国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

非經(jīng)典阻尼分布參數(shù)系統(tǒng)復(fù)振型疊加方法

2021-06-06 16:21陳華霆譚平
振動(dòng)工程學(xué)報(bào) 2021年1期

陳華霆 譚平

摘要: 附加減震裝置的一維桿或剪切梁模型屬于非連續(xù)的非經(jīng)典阻尼分布參數(shù)系統(tǒng)。對(duì)于它的動(dòng)力分析,通常是建立分段的運(yùn)動(dòng)方程,然后利用各段動(dòng)力反應(yīng)的實(shí)振型疊加形式和連續(xù)條件進(jìn)行動(dòng)力計(jì)算。這是一種實(shí)模態(tài)綜合方法,盡管它可以求得近似的動(dòng)力反應(yīng),但反映不出阻尼對(duì)整體系統(tǒng)動(dòng)力特性的影響。為了考慮附加減震裝置引起的阻尼和剛度非連續(xù)性,基于廣義函數(shù)理論,建立了整體系統(tǒng)的無(wú)量綱化運(yùn)動(dòng)方程,利用Laplace變換推導(dǎo)了振型函數(shù)和特征值方程,并給出了振型函數(shù)的正交條件,最終導(dǎo)出了適用于非經(jīng)典阻尼分布參數(shù)系統(tǒng)的復(fù)振型疊加方法。由于特征值方程為復(fù)雜的超越方程,為了同時(shí)求出多個(gè)自振頻率,建議了一種基于柯西積分定理的等效多項(xiàng)式方法。這種方法將自振頻率轉(zhuǎn)變成了線性代數(shù)方程組的求解,更簡(jiǎn)便、實(shí)用。最后以基底隔震分布參數(shù)系統(tǒng)為例,展示了復(fù)振型疊加法的應(yīng)用,同時(shí)對(duì)隔震結(jié)構(gòu)設(shè)計(jì)得出了有益的結(jié)論。給出的復(fù)振型疊加法是傳統(tǒng)的經(jīng)典阻尼連續(xù)系統(tǒng)實(shí)振型疊加法的推廣,具有一定理論意義和應(yīng)用價(jià)值。

關(guān)鍵詞: 線性振動(dòng); 非經(jīng)典阻尼; 分布參數(shù)系統(tǒng); 動(dòng)力分析; 復(fù)振型疊加方法

中圖分類號(hào): O321; TU311.3??? 文獻(xiàn)標(biāo)志碼: A??? 文章編號(hào): 1004-4523(2021)01-0048-12

DOI:10.16385/j.cnki.issn.1004-4523.2021.01.006

引? 言

對(duì)于線性振動(dòng)系統(tǒng),通常采用振型疊加法進(jìn)行動(dòng)力分析。由于系統(tǒng)振動(dòng)一般是低階振型起主導(dǎo)作用,因此,振型疊加法可以僅取前若干階振型參與計(jì)算,從而很大程度地降低計(jì)算量。按照阻尼分布的特點(diǎn),可將線性系統(tǒng)分為經(jīng)典阻尼系統(tǒng)和非經(jīng)典阻尼系統(tǒng)。前者可采用傳統(tǒng)的振型疊加法進(jìn)行動(dòng)力分析,這種方法基于無(wú)阻尼振型,通常也稱為實(shí)振型疊加法。若系統(tǒng)中附加了額外阻尼,則阻尼矩陣就不滿足無(wú)阻尼振型解耦的Caughey條件[1?2],而成為非經(jīng)典阻尼矩陣。這時(shí),就需要采用復(fù)振型疊加法。這種方法首先由Traill?Nash[3]和Foss[4]提出,而后經(jīng)過(guò)許多學(xué)者[5?8]的研究得以不斷完善。目前,在減震控制結(jié)構(gòu)中已有較好的應(yīng)用[9?12]

