(湖南工業(yè)大學 交通工程學院,湖南 株洲 412007)
隨著能源危機的日益加劇,清潔能源的需求大幅度提高,由多個分布式電源(distributed generation,DG)組成的低壓微電網(wǎng)成為新能源高效利用的主要方式[1]。因此,低壓微電網(wǎng)逆變器并聯(lián)運行的控制方式逐漸成為眾多學者的研究焦點。
微電網(wǎng)的獨立運行使得DG 系統(tǒng)能夠在各種類型電網(wǎng)故障時向負荷提供連續(xù)的電能。在實際多逆變器并聯(lián)運行時,也存在諸多技術(shù)上的難題,例如功率的解耦控制,功率的精確分配和環(huán)流抑制問題[2]。因此,如何實現(xiàn)DG 間的功率均分,成為微電網(wǎng)孤島運行時的首要難題。
在微電網(wǎng)的控制策略上,主要有集中控制、分布式控制和下垂控制等[3]。由于微電網(wǎng)中DG 單元分布廣泛、種類較多,難以實現(xiàn)實時高速通信,而下垂控制的方法剛好避免了通信線路的使用,因此該方法得到了廣泛應(yīng)用[4]。但在低壓微電網(wǎng)系統(tǒng)中,線路的電抗X遠小于電阻R,這就使得低壓微電網(wǎng)系統(tǒng)中的功率無法實現(xiàn)解耦,功率難以均分,針對這一問題,眾多學者做了一系列的研究。
文獻[5]采用虛擬阻抗和通信線路相結(jié)合的控制方式進行了優(yōu)化控制,通過通信線路實時檢測線路電壓進行反饋,實現(xiàn)自適應(yīng)調(diào)節(jié)虛擬阻抗進行電壓補償,不足之處在于通信線路的使用增加了線路的復(fù)雜程度和實際線路的成本,難以實現(xiàn)高速反饋。文獻[6]在下垂控制環(huán)中添加功率影響項以改善電壓降落問題,但該方法是將實際輸出的無功功率值作為影響項,而忽略“虛擬阻抗”上的無功消耗,因此容易造成電壓補償不足。文獻[7]將“虛擬阻抗”設(shè)計成負值,通過反饋控制使得線路中阻性部分得以抵消,保證了線路阻抗呈感性的假設(shè),使得無功功率達到均分,不足之處在于“虛擬負阻抗”的值較難確定,若加入“虛擬阻抗”的抗性較大,會使得電壓降落嚴重,甚至導(dǎo)致微電網(wǎng)運行失穩(wěn)。文獻[8]將實際的功率轉(zhuǎn)換成虛擬功率,對傳統(tǒng)下垂控制進行了改進,然而實際輸出功率仍是耦合的,且控制算法較為復(fù)雜,難以推廣應(yīng)用。
為了解決傳統(tǒng)下垂控制方法因線路阻抗不匹配引起的無功功率不能均分、環(huán)流過大的問題,本研究把改進下垂控制的虛擬阻抗法用于孤島微電網(wǎng)系統(tǒng)。通過計算線路阻抗產(chǎn)生的壓降來補償電壓的跌落,從而減小了功率的損耗,避免了互連線和通信設(shè)備的使用,保持了下垂控制的優(yōu)勢,同時解決了功率不能均分的問題。
微電網(wǎng)中的能源形勢有多種,例如風力發(fā)電、光伏發(fā)電、燃料電池、儲能裝置等[9]。圖1是微電網(wǎng)結(jié)構(gòu)圖,每個DG 單元包括能源輸入、逆變器和濾波器,通過線路連接與配電網(wǎng)之間使用靜態(tài)開關(guān)相互連通。能量監(jiān)控與管理裝置通過公共耦合點(point of common coupling,PCC)實時監(jiān)控微電網(wǎng)的運行狀態(tài),保證微電網(wǎng)的穩(wěn)定運行[10]。
圖1 微電網(wǎng)結(jié)構(gòu)Fig.1 Schematic illustration of the microgird
為簡化分析多臺逆變器并聯(lián)的功率特性,本研究采用兩臺逆變器并聯(lián)組成系統(tǒng)模型,如圖2所示。
圖2 逆變器并聯(lián)系統(tǒng)模型Fig.2 Inverter parallel system model
圖2中每個DG 單元通過饋線連接至母線。逆變器輸出的電能通過LC 濾波器進行高頻濾波處理,再由線路連接至母線。Zl1、Zl2為逆變器連接至母線的線路阻抗。Z0表示并聯(lián)系統(tǒng)所帶負載值。
