国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

文蛤CDK7基因克隆及其在不同品系生長(zhǎng)發(fā)育中的表達(dá)分析

2021-04-15 20:56李秋潔陳愛華陳素華吳楊平張雨曹奕張志東田鎮(zhèn)
關(guān)鍵詞:基因克隆生長(zhǎng)發(fā)育

李秋潔 陳愛華 陳素華 吳楊平 張雨 曹奕 張志東 田鎮(zhèn)

摘要:【目的】掌握文蛤(Meretrix meretrix)細(xì)胞周期蛋白依賴性激酶7(CDK7)基因(MmCDK7)的時(shí)空表達(dá)及在不同品系生長(zhǎng)發(fā)育中的表達(dá)規(guī)律,從分子水平探究紅殼色文蛤新品系的生長(zhǎng)優(yōu)勢(shì),為篩選文蛤生長(zhǎng)相關(guān)基因及揭示其生長(zhǎng)發(fā)育機(jī)制提供理論依據(jù)?!痉椒ā坷肦ACE克隆MmCDK7基因cDNA序列,通過BLAST、ScanProsite、NetPhos 3.0 server及ExPASy等在線軟件進(jìn)行生物信息學(xué)分析,使用實(shí)時(shí)熒光定量PCR檢測(cè)MmCDK7基因在文蛤不同組織和不同發(fā)育時(shí)期的表達(dá)情況,并比較同一養(yǎng)殖條件下紅殼色文蛤(簡(jiǎn)稱紅文蛤)和黃殼色文蛤(簡(jiǎn)稱黃文蛤)的殼長(zhǎng)、殼長(zhǎng)相對(duì)增長(zhǎng)率及MmCDK7基因表達(dá)差異?!窘Y(jié)果】MmCDK7基因cDNA序列全長(zhǎng)1296 bp,其中,5'端非編碼區(qū)(5'-UTR)為83 bp,3'端非編碼區(qū)(3'-UTR)為196 bp,開放閱讀框(ORF)為1017 bp,共編碼338個(gè)氨基酸殘基。MmCDK7蛋白分子量約38.32 kD,理論等電點(diǎn)(pI)為8.78,包含絲氨酸/蘇氨酸蛋白激酶催化結(jié)構(gòu)域(S_TKc)、酪氨酸激酶催化結(jié)構(gòu)域(TyrKc)及與細(xì)胞周期蛋白結(jié)合有關(guān)的激酶結(jié)構(gòu)域NRTALRE;而S_TKc結(jié)構(gòu)域中有包含蛋白激酶ATP結(jié)合位點(diǎn)區(qū)域、絲氨酸/蘇氨酸蛋白激酶活化位點(diǎn)區(qū)域及T-loop環(huán)。MmCDK7氨基酸序列與蝦夷扇貝CDK7氨基酸序列高度同源,其相似性為75.00%;基于CDK7氨基酸序列相似性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹顯示,文蛤與中國(guó)真蛸、長(zhǎng)牡蠣、厚殼貽貝及蝦夷扇貝等軟體動(dòng)物先聚為一支。MmCDK7基因在性腺、水管、外套膜和肝胰腺等組織中均有表達(dá),以性腺中的相對(duì)表達(dá)量顯著高于其他組織(P<0.05,下同);MmCDK7基因在2種文蛤的8個(gè)發(fā)育時(shí)期均有表達(dá),均以多細(xì)胞時(shí)期的相對(duì)表達(dá)量最高。在同一養(yǎng)殖條件下,除9月18日外,其他采樣時(shí)間點(diǎn)均表現(xiàn)為紅文蛤的殼長(zhǎng)顯著大于黃文蛤,紅文蛤相對(duì)于黃文蛤的殼長(zhǎng)增長(zhǎng)率在2.79%~32.37%;除11月15日和11月30日外,其他采樣時(shí)間點(diǎn)均表現(xiàn)為紅文蛤的MmCDK7基因相對(duì)表達(dá)量顯著高于黃文蛤的相對(duì)表達(dá)量?!窘Y(jié)論】MmCDK7基因?qū)儆贑DK家族成員,在細(xì)胞分裂旺盛的性腺及多細(xì)胞時(shí)期的相對(duì)表達(dá)量最高,且在生長(zhǎng)速度較快紅文蛤中的相對(duì)表達(dá)量多數(shù)情況下顯著高于黃文蛤,故推測(cè)MmCDK7基因參與調(diào)控文蛤的早期生長(zhǎng)發(fā)育過程。