當(dāng)前,復(fù)振型疊加法的研究主要集中在有限自由度離散系統(tǒng),而實(shí)際結(jié)構(gòu)都是具有連續(xù)分布特性的無(wú)限自由度體系,將結(jié)構(gòu)離散為有限自由度進(jìn)行求解只能獲得結(jié)構(gòu)真實(shí)動(dòng)力行為的近似解。同時(shí),對(duì)某些特殊結(jié)構(gòu),如橋梁、煙囪、拱壩等,采用分布參數(shù)模型(偏微分方程)來(lái)描述其動(dòng)力行為更為合理[13?14]。此外,基于分布參數(shù)模型更容易發(fā)現(xiàn)、解釋一些物理現(xiàn)象,如波的傳播。在分布參數(shù)模型中,一維桿或剪切梁模型是最簡(jiǎn)單的模型,但在實(shí)踐中是一個(gè)很好的力學(xué)模型。例如,可以用來(lái)研究多層框架結(jié)構(gòu)的動(dòng)力特性[15]。另外,這類模型還可以安裝阻尼裝置用來(lái)研究振動(dòng)控制問(wèn)題,如Skinner等[16]用剪切梁模型研究了隔震結(jié)構(gòu)的動(dòng)力特點(diǎn),深海開采系統(tǒng)中鉆桿的振動(dòng)控制、地震作用下橋梁的縱向減震問(wèn)題也可以采用一維桿或剪切梁模型來(lái)描述其動(dòng)力行為[17?18]。由于一維桿和剪切梁模型具有相同的運(yùn)動(dòng)方程,本文統(tǒng)一用一維桿來(lái)表述。

關(guān)于無(wú)阻尼一維桿的振動(dòng)問(wèn)題可詳見文獻(xiàn)[13?14,19?21]。附加阻尼裝置的一維桿屬于非經(jīng)典阻尼系統(tǒng)。對(duì)于該系統(tǒng)的動(dòng)力分析,目前僅限于幾種特殊情況。如Singh等[22]給出了解析的含黏滯阻尼邊界(黏滯阻尼器布置在桿端)的一維桿特征值方程和振型函數(shù);Hull[23]研究了這種模型在集中荷載作用下的振型疊加法;Cortés等[24?25]將上述黏滯阻尼邊界考慮為黏彈性邊界推導(dǎo)了特征值方程和頻響函數(shù)的解析表達(dá)式;Yüksel等[26?27]進(jìn)一步研究了黏滯阻尼邊界位于桿內(nèi)部(黏滯阻尼器一端固定,另一端與桿內(nèi)部一點(diǎn)相連)的情況。此外,對(duì)于這類非經(jīng)典阻尼分布參數(shù)系統(tǒng)的動(dòng)力分析,尚不能像離散系統(tǒng)那樣基于復(fù)振型正交條件建立復(fù)振型疊加法,其關(guān)鍵問(wèn)題在于附加阻尼裝置的桿,沿軸線方向阻尼和剛度屬性發(fā)生突變,屬于非連續(xù)系統(tǒng)。這種非連續(xù)系統(tǒng)動(dòng)力分析的經(jīng)典方法是將整個(gè)桿在非連續(xù)點(diǎn)位置劃分為若干段,對(duì)每一段分別建立運(yùn)動(dòng)方程,然后利用在非連續(xù)點(diǎn)位置位移或內(nèi)力的連續(xù)條件和邊界條件進(jìn)行求解。文獻(xiàn)[22?27]就是利用這種方法推導(dǎo)出的特征值方程和振型函數(shù),但基于這種分段的振型函數(shù)建立正交關(guān)系就不是那么容易了。為了考慮阻尼裝置引起的剛度和阻尼非連續(xù)性,本文采用廣義函數(shù)理論對(duì)整個(gè)系統(tǒng)建立一個(gè)運(yùn)動(dòng)方程[28?32],從而求出的振型函數(shù)只有一個(gè)表達(dá)式。

