, Takeda Y. Optimal design of nonlinear profile of gear ratio using non-circular gear for jumping robot[C]// IEEE International Conference on Robotics & Automation. 2012: 1958-1963.
[18] 李憲奎,楊紅普,楊拉道. 橢圓齒輪驅(qū)動(dòng)的結(jié)晶器低頻共振分析[J]. 機(jī)械工程學(xué)報(bào),2008,44(5):231-237.
Li Xiankui, Yang Hongpu, Yang Laodao. Low-frequency resonance of mold driven by oval grars[J]. Chinese Journal of Mechanical Engineering, 2008, 44(5): 231-237. (in Chinese with English abstract)
[19] 葉秉良,易衛(wèi)明,俞高紅,等. 不完全非圓齒輪傳動(dòng)缽苗移栽機(jī)構(gòu)緩沖裝置研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):69-75.
Ye Bingliang, Yi Weiming, Yu Gaohong, et al. Buffer device of transplanting mechanism for plug seedlings based on transmission with incomplete non-circular gears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 69-75. (in Chinese with English abstract)
[20] 王麗紅,張娜,坎雜,等. 用于番茄果秧分離的多組非圓行星輪系振動(dòng)發(fā)生器設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):34-39.
Wang Lihong, Zhang Na, Kan Za, et al. Design of tomato fruit separation vibration generator with multi group non-circular planetary gear[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 34-39. (in Chinese with English abstract)
[21] 劉大偉,任廷志,巴延博,等. 基于彈性轉(zhuǎn)角分離的非圓齒輪扭振模型及其動(dòng)態(tài)特性[J]. 振動(dòng)與沖擊,2016,35(23):228-233.
Liu Dawei, Ren Tingzhi, Ba Yanbo, et al. Torsional vibration model and its dynamic characteristics for a noncircular gear based on separation of elastic rotating angle[J]. Journal of Vibration and Shock, 2016, 35(23): 228-233. (in Chinese with English abstract)
[22] Liu D W, Gu D D, Liu Z J. Coupled vibration modeling and dynamic characteristics of noncircular face gear drive system with time-varying instantaneous center excitation[J]. Archive Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 4947-4959.
[23] 劉大偉,巴延博. 低脈動(dòng)橢圓齒輪泵的多參變扭振模型及動(dòng)態(tài)特性[J]. 振動(dòng)與沖擊,2020,39(3):88-94.
Liu Dawei, Ba Yanbo. Multi-parameter torsional vibration model and dynamic features of an elliptical gear pump with low flow fluctuation[J]. Journal of Vibration and Shock, 2020, 39(9): 88-94. (in Chinese with English abstract)
[24] Gao N, Meesap C, Wang S Y, et al. Parametric vibrations and instabilities of an elliptical gear pair[J]. Journal of Vibration and Control, 2020, 26(19/20): 1721-1734.
[25] Liu X, Nagamura K, Ikejo K. Simulation on the vibration characteristics of elliptical gears[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(4): 819-830.
[26] Liu X, Nagamura K, Ikejo K. Analysis of the dynamic characteristics of elliptical gears[J]. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2012, 6(4): 484-497.
[27] Liu X, Nagamura K, Ikejo K. Vibration and noise characteristics of elliptical gears due to non-uniform rotation[J]. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2012, 6(4): 498-512.
[28] 董長(zhǎng)斌,劉永平,魏永峭,等. 橢圓齒輪傳動(dòng)系統(tǒng)非線性動(dòng)態(tài)特性分析[J]. 吉林大學(xué)學(xué)報(bào),2020,50(2):483-493.
Dong Changbin, Liu Yongping, Wei Yongqiao, et al. Analysis of nonlinear dynamic characteristic of elliptic gear transmission system[J]. Journal of Jilin University, 2020, 50(2): 483-493. (in Chinese with English abstract)
[29] Lin C, Liu Y. Gu S J. Analysis of nonlinear twisting vibration characteristics of orthogonal curve?face gear drive[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(5): 1499-1505.