關(guān)鍵詞: 文蛤;CDK7基因;基因克隆;時(shí)空表達(dá);生長(zhǎng)發(fā)育

中圖分類號(hào): S968.317? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)12-3244-10

Cloning of CDK7 gene in Meretrix meretrix and its expression analysis on growth and development of different strains

LI Qiu-jie1,2, CHEN Ai-hua2*, CHEN Su-hua2, WU Yang-ping2, ZHANG Yu2,

CAO Yi2, ZHANG Zhi-dong2, TIAN Zhen1,2

(1Shanghai Ocean University/National Demonstration Center for Experimental Fisheries Science Education, Shanghai 201306, China; 2Jiangsu Institute of Marine Fisheries Research, Nantong, Jiangsu? 226007, China)

Abstract:【Objective】To master the spatiotemporal expression of cyclin dependent kinase 7 (CDK7) gene (MmCDK7) in Meretrix meretrix and the expression law in the growth and development process of different strains , so as to explore the growth advantages of new strains of red clam at the molecular level. It provided a theoretical basis for screening growth related genes of M. meretrix and revealing its growth and development mechanism. 【Method】The cDNA sequence of MmCDK7 gene was cloned by RACE. Bioinformatics analysis was carried out by BLAST,ScanProsite,NetPhos 3.0 server and ExPASy. The expression of MmCDK7 gene in different tissues and different developmental stages of M. meretrix was detected by real-time fluorescence quantitative PCR. The differences of shell length, relative growth rate of shell length and MmCDK7 gene expression between red clam and yellow clam were compared under the same culture conditions. 【Result】The total length of the cDNA sequence of MmCDK7 gene was 1296 bp, of which the 5 ' untranslated region (5'-UTR) was 83 bp, the 3 ' untranslated region (3'-UTR) was 196 bp, and the open reading frame (ORF) was 1017 bp, encoding 338 amino acid. The molecular weight of MmCDK7 protein was about 38.32 kD and the theoretical isoelectric point (pI) was 8.78. It included serine / threonine protein kinase catalytic domain (S_TKc), tyrosine kinase catalytic domain (TyrKc) and kinase domain NRTALRE related to cyclin binding. And S_ TKc domain contained protein kinase ATP binding site, serine / threonine protein kinase activation site and T-loop loop. The amino acid sequence of MmCDK7 was highly homologous with that of Mizuhopecten yessosensis, and its similarity was 75.00%. The phylogene-tic tree constructed based on the amino acid sequence similarity of CDK7showed that M. meretrix and molluscs such as Octopus sinensis, Crassostrea gigas,Mytilus coruscus and M. yessosensis first gathered into one branch. MmCDK7 gene was expressed in gonad, siphon, mantle and hepatopancreas, and the relative expression in gonad was significantly higher than that in other tissues (P<0.05, the same below). MmCDK7 gene was expressed in 8 developmental stages of two species, and the relative expression in multicellular stage was significantly higher than that in other stages. Under the same culture conditions, except September 18, the shell length of red clam was significantly longer than that of yellow clam, and the growth rate of red clam relative to yellow clam was 2.79%-32.37%. Except November 15 and November 30, the relative expression of MmCDK7 gene in red clam was significantly higher than that in yellow clam at other sampling time points. 【Conclusion】MmCDK7 gene belongs to CDK family. The relative expression of CDK7 gene in gonad and multicellular stage with vigorous cell division is the highest, and the relative expression of CDK7 gene in red clam with fast growth rate is significantly higher than that in yellow clam in most cases. Therefore, it is speculated that MmCDK7 gene is involved in regulating the early growth and development of M. meretrix.