為了方便公式推導(dǎo),本文只考慮布置一個(gè)阻尼裝置,這也很容易推廣到多個(gè)阻尼裝置的情況。本文首先基于廣義函數(shù)理論,建立無(wú)量綱化的非連續(xù)桿系統(tǒng)的運(yùn)動(dòng)方程;然后,利用Laplace變換,推導(dǎo)在齊次邊界條件下特征值方程和振型函數(shù)的解析表達(dá)式,并建立振型函數(shù)正交關(guān)系,推導(dǎo)桿在單位脈沖荷載、一般荷載、簡(jiǎn)諧荷載和支座激勵(lì)作用的復(fù)振型疊加法表達(dá)式;同時(shí),對(duì)于特征值方程的求解,本文采用一種基于柯西積分定理的等效多項(xiàng)式方法;最后,利用數(shù)值算例驗(yàn)證本文建議方法的有效性。

1 運(yùn)動(dòng)方程

非連續(xù)桿模型如圖1所示,由AB和BC兩段組成,總長(zhǎng)為l,單位長(zhǎng)度的質(zhì)量、橫截面面積、彈性模量分別為m,AE。在x0位置,兩段之間由彈簧和阻尼元件連接,其剛度系數(shù)、阻尼系數(shù)分別為kc。整個(gè)桿在B點(diǎn)力學(xué)屬性發(fā)生突變,屬于非連續(xù)系統(tǒng)。傳統(tǒng)的分析方法是分別對(duì)AB和BC段建立運(yùn)動(dòng)方程,即

支座阻尼對(duì)復(fù)振型的影響如圖3所示,其中實(shí)部曲線中綠色實(shí)線表示無(wú)阻尼實(shí)振型,其他4條曲線分別對(duì)應(yīng)于cnorm=0.1,0.2,0.3,0.4,阻尼越大相應(yīng)的虛部的幅值也越大。可以看出:復(fù)振型函數(shù)在支座位置處均有突變;阻尼對(duì)復(fù)振型實(shí)部基本沒有影響,主要影響復(fù)振型的虛部,而虛部主要與空間質(zhì)點(diǎn)的振動(dòng)相位有關(guān);同時(shí),若不考慮阻尼,其振動(dòng)形狀與復(fù)振型實(shí)部的形態(tài)更為接近。

自由端位移、支座反力的頻響函數(shù)幅值如圖4?5所示,很明顯在結(jié)構(gòu)第1階自振頻率附近,隨著阻尼的增大結(jié)構(gòu)的響應(yīng)是降低的,但隨著輸入頻率的增大,阻尼的耗能效果降低,并出現(xiàn)增大結(jié)構(gòu)響應(yīng)的現(xiàn)象。這說(shuō)明阻尼的耗能效果是受輸入頻率的影響,只有在較低的頻率范圍內(nèi)才具有降低結(jié)構(gòu)響應(yīng)的作用;高頻輸入下,增加阻尼對(duì)結(jié)構(gòu)不利。

圖6?7給出了在3種輸入頻率下(ω=1.94,13.98和27.46 rad/s,分別對(duì)應(yīng)于不考慮阻尼影響的隔震結(jié)構(gòu)前3階自振頻率)離散質(zhì)點(diǎn)系模型的響應(yīng),其中單元數(shù)目n取20,40,80和100四種情況。圖中縱坐標(biāo)表示離散質(zhì)點(diǎn)系模型響應(yīng)與本文建議的分布參數(shù)模型之比,橫坐標(biāo)表示隔震支座阻尼大小。在離散質(zhì)點(diǎn)系模型頻率響應(yīng)計(jì)算中,忽略了阻尼的非經(jīng)典特性,即采用強(qiáng)迫解耦方法,這也是實(shí)際中常用的方法。可以看出,在支座阻尼較小時(shí),單元數(shù)目對(duì)響應(yīng)影響較大,特別是高頻輸入下。此外,隨著支座阻尼的增大,強(qiáng)迫解耦方法的誤差越來(lái)越大,并且明顯受輸入頻率的影響。如當(dāng)ω=1.94 rad/s時(shí),與精確值相比,強(qiáng)迫解耦方法計(jì)算出的支座反力隨著支座阻尼的增大不斷降低,而當(dāng)ω=13.98 rad/s時(shí),強(qiáng)迫解耦方法計(jì)算出的支座反力不斷增大而后趨于穩(wěn)定。顯然,強(qiáng)迫解耦方法的適用性非常受限。在輸入頻率ω=1.94 rad/s時(shí),若支座阻尼在0.15以內(nèi),支座反力精度可達(dá)到95%;而高頻輸入下,同樣精度的適用阻尼變得非常小。