[30] Lin C, Cai Z Q. Modeling of dynamic efficiency of curve–face gear pairs[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(7/8): 1209-1221.
Nonlinear vibration model and rattling characteristics of elliptical gear pump with timing-varying input speed
Liu Dawei1, Tan Wanxin1, Jin Xin2, Ren Tingzhi2
(1.,,066004,; 2.,,066004,)
A pair of outer noncircular gear has widely been used to prevent severe flow pulsation in a variable-speed elliptic gear pump. The displacement is normally several times that of the circular gear pump with the same pump cavity volume, while the instantaneous flow rate is uniform. The structure can be expected to broadly apply in agriculture, petroleum, chemical industry, food, medical treatment, and transportation. However, the beating vibration and noise that occurred easily can be detrimental to the performance of a pump, because of the special internal excitation of non-circular gear. Therefore, it is necessary to explore the nonlinear dynamics of the pump, and thereby reveal the mechanism of a rattle for better design of a high-quality elliptical gear pump with variable speed. In this study, a transmission ratio function of a two-stage non-circular gear mechanism was constructed in a variable-speed elliptical gear pump using the flow pulsation suppression of an elliptic gear pump driven by external non-circular gear. A nonlinear rattle vibration model was established in a variable-speed elliptical gear pump using the separation of elastic rotating angle considering the elastic deformation of the teeth, the static transmission error, the backlash between teeth, and the periodic load. A Runge-Kutta method was utilized to calculate the dynamic responses for the vibration curve, excitation composition, and amplitude at different rotate speeds. A systematic analysis was made on the evolution in the rattle state and system intensity, as well as the influences of pump port pressure, transmission error, and eccentricity on the rattle threshold rotation speed. The results showed that the vibration of the internal rotor was greater than that of external non-circular gear in a variable-speed elliptical gear pump. Moreover, the vibration of two-stage non-circular gears contained the time-varying instantaneous center excitation frequency, the tooth meshing excitation frequency, the multiplication, difference, and sum of these frequencies. The two-stage non-circular gears successively experienced the states of no impact, unilateral impact and bilateral impact with the increase of input rotation speed. Compared with the outer noncircular gears 1 and 2, the internal rotors 3 and 4 vibrated more violently, and entered the rattle state earlier. The dynamic meshing force rose linearly and slowly, when there was no rattle. Once the rattle occurred, the dynamic meshing force rose rapidly. Improving the pump port pressure or the manufacturing accuracy of gears can improve the rattle threshold rotation speed of a variable-speed elliptical gear pump. Among the two pairs of non-circular gears, the internal rotors 3 and 4 had a greater influence on the rattle threshold rotation speed. The rattle threshold rotation speed increased slowly and then decreased rapidly, as the rotor eccentricity advanced. Therefore, the flow rate of a pump cannot be improved, although the eccentricity can contribute to the pump displacement, due mainly to the reduction of rattle threshold rotation speed.
gear; gear pump; non-linear vibration; rattling state; rattling threshold
2020-12-08
2021-03-13
國家自然科學(xué)基金資助項(xiàng)目(51705444)
劉大偉,博士,副教授,研究方向?yàn)榉菆A齒輪設(shè)計(jì)制造與創(chuàng)新應(yīng)用,脊柱機(jī)構(gòu)與仿生機(jī)器人。Email:liudw@ysu.edu.cn
10.11975/j.issn.1002-6819.2021.07.003
TH132
A
1002-6819(2021)-07-0015-09
劉大偉,譚萬鑫,金昕,等. 變速橢圓齒輪泵的非線性振動(dòng)模型與拍擊特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):15-23. doi:10.11975/j.issn.1002-6819.2021.07.003 http://www.tcsae.org
Liu Dawei1, Tan Wanxin, Jin Xin, et al. Nonlinear vibration model and rattling characteristics of elliptical gear pump with timing-varying input speed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 15-23. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.003 http://www.tcsae.org