Key words: Meretrix meretrix; CDK7 gene; gene cloning; spatiotemporal expression; growth and development

Foundation item: Jiangsu Fishery Science and Technology Major Project(D2018-1); Jiangsu Agricultural Independent Innovation Project [CX (20) 3194];Aquatic Varieties Preservation and Renewal Project of Jiangsu (2020-SJ-006-05); Basic Science Research Project of Nantong(JC2020118)

0 引言

【研究意義】文蛤(Meretrix meretrix)隸屬于軟體動(dòng)物門(Mollusca)瓣鰓綱(Lamellibranchia)簾蛤目(Veneroida)簾蛤科(Veneridae),是我國(guó)傳統(tǒng)灘涂養(yǎng)殖的主要貝類之一。近年來,文蛤野生種質(zhì)資源量逐年銳減,已出現(xiàn)近交衰退及種質(zhì)下降等現(xiàn)象,導(dǎo)致文蛤苗種短缺且抗逆性差等問題頻出(宋文濤,2013)。細(xì)胞周期蛋白依賴性激酶7(Cyclin-dependent kinase,CDK7)是CDK家族中功能較特殊的成員(Malumbres,2014),主要參與生物體細(xì)胞的生長(zhǎng)發(fā)育過程。因此,分析CDK7基因在文蛤生長(zhǎng)過程中發(fā)揮的功能作用,對(duì)推進(jìn)文蛤良種選育具有重要意義。【前人研究進(jìn)展】CDK7屬于絲氨酸/蘇氨酸蛋白激酶家族,具有雙重功能:一方面,無活性的CDK7與相應(yīng)周期蛋白Cyclin H結(jié)合,發(fā)生雙磷酸化后與MAT1結(jié)合,構(gòu)成細(xì)胞周期蛋白依賴性激酶活化激酶,即CDK活化激酶(CAK),在哺乳動(dòng)物體內(nèi)參與CDK1、CDK2、CDK4及CDK6的激活磷酸化,進(jìn)而調(diào)節(jié)細(xì)胞周期(Lolli and Johnson,2005;江艷,2010);另一方面,CDK7可作為轉(zhuǎn)錄因子TFⅡH的亞基組成成分,負(fù)責(zé)磷酸化RNA聚合酶Ⅱ大亞基的羧基末端結(jié)構(gòu)域(CTD)及CDK9,在mRNA轉(zhuǎn)錄起始、延伸及共轉(zhuǎn)錄RNA成熟過程中發(fā)揮重要作用(Fisher,2005;Larochelle et al.,2012;張潔妤等,2013)。已有研究證實(shí),CDK7基因在生物體細(xì)胞的生長(zhǎng)發(fā)育過程中發(fā)揮重要作用,如線蟲(Caenorhabditis elegans)CDK7基因突變株不能激活mRNA轉(zhuǎn)錄,且通過RNAi可完全或接近完全抑制整個(gè)細(xì)胞周期進(jìn)程(Matthew and Geraldine,2002);有選擇性破壞小鼠胚胎成纖維細(xì)胞中的CDK7基因,能有效阻礙細(xì)胞周期進(jìn)程,造成早期胚胎死亡(Schachter and Fisher,2013)。此外,有研究表明CDK7基因可促進(jìn)癌細(xì)胞增殖,通過抑制CDK7基因表達(dá)可造成mRNA的表達(dá)及轉(zhuǎn)錄因子活性降低,阻止多種腫瘤細(xì)胞的分裂與增殖,因此臨床醫(yī)學(xué)上將CDK7基因作為癌癥治療的一個(gè)潛在靶點(diǎn)(Wang et al.,2018;Sava et al.,2020)。在水生生物中,已有學(xué)者對(duì)斑馬魚(Danio rerio)(Liu et al.,2007)、斑節(jié)對(duì)蝦(Penaeus monodon)(Phinyo et al.,2014)及三疣梭子蟹(Portunus trituberculatus)(賈復(fù)龍等,2016)等物種的CDK7基因進(jìn)行初步研究,但針對(duì)貝類的研究較少,僅Adzigbli等(2020)對(duì)馬氏珠母貝(Pinctada martensi)CDK7基因的免疫作用機(jī)制進(jìn)行研究,并未涉及貝類的生長(zhǎng)發(fā)育。【本研究切入點(diǎn)】江蘇省文蛤良種場(chǎng)經(jīng)過多年的優(yōu)良品種選育,已培育出紅殼色文蛤新品系,與自然群體黃殼色文蛤相比,紅殼色文蛤具有生長(zhǎng)速度更快、成活率和抗逆性更高的優(yōu)勢(shì)(王超等,2016;張雨等,2018),但有關(guān)CDK7基因在文蛤生長(zhǎng)發(fā)育中的作用機(jī)制尚未明確?!緮M解決的關(guān)鍵問題】利用RACE克隆文蛤CDK7基因(MmCDK7)全長(zhǎng),并通過實(shí)時(shí)熒光定量PCR檢測(cè)MmCDK7基因在2種文蛤群體不同組織和不同發(fā)育時(shí)期的表達(dá)情況,分析該基因表達(dá)規(guī)律與文蛤殼長(zhǎng)變化的關(guān)系,以期從分子水平探究紅殼色文蛤新品系的生長(zhǎng)優(yōu)勢(shì),為篩選文蛤生長(zhǎng)相關(guān)基因及揭示其生長(zhǎng)發(fā)育機(jī)制提供理論依據(jù)。