7 結(jié)? 論

對(duì)于含阻尼裝置的非連續(xù)桿模型,本文基于廣義函數(shù)建立了無(wú)量綱化的運(yùn)動(dòng)方程,利用分離變量研究了這種非連續(xù)桿系統(tǒng)的復(fù)振型疊加方法。文中推導(dǎo)出了在齊次邊界條件下的特征值方程,其為超越方程,為了求出一定數(shù)量的解,介紹了一種等效多項(xiàng)式方法,該方法比常用的基于Newton迭代的方法簡(jiǎn)單、有效。非連續(xù)的振型函數(shù)滿足正交條件,可以用來(lái)解耦運(yùn)動(dòng)方程,給出了結(jié)構(gòu)在單位脈沖荷載、一般荷載、簡(jiǎn)諧荷載和支座激勵(lì)下的動(dòng)力響應(yīng)表達(dá)式,并且其與標(biāo)準(zhǔn)的單自由度運(yùn)動(dòng)方程相聯(lián)系,便于實(shí)際應(yīng)用。最后,利用一基底隔震系統(tǒng)對(duì)本文建議的復(fù)振型疊加法進(jìn)行了有效性驗(yàn)證,其結(jié)果對(duì)隔震結(jié)構(gòu)的設(shè)計(jì)具有一定的指導(dǎo)意義。

參考文獻(xiàn):

[1]??????? Caughey A K. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics, ASME, 1960, 27(2): 269-271.

[2]??????? Caughey A K, OKelly M E J. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics ASME, 1965, 32(3): 583-588.

[3]??????? Traill-Nash R W. An analysis of the response of a damped dynamical system subjected to impress forces[R]. Australian Department of Supply, Aeronautical Research Laboratory Report, 1950, SM.151.

[4]????? Foss K A. Co-ordinates which uncouple the linear dynamic systems[J]. Journal of Applied Mechanics, Transactions of the ASME, 1958, 24:361-364.

[5]??????? Traill-Nash R W. Modal methods in the dynamics of systems with non-classical damping [J]. Earthquake Engineering and Structural Dynamics, 1981, 9:153-169.

[6]????? Veletsos A S, Ventura C E. Modal analysis of non-classically damped linear systems[J]. Earthquake Engineering and Structural Dynamics, 1986, 14(2):217-243.

[7]??????? Igusa T, Kiureghian A D, Sackman J L. Modal decomposition method for stationary response of non-classically damped systems[J]. Earthquake Engineering and Structural Dynamics, 1984,12(1):121-136.

[8]??????? 陳華霆,譚? 平,彭凌云,等.復(fù)振型疊加法截?cái)嗾`差及改進(jìn)[J].振動(dòng)工程學(xué)報(bào), 2017, 30(4):556-563.

Chen H, Tan P, Peng L, et al. Truncation error and improvement of complex modal superposition approach[J]. Journal of Vibration Engineering, 2017,30(4):556-563.

[9]??????? 周錫元,董? 娣,蘇幼坡.非正交阻尼線性振動(dòng)系統(tǒng)的復(fù)振型地震響應(yīng)疊加分析方法[J].土木工程學(xué)報(bào),2003,36(5):30-36.

Zhou X, Dong D, Su Y. New method for linear systems with non-classical damping under ground motion [J]. China Civil Engineering Journal, 2003, 36(5): 30-36.