為便于功率特性和環(huán)流的分析,將圖2的兩臺逆變器并聯(lián)系統(tǒng)模型簡化,得出等效電路,如圖3所示。
圖3 逆變器并聯(lián)系統(tǒng)等效電路Fig.3 Equivalent circuit of the inverter parallel system
設(shè)Vi為第i臺逆變器的輸出電壓幅值,δi為第i臺的功角,i=1,2,…,n;V為母線的電壓幅值,I0為流過負載的電流,Ii為第i臺逆變器的輸出電流。則第i臺逆變器輸出的有功功率Pi和無功功率Qi的計算式分別如下:
式中:δi為功角;Rli、Xli分別為線路的電阻和電抗。
在低壓電網(wǎng)中,各個DG 單元通過線路連接到微電網(wǎng)母線。在線路阻抗R<<X時,可以將R忽略不計,則功率角δ很小,近似認為sinδ≈δ,cosδ≈1,將其代入式(1)可得:
由式(2)可知,當線路呈感性時,在輸出的視在功率中,有功功率的差異由功角決定,即功角越大,提供的有功功率越多;輸出的無功功率由電壓幅值決定,即電壓幅值越大,輸出的無功功率越大。
根據(jù)文獻的分析,逆變器輸出阻抗決定了下垂控制方程的選取。對于并聯(lián)系統(tǒng),當逆變器輸出阻抗呈感性時,可以采用P-f、Q-V的解耦控制方法。對式(2)引入下垂系數(shù),得到傳統(tǒng)下垂控制方程:
式(3)中:mi、ni分別為第i臺逆變器的P-f、Q-V控制的系數(shù);fi、Pi分別為第i臺逆變器輸出頻率和有功功率;Vi和Qi分別為第i臺逆變器輸出電壓和無功功率;fi*、Pi*、Vi*、Qi*分別為第i臺逆變器的頻率、有功功率、電壓、無功功率的給定值。
當線路阻抗呈感性時,兩臺逆變器的無功功率與線路阻抗有關(guān),而有功功率關(guān)系不大。所以當并聯(lián)逆變器的線路阻抗出現(xiàn)明顯差異,下垂系數(shù)和容量相同的逆變器并聯(lián)時,采用傳統(tǒng)的下垂控制策略會出現(xiàn)明顯的無功功率分配不均,而有功功率變化不大。相反,若線路阻抗呈阻性時,有功功率會分配不均,無功功率無明顯差異。
由圖3所得示等效電路,可以求出兩臺逆變器的輸出電流,為
根據(jù)環(huán)流的定義求得逆變器并聯(lián)系統(tǒng)的環(huán)流為
根據(jù)逆變器的輸出電流容易求得系統(tǒng)為負載提供的復(fù)功率為
當線路阻抗不一致時,由于環(huán)流的存在,系統(tǒng)的無功功率輸出不能精確分配。這樣,不僅增加了能量的損耗,且嚴重時可能對逆變器造成損壞。根據(jù)式(5)容易看出,縮小兩臺逆變器輸出電壓差值,或者增加線路感抗均能減小系統(tǒng)的環(huán)流。
下垂控制法的使用條件是等效線路阻抗呈感性,而低壓微電網(wǎng)的線路阻抗呈阻性,所以下垂法將無法較佳地實現(xiàn)功率解耦。在逆變器輸出端增加虛擬阻抗回路,可使逆變器輸出阻抗趨于純感性[11]。圖4為引入虛擬阻抗后的閉環(huán)控制框圖。
圖4 引入虛擬阻抗后的閉環(huán)控制框圖Fig.4 Closed-loop control block diagram after the introduction of the virtual impedance
在引入虛擬阻抗后,輸入電壓電流雙閉環(huán)中的電壓就變成了下垂控制解耦后生成的參考電壓值Vref和虛擬阻抗反饋的電壓值的差。
記虛擬阻抗值為Zv,得到電壓環(huán)的輸入電壓為
根據(jù)圖4,可以求出此時逆變器的電壓環(huán)傳遞函數(shù)為
式中:G(s)為雙閉環(huán)控制下電壓環(huán)傳遞函數(shù);Vo、Io分別為逆變器的輸出電壓和電流;Zo(s)為逆變器到負載的阻抗傳遞函數(shù)。