1 材料與方法

1. 1 試驗(yàn)材料

供試紅殼色文蛤(簡(jiǎn)稱紅文蛤)取自于江蘇省文蛤良種場(chǎng)選育的新品系,黃殼色文蛤(簡(jiǎn)稱黃文蛤)為江蘇省如東海區(qū)的野生群體。紅文蛤是以江蘇南部沿海自然文蛤的5000粒紅殼色文蛤?yàn)橛N基礎(chǔ)群體,以“紅殼色+生長(zhǎng)”為目標(biāo)性狀,通過閉鎖群體選育方式獲得的子代選育系,每代留種率大于0.01%。

1. 2 樣品采集

挑選4粒黃文蛤成貝,分別采集其肝胰腺、閉殼肌、外套膜、水管、鰓及性腺等組織進(jìn)行RNA提取;2020年7月選取貝殼完整、健康且性腺成熟的紅文蛤和黃文蛤?yàn)橛H貝,在水溫27~29 ℃、鹽度29‰左右時(shí)進(jìn)行催產(chǎn)。利用顯微鏡觀察跟蹤發(fā)育過程,分別選取紅文蛤和黃文蛤受精卵、多細(xì)胞、囊胚期、原腸胚、擔(dān)輪幼蟲、D形幼蟲、殼頂幼蟲和稚貝等8個(gè)胚胎發(fā)育時(shí)期的樣品用于總RNA提取。

將2020年7月繁育的紅文蛤和黃文蛤稚貝置于1.5 t的缸中進(jìn)行養(yǎng)殖,每缸苗種密度相同,持續(xù)充氧,每天換水,投喂相同餌料。紅文蛤和黃文蛤各設(shè)3組平行。養(yǎng)殖試驗(yàn)于2020年9月開始,9月每周取樣1次,10和11月每2周取樣1次。每次每組隨機(jī)取樣40粒,測(cè)量其殼長(zhǎng),并計(jì)算對(duì)應(yīng)殼長(zhǎng)相對(duì)增長(zhǎng)率(R)。測(cè)量結(jié)束后,取文蛤全組織,經(jīng)PBS(0.01 mol/L)洗滌,液氮速凍,-80 ℃保存?zhèn)溆谩?/p>

R(%)=(Lt-Ly)/Ly×100

式中,Lt為紅文蛤殼長(zhǎng),Ly為黃文蛤殼長(zhǎng)。

1. 3 MmCDK7基因cDNA序列克隆及測(cè)序

從構(gòu)建的轉(zhuǎn)錄組文庫(kù)中檢索MmCDK7基因EST序列,設(shè)計(jì)并合成5'-RACE和3'-RACE特異性擴(kuò)增引物(表1)。使用RNA提取純化試劑盒[天根生化科技(北京)有限公司]提取文蛤性腺總RNA,然后以RACE試劑盒(Clontech公司)反轉(zhuǎn)錄合成cDNA第一鏈。參照高曉艷(2015)的方法進(jìn)行RACE擴(kuò)增,擴(kuò)增產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳檢測(cè)后割膠回收純化,純化產(chǎn)物連接至pMD18-T載體,37 ℃過夜培養(yǎng)后轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,篩選陽性克隆送至生工生物工程(上海)股份有限公司測(cè)序。