[10]????? Zhou X, Yu R, Dong D. Complex mode superposition algorithm for seismic responses of non-classically damped linear MDOF system[J]. Journal of Earthquake Engineering, 2004, 8(4):597-641.

[11]????? 周錫元,馬東輝,俞瑞芳.工程結(jié)構(gòu)中的阻尼與復(fù)振型地震響應(yīng)的完全平方組合[J].土木工程學(xué)報(bào),2005,38(1):31-39.

Zhou X, Ma D, Yu R. Damping in structures and complete quadratic combination (CCQC) of complex mode seismic responses[J]. China Civil Engineering Journal, 2005, 38(1): 31-39.

[12]????? 周錫元,俞瑞芳.非比例阻尼線性體系基于規(guī)范反應(yīng)譜的CCQC法[J].工程力學(xué),2006,23 (2):10-17.

Zhou X, Yu R. CCQC method for seismic response of non-classically damped linear system based on code response spectra?[J]. Engineering Mechanics, 2006, 23 (2):10-17.

[13]????? Clough R W, Penzien J. Dynamic of Structures[M]. 3rd ed. Berkeley, Califomia, USA: Computers and Structures Inc., 1995: 365-424.

[14]????? Chopra A K. Dynamics of Structures: Theory and Applications to Earthquake Engineering?[M]. 4th ed. USA: Prentice Hall, 2012: 698-724.

[15]????? 沈聚敏,周錫元,高小旺,等.抗震工程學(xué)[M].第2版.北京:中國(guó)建筑工業(yè)出版社, 2015:106-116.

Shen J, Zhou X, Gao X, et al. Aseismic Engineering[M]. 2nd ed. Beijing: China Architecture and Building Press, 2015: 106-116.

[16]????? Skinner R I, Robison W H, McVerry G H. An Introduction to Seismic Isolation[M]. Baffins Lane, Chichester, England: John Wiley & Sons Ltd., 1993:119-159.

[17]????? Aso K, Kan K, Doki H, et al. Effects of vibration absorbers on the longitudinal vibration of a pipe string in the deep sea―Part 1: In case of mining cobalt crust[J]. International Journal of Offshore and Polar Engineering, 1992,2(4):309-317.

[18]????? Feng Q, Shinozuka M. Control of seismic response of bridge structures using variable dampers[J]. Journal of Intelligent Material Systems and Structures, 1993,4: 117-122.

[19]????? 廖振鵬.工程波動(dòng)理論導(dǎo)論[M].第2版.北京:科學(xué)出版社, 2002:67-81.

Liao Z P. Introduction to Wave Motion Theories in Engineering[M]. 2nd ed. Beijing: Science Press, 2002:67-81.

[20]????? Graff K F. Wave Motion in Elastic Solids[M]. New York: Dover Publications Inc., 1991:75-133.

[21]????? Kinsler L E, Frey A R, Coppens A B, et al. Fundamentals of Acoustics?[M]. 4th ed. New York: John Wiley & Sons Inc., 2000:68-86.

[22]????? Singh R, Lyons W M, Prater G. Complex eigensolution for longitudinally vibration bars with a viscously damped boundary[J]. Journal of Sound and Vibration, 1989, 133(2): 364-367.

[23]????? Hull A J. A closed form solution of a longitudinal bar with a viscous boundary condition[J]. Journal of Sound and Vibration, 1994, 169(1): 19-28.

[24]????? Cortés F, Elejabarrieta M J. Longitudinal vibration of a damped rod. Part I: Complex natural frequencies and mode shapes?[J]. International Journal of Mechanical Science, 2006,48(9): 969-975.

[25]????? Cortés F, Elejabarrieta M J. Forced response of a viscoelastically damped rod using the superposition of modal contribution functions?[J]. Journal of Sound and Vibration, 2008,315(1-2): 58-64.

[26]????? Yüksel S, Gürg?ze M. Continuous and discrete models for longitudinally vibrating elastic rods viscously damped in-span[J]. Journal of Sound and Vibration, 2002, 257(5): 996-1006.