分析式(8)可以得知,如果使得加入的虛擬阻抗的電感值足夠大,能夠忽略掉逆變器到負載的電阻值的時候,就可以保證線路阻抗呈感性。但是從式(7)可以看出,加入虛擬阻抗使線路呈感性的同時,也會導(dǎo)致電路電壓的降落,增加的虛擬阻抗值越大,電壓降落越明顯。因此在保證線路阻抗呈感性的情況下,虛擬阻抗值應(yīng)盡可能小。
通過3.1 的分析可以知道,為了保證下垂控制法在低壓微電網(wǎng)中能夠很好地解耦,需要加入虛擬阻抗來保證線路阻抗呈感性。但是保證線路阻抗呈感性和電壓降落是一對固有矛盾,即使虛擬阻抗值選取合適,也難免造成電壓的降落,這樣就會造成能源的損失。在加入了虛擬阻抗使功率可以解耦后,因線路阻抗不匹配所導(dǎo)致的無功功率輸出不均分的問題仍然沒有得到解決。為解決上述問題,本研究在基于虛擬阻抗改進的下垂控制法的基礎(chǔ)上進行改進。
由于P-f控制方法是對功角進行調(diào)整,故存在積分環(huán)節(jié),這樣逆變器之間的功角就會相差很小,所輸出的有功功率就能精確均分。因此,僅對Q-V的控制回路進行改進,修正由于線路電壓不同而引起的無功功率不能均分。
在使得下垂控制能夠解耦后,針對線路阻抗不匹配的問題,引入系統(tǒng)PCC 節(jié)點的電壓進行補償,減小線路電壓的差異,從而抑制無功環(huán)流。為了有效利用下垂控制沒有通訊互聯(lián)線的優(yōu)勢,通過線路損耗公式求得ΔV,因其縱分量很小,通常忽略不計,所以采用橫分量表示線路壓降,其壓降公式和改進后Q-V環(huán)公式如下:
式中:ΔV為線路的壓降;Ri、Xi分別為第i臺逆變器的線路電阻和電抗值;ki為電壓補償系數(shù);Vi*為第i臺逆變器輸出無功等于0 時對應(yīng)的電壓幅值;V為線路端電壓;VLPCC為PCC 節(jié)點的電壓,可通過壓降損耗公式VLPCC=Vi-ΔV求得。
當系統(tǒng)處于穩(wěn)態(tài)時,認為參考給定電壓和反饋值之間不存在靜態(tài)誤差,可以表示為
圖5為基于虛擬阻抗改進的下垂控制框圖,P-f控制環(huán)和傳統(tǒng)P-f一樣,P和P*取差值后,經(jīng)過下垂系數(shù)m得到Δf,Δf和f*取差值后經(jīng)過I控制器得到輸出頻率。Q-V加入了電壓補償項,通過Vi和VLPCC求偏差后,經(jīng)過補償系數(shù)ki得到補償電壓,其再和額定電壓Vi*疊加,進行電壓補償,最后與逆變器輸出的無功功率和額定功率的誤差經(jīng)過下垂系數(shù)n得到的電壓差求偏差,得到輸出電壓Vref。
圖5 基于虛擬阻抗改進的下垂控制框圖Fig.5 Improved droop control block diagram based on virtual impedance
若并聯(lián)逆變器線路阻抗相同,取補償系數(shù)ki=0,即得傳統(tǒng)下垂控制方程;當并聯(lián)系統(tǒng)線路阻抗不同時,取合適的ki可以進行電壓補償,不僅可以實現(xiàn)無功功率的精確分配,還可以減小電能的損耗,有效解決了傳統(tǒng)下垂控制的局限性。
本研究搭建了逆變器并聯(lián)系統(tǒng)的仿真模型。采用兩臺逆變器并聯(lián),均使用直流電源提供電能。系統(tǒng)電壓幅值設(shè)為310 V,仿真時間設(shè)為1 s,且在0.5 s 時增加公共負載。
為了驗證本研究所提出的改進控制策略的可行性和正確性,把傳統(tǒng)下垂控制策略與改進下垂控制策略進行仿真對比,分析線路阻抗不匹配的情況下改進下垂控制的特性。仿真模型參數(shù)及取值如表1所示。
表1 仿真模型參數(shù)及取值Table 1 Parameters and values of simulation model
傳統(tǒng)下垂控制策略采用了兩臺相同容量的DG 并聯(lián)運行,仿真結(jié)果如圖6所示。
圖6 傳統(tǒng)下垂控制仿真結(jié)果Fig.6 Traditional droop control simulation results