1. 4 生物信息學(xué)分析

利用NCBI中的ORF Finder(https://www.ncbi.nlm.nih.gov/orffinder/)進(jìn)行MmCDK7基因開放閱讀框(ORF)尋找,并翻譯成氨基酸序列;使用BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)進(jìn)行氨基酸序列同源比對(duì)分析;采用ScanProsite(https://prosite.expasy.org/scanprosite/)預(yù)測(cè)MmCDK7蛋白結(jié)構(gòu)域;運(yùn)用NetPhos 3.0 server(http://www.cbs.dtu.dk/servi-ces/NetPhos-3.0/)預(yù)測(cè)MmCDK7蛋白磷酸化位點(diǎn);采用ExPASy(https://web.expasy.org/compute_pi/)預(yù)測(cè)MmCDK7蛋白分子量及其理論等電點(diǎn)(pI);利用DNAMAN進(jìn)行多序列比對(duì)分析,并以MEGA 5.0中的鄰接法(Neighbor-joining method,NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹。

1. 5 MmCDK7基因表達(dá)分析

使用RNA提取純化試劑盒分別提取文蛤成體不同組織及不同胚胎發(fā)育時(shí)期的總RNA,通過NanoDrop 2000微量紫外分光光度計(jì)和1.0%瓊脂糖凝膠電泳檢測(cè)其濃度和質(zhì)量;利用FastKing cDNA第一鏈合成試劑盒將總RNA反轉(zhuǎn)錄合成cDNA,-20 ℃保存?zhèn)溆?。根?jù)MmCDK7基因序列設(shè)計(jì)實(shí)時(shí)熒光定量PCR擴(kuò)增引物(MmCDK7-F/MmCDK7-R)(表1),以β-actin基因?yàn)閮?nèi)參基因,使用Applied Biosystems熒光定量PCR儀測(cè)定MmCDK7基因的表達(dá)情況。依據(jù)SuperReal熒光定量預(yù)混試劑盒[天根生化科技(北京)有限公司]說明,配制實(shí)時(shí)熒光定量PCR反應(yīng)體系20.0 μL:2×SuperReal Premix Plus 10.0 μL,正、反向引物各0.6 μL, 50×ROX Reference Dye 2.0 μL,cDNA模板1.0 μL,ddH2O 5.8 μL。擴(kuò)增程序:95 ℃預(yù)變性15 min;95 ℃ 10 s,58 ℃ 31 s,72 ℃ 31 s,進(jìn)行40個(gè)循環(huán),收集熒光信號(hào)。95 ℃ 15 s,60 ℃ 1 min;95 ℃ 30 s,60 ℃ 15 s,進(jìn)行融解曲線分析。采用2–ΔΔCT法換算目的基因相對(duì)表達(dá)量,并以SPSS 20.0進(jìn)行單因素方差分析(One-way ANOVA)。