[27]????? Yüksel S, Dalli U. Longitudinally vibrating elastic rods with locally and non-locally reacting viscous dampers [J]. Shock and Vibration, 2005, 12(2): 109-118.

[28]????? Yavari A, Sarkani S, Moyer E M Jr. On the applications of generalized functions to beam bending problems[J]. International Journal of Solids and Structures, 2000,37(40): 5675-5705.

[29]????? Zemanian A H. Distribution Theory and Transform Analysis[M]. New York: McGraw-Hill, 1965.

[30]????? Kanwal R P. Generalized Functions Theory and Applications[M]. New York: Academic Press, 1983.

[31]????? Schwarz L. Théorie des Distributions[M]. Paris: Hermann, 1966.

[32]????? Wang J, Qiao P. Vibration of beams with arbitrary discontinuities and boundary conditions?[J]. Journal of Sound and Vibration, 2007, 308(1-2):12-27.

[33]????? Jackson D. Non-essential singularities of functions of several complex variables[J]. The Annals of Mathematics, 1916, 17(4): 172-179.

[34]????? Jackson D. Roots and singular points of semi-analytic functions?[J]. The Annals of Mathematics, 1917, 19(2): 142-151.

[35]????? Luck R, Stevens J W. Explicit solutions for transcendental equations?[J]. SIAM Review, 2002, 44(2): 227-233.

[36]????? Boyd J P. Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2014.

[37]????? Luck R, Zdaniuk G J, Cho H. An efficient method to find solutions for transcendental equations with several roots[J]. International Journal of Engineering Mathematics, 2015: 523043.

Abstract: One-dimensional bar or shear-type beam with additional energy dissipation devices is a distributed-parameter system with non-classical damping. For its dynamic analysis, the conventional way is to construct an equation of motion for each segment and obtain the dynamic response by using the real mode superposition method and the continuous condition. In essence, this method is a component mode synthesis based on undamped modes of substructure. Even though approximated dynamic responses can be estimated, it cannot consider the effect of damping on the dynamic behavior. To consider the discontinuity of damping and stiffness resulting from the additional damper, utilizing the generalized function theory, one non-dimensional equation of motion for the whole system is constructed in this paper. Then, using the Laplace integral transformation, the eigen function (complex mode) and eigenvalue equation are derived. Finally, the complex mode superposition method for distributed-parameter systems with non-classical damping is developed based on the derived orthogonality condition of eigen functions. In addition,? the eigenvalue equation is a very complex transcendental equation, in order to get several natural frequencies, an equivalent polynomial method based on the Cauchy integral theorem is proposed, in which the eigenvalue equation is transformed into a set of linear equations such that their solutions can be obtained more easily. In the last section of this paper, the application of the proposed method is illustrated in a base-isolated shear-type beam and some useful information for the design of base-isolated structures is provided. To summarize, the complex mode superposition method is an extension of the conventional real mode superposition method for classically damped continuous and distributed-parameter systems, which is meaningful and valuable in the theory and application.

Key words: linear vibration; non-classical damping; distributed-parameter systems; dynamic analysis; complex mode superposition method

作者簡(jiǎn)介: 陳華霆(1988-),男,講師。電話:(020)86395053;E-mail: huntingchen@foxmail.com

通訊作者: 譚? 平(1973-),男,研究員,博士生導(dǎo)師。電話:(020)86395007;E-mail: ptan@foxmail.com

德惠市| 汉中市| 宜丰县| 永寿县| 习水县| 宝丰县| 明星| 北流市| 碌曲县| 泸西县| 佛学| 牙克石市| 石首市| 衡阳市| 永嘉县| 东丰县| 岢岚县| 东城区| 镇坪县| 色达县| 泰和县| 马公市| 罗平县| 博兴县| 贡觉县| 大田县| 龙州县| 元江| 凤阳县| 忻城县| 正定县| 稷山县| 肥城市| 九龙坡区| 崇礼县| 忻州市| 静海县| 府谷县| 灵川县| 颍上县| 澜沧|