由圖6可以得知,系統(tǒng)仿真開始后,微電網(wǎng)在較短的時間(0.1 s)內(nèi)達到平衡,在0.5 s 時加入公共負載后,系統(tǒng)也能夠在較短的時間內(nèi)達到穩(wěn)定狀態(tài)。在0~0.5 s 時,DG1 和DG2 輸出的有功功率均為3.97 kW,DG1 輸出無功功率為2.49 kVar,DG2 輸出無功功率為3.54 kVar,系統(tǒng)環(huán)流穩(wěn)定在1.13 A;在0.5~1.0 s 時,DG1 和DG2 輸出的有功功率均為6.74 kW,DG1 輸出的無功功率為4.09 kVar,DG2 輸出的無功功率為5.75 kVar,系統(tǒng)環(huán)流穩(wěn)定在1.87 A。
因為兩臺逆變器的線路阻抗不同,根據(jù)上文分析有功功率受影響不大,仍然可以實現(xiàn)完全均分;但無功功率會受到影響,導(dǎo)致不能均分的情況,并且較小線路阻抗的DG 單元會承擔較大的無功功率,同時也會產(chǎn)生較大的無功環(huán)流。從圖6可以看出,有功功率實現(xiàn)了完全均分,無功功率按照線路阻抗的反比承擔功率,輸出功率差值越大,產(chǎn)生的環(huán)流越大。
采用改進的下垂控制策略進行仿真,虛擬電阻阻值為0.01 Ω,仿真結(jié)果如圖7所示。
圖7 改進的下垂控制仿真結(jié)果Fig.7 Improved droop control simulation results
由圖7可以得知,在0~0.25 s 時,只采用加入虛擬阻抗的控制策略,0.25 s 后采用改進無功環(huán)的下垂控制策略。在0~0.25 s 時,DG1 和DG2 輸出的有功功率均為3.83 kW,DG1 輸出的無功功率為3.17 kVar,DG2 輸出的無功功率為2.65 kVar,系統(tǒng)環(huán)流約為0.59 A;在0.25~0.50 s 時,DG1 和DG2 輸出的有功功率均為3.95 kW,DG1 和DG2 輸出的無功功率均為3.00 kVar,系統(tǒng)環(huán)流約為0.03 A;0.5~1.0 s 時,DG1 和DG2 輸出的有功功率均為6.70 kW,DG1 和DG2 輸出的無功功率均為4.90 kVar,系統(tǒng)環(huán)流穩(wěn)定在0.11 A。
由上述分析可以得出,線路阻抗不同只能引起無功功率的不完全均分,而與有功功率是否均分無關(guān)。比較圖6a 和圖7a 可以看出,采用虛擬阻抗法后,系統(tǒng)的超調(diào)量減小,穩(wěn)定速度明顯加快、但是產(chǎn)生的電壓降落直接導(dǎo)致了輸出的有功功率下降。從圖7a 可以看出,在0.25 s 時,采用改進的下垂控制策略,電壓得到回升,輸出功率有所提高。
比較圖6b 和圖7b 可以看出,在采用虛擬阻抗后,無功功率的差值有所減小,但仍然無法達到均分的效果,在0.25 s 采用改進的下垂控制策略后,無功功率可以實現(xiàn)均分。同時,根據(jù)圖6c 和圖7c 的系統(tǒng)環(huán)流波形,在采用虛擬阻抗后,由于輸出無功功率的差值縮小,環(huán)流從1.13 A 降至0.59 A,在采用改進控制策略后,輸出無功功率達到均分,環(huán)流進一步減小至0.03 A,即使增加了公共負荷,環(huán)流也穩(wěn)定在0.11 A。
本研究采取基于虛擬阻抗改進的下垂控制法,來解決因線路阻抗差異導(dǎo)致的無功功率分配不均、環(huán)流過大等問題。加入虛擬阻抗使逆變器等效輸出阻抗呈感性,保證下垂控制法可以被應(yīng)用在低壓逆變器并聯(lián)系統(tǒng)中,然后對無功環(huán)添加了電壓補償環(huán)節(jié)進行改進,使功率均分效果更好。該控制策略保留了傳統(tǒng)下垂控制無需通信互聯(lián)線路的優(yōu)點,且易于實現(xiàn)。通過仿真分析得出,系統(tǒng)的動態(tài)響應(yīng)速度快,超調(diào)量小,能夠精確實現(xiàn)無功功率均分,減小了因虛擬阻抗引起的功率損耗,同時減小了系統(tǒng)的環(huán)流。