2 結(jié)果與分析

2. 1 MmCDK7基因克隆及測(cè)序分析

通過RACE克隆得到MmCDK7基因cDNA序列全長(zhǎng)1296 bp,其中,5'端非編碼區(qū)(5'-UTR)為83 bp,3'端非編碼區(qū)(3'-UTR)為196 bp,ORF為1017 bp,共編碼338個(gè)氨基酸殘基(圖1)。MmCDK7蛋白分子量約38.32 kD,pI為8.78,包含絲氨酸/蘇氨酸蛋白激酶催化結(jié)構(gòu)域(S_TKc)(8~291 aa)、酪氨酸激酶催化結(jié)構(gòu)域(TyrKc)(8~291 aa)及與細(xì)胞周期蛋白結(jié)合有關(guān)的激酶結(jié)構(gòu)域NRTALRE。S_TKc結(jié)構(gòu)域中包含蛋白激酶ATP結(jié)合位點(diǎn)區(qū)域(14~38 aa)、絲氨酸/蘇氨酸蛋白激酶活化位點(diǎn)區(qū)域(129~141 aa)及T-loop環(huán)(DFGLAKFFGSPNRIYTHQVVTRWYRCPE,151~178 aa)。此外,NetPhos 3.0預(yù)測(cè)結(jié)果顯示,MmCDK7蛋白存在12個(gè)磷酸化位點(diǎn),包括6個(gè)絲氨酸磷酸化位點(diǎn)、4個(gè)蘇氨酸磷酸化位點(diǎn)及2個(gè)酪氨酸磷酸化位點(diǎn)。

從GenBank搜索參考物種的CDK7氨基酸序列(表2),利用DNAMAN進(jìn)行多序列比對(duì)分析,結(jié)果(圖2)顯示,MmCDK7氨基酸序列與蝦夷扇貝(Mizuhopecten yessosensis)的CDK7氨基酸序列高度同源,其相似性為75.00%;與中國(guó)真蛸(Octopus sinensis)、厚殼貽貝(Mytilus coruscus)、斑馬魚、黑腹果蠅(Drosophila melanogaster)及木蟻(Camponotus floridanus)的CDK7氨基酸序列相似性分別為71.09%、72.27%、66.09%、61.19%和71.89%,且具有相同活化/結(jié)合位點(diǎn)的保守結(jié)構(gòu)域,包括核苷酸結(jié)合位點(diǎn)(14~22 aa)、ATP結(jié)合位點(diǎn)(37 aa)及質(zhì)子受體活化位點(diǎn)(133 aa)?;贑DK7氨基酸序列相似性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹(圖3)顯示,文蛤首先與中國(guó)真蛸、長(zhǎng)牡蠣(Crassostrea gigas)、厚殼貽貝及蝦夷扇貝等軟體動(dòng)物聚為一支,然后與斑馬魚、大山雀(Parus major)及獼猴(Macaca mulatta)等脊索動(dòng)物聚為一大支,而斑節(jié)對(duì)蝦、三疣梭子蟹等節(jié)肢動(dòng)物聚為另一分支。

2. 2 MmCDK7基因在文蛤不同組織中的表達(dá)情況

通過實(shí)時(shí)熒光定量PCR檢測(cè)MmCDK7基因在文蛤成體不同組織中的表達(dá)情況,結(jié)果(圖4)表明,MmCDK7基因在性腺、水管、外套膜和肝胰腺等組織中均有表達(dá),但各組織中的相對(duì)表達(dá)量存在差異,以性腺中的相對(duì)表達(dá)量最高,顯著高于其他組織(P<0.05,下同),其次是斧足、外套膜和鰓等組織。

2. 3 MmCDK7基因在文蛤不同發(fā)育時(shí)期的表達(dá)情況

由圖5可看出,MmCDK7基因在紅文蛤和黃文蛤不同發(fā)育時(shí)期的表達(dá)情況呈現(xiàn)出相同的變化趨勢(shì)。2種文蛤在多細(xì)胞時(shí)期的MmCDK7基因相對(duì)表達(dá)量均達(dá)最高值,且顯著高于擔(dān)輪幼蟲、D形幼蟲、殼頂幼蟲及推貝等4個(gè)發(fā)育時(shí)期的相對(duì)表達(dá)量;發(fā)育至擔(dān)輪幼蟲時(shí)期,其相對(duì)表達(dá)量顯著下降,稚貝時(shí)期的相對(duì)表達(dá)量最低。

2. 4 MmCDK7基因在不同文蛤品種間的表達(dá)差異

在同一養(yǎng)殖條件下,紅文蛤和黃文蛤的殼長(zhǎng)除了在9月18日的采樣中無顯著差異(P>0.05,下同)外,其他采樣時(shí)間點(diǎn)均表現(xiàn)為紅文蛤的殼長(zhǎng)顯著大于黃文蛤,且在養(yǎng)殖后期(11月中下旬)這種差異達(dá)極顯著水平(P<0.01)(圖6)。在殼長(zhǎng)相對(duì)增長(zhǎng)率方面,紅文蛤相對(duì)于黃文蛤的殼長(zhǎng)增長(zhǎng)率在2.79%~32.37%,且部分養(yǎng)殖時(shí)期存在顯著差異(圖7)。同步檢測(cè)MmCDK7基因在文蛤生長(zhǎng)過程中的表達(dá)變化規(guī)律,結(jié)果(圖8)發(fā)現(xiàn)除了在11月15日和11月30日的采樣中2種文蛤的MmCDK7基因相對(duì)表達(dá)量無顯著差異外,其他采樣時(shí)間點(diǎn)均表現(xiàn)為紅文蛤的MmCDK7基因相對(duì)表達(dá)量顯著高于黃文蛤的相對(duì)表達(dá)量。

3 討論

CDK屬于絲氨酸/蘇氨酸蛋白激酶家族,在真核生物細(xì)胞周期進(jìn)程中發(fā)揮著重要的調(diào)控作用,其活性的獲得主要通過以下2種途徑實(shí)現(xiàn):一方面,CDK的T-loop磷酸化有助于底物進(jìn)入活性位點(diǎn),使激酶構(gòu)象發(fā)生變化,進(jìn)而調(diào)節(jié)激酶活性(Wu et al.,2003);另一方面,與對(duì)應(yīng)的周期蛋白調(diào)節(jié)亞基相結(jié)合,繼而表現(xiàn)出不同的激酶活性(Wood and Endicott,2018;Peissert et al.,2020)。CDK7是CDK家族中的特殊成員,其激活需T-loop的雙重磷酸化,以及與Cyclin H和MAT1組成復(fù)合體,參與細(xì)胞周期調(diào)控;也可作為轉(zhuǎn)錄因子TFⅡH的亞基,調(diào)節(jié)CTD激酶活性,發(fā)揮轉(zhuǎn)錄調(diào)控作用(Martinez et al.,1997;Ebmeier et al.,2017)。本研究通過克隆MmCDK7基因cDNA序列并進(jìn)行測(cè)序分析,結(jié)果表明,MmCDK7基因具有CDK基因家族典型的結(jié)構(gòu)特征,包括S_TKc結(jié)構(gòu)域、TyrKc結(jié)構(gòu)域、T-loop環(huán)、ATP結(jié)合位點(diǎn)及調(diào)節(jié)亞基Cyclin的結(jié)合部位NRTALRE等。通過與其他物種的CDK氨基酸序列進(jìn)行多序列比對(duì)分析,發(fā)現(xiàn)MmCDK7氨基酸序列與蝦夷扇貝的CDK7氨基酸序列高度同源(相似性為75.00%),與斑馬魚和黑腹果蠅的相似性最低,說明CDK7基因在文蛤及其他物種間具有一定的保守性,均含有CDK家族的典型結(jié)構(gòu)域。基于CDK7氨基酸序列相似性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹顯示,文蛤與中國(guó)真蛸、長(zhǎng)牡蠣、厚殼貽貝及蝦夷扇貝等軟體動(dòng)物聚為一支,親緣關(guān)系較近??梢?,克隆獲得的MmCDK7基因?qū)儆贑DK家族成員,可能具有類似于其他物種CDK7基因的功能。

細(xì)胞分裂活動(dòng)的有序進(jìn)行離不開CDK調(diào)控,其中,CDK7通過發(fā)揮CAK活性在細(xì)胞周期調(diào)控過程中發(fā)揮重要作用(Ganuza et al.,2012)。CDK7基因可特異性調(diào)控細(xì)胞分裂,本研究通過實(shí)時(shí)熒光定量PCR檢測(cè)MmCDK7基因在文蛤成體各組織中的表達(dá)情況,結(jié)果發(fā)現(xiàn)MmCDK7基因表達(dá)具有明顯的組織表達(dá)特異性,以在性腺中的相對(duì)表達(dá)量顯著高于在其他組織中的相對(duì)表達(dá)量,可能是由于性腺部位的細(xì)胞分裂較旺盛,因此MmCDK7基因在性腺部位高表達(dá),與賈復(fù)龍等(2016)研究發(fā)現(xiàn)CDK7基因在三疣梭子蟹卵巢/精巢中表達(dá)量最高的結(jié)論一致。此外,MmCDK7基因在文蛤斧足和外套膜中的相對(duì)表達(dá)量?jī)H次于性腺,可能是由于文蛤?qū)儆诼駰拓愵?,需依靠斧足的伸縮活動(dòng)進(jìn)行潛鉆穴居和運(yùn)動(dòng),而外套膜與幼蟲貝殼生長(zhǎng)關(guān)系密切(王如才,2008;王曉梅,2008),也說明MmCDK7基因在這2個(gè)組織的生長(zhǎng)發(fā)育過程中發(fā)揮重要作用。

CDK7在生物體正常生長(zhǎng)發(fā)育過程中也發(fā)揮著至關(guān)重要的作用。在斑馬魚的早期胚胎發(fā)育過程中,CDK7基因在胚胎動(dòng)物極的各細(xì)胞中均普遍存在,且其過表達(dá)可補(bǔ)救因Cyclin H失活造成的細(xì)胞凋亡或胚胎畸形(儲(chǔ)琳等,2006;劉清云,2006);通過基因敲除技術(shù)分析CDK7基因在小鼠體內(nèi)的生理作用,結(jié)果發(fā)現(xiàn)CDK7基因缺失能導(dǎo)致體外細(xì)胞分裂停止及體內(nèi)早期胚胎死亡(Ganuza et al.,2012);在適宜溫度條件下,熱帶爪蟾發(fā)育速度始終快于非洲爪蟾,與CDK7基因表達(dá)量高于非洲爪蟾密切相關(guān)(Tanaka et al.,2017)。此外,有研究證實(shí)抑制CDK7基因表達(dá)能阻止多種腫瘤細(xì)胞的分裂與增殖(Wang et al.,2016;Sava et al.,2020),因此可將CDK7基因作為癌癥治療的潛在靶點(diǎn)。本研究對(duì)MmCDK7基因在紅文蛤和黃文蛤不同發(fā)育時(shí)期的表達(dá)情況進(jìn)行分析,結(jié)果發(fā)現(xiàn)MmCDK7基因在2種文蛤的多個(gè)發(fā)育階段均有表達(dá),以多細(xì)胞時(shí)期的相對(duì)表達(dá)量最高,可能是由于這一時(shí)期的細(xì)胞分裂活動(dòng)較旺盛,細(xì)胞數(shù)目增加,需更多的MmCDK7基因來調(diào)控細(xì)胞有絲分裂。D形幼蟲時(shí)期是文蛤幼蟲消化道形成,開始攝取外源食物,形成斧足和平衡囊等組織器官的關(guān)鍵時(shí)期(李太武等,2006;王如才,2008),因此也需要大量MmCDK7基因以滿足機(jī)體生長(zhǎng)所需;之后MmCDK7基因表達(dá)下調(diào),至稚貝時(shí)期達(dá)最低值,究其原因可能是此時(shí)文蛤幼蟲生長(zhǎng)發(fā)育趨于穩(wěn)定,對(duì)MmCDK7基因表達(dá)需求量相對(duì)較低。

目前,針對(duì)CDK7基因功能已有相關(guān)研究報(bào)道。在斑馬魚(劉清云,2006)、斑節(jié)對(duì)蝦(Phinyo et al.,2014)和馬氏珠母貝(Adzigbli et al.,2020)等物種中,發(fā)現(xiàn)CDK7基因參與其卵巢/精巢發(fā)育、免疫調(diào)節(jié)及胚胎發(fā)育過程,但未見CDK7基因與機(jī)體生長(zhǎng)發(fā)育間的關(guān)聯(lián)性研究。本研究在同一養(yǎng)殖條件下的生長(zhǎng)試驗(yàn)中發(fā)現(xiàn),除了個(gè)別時(shí)間點(diǎn)外,紅文蛤殼長(zhǎng)顯著大于黃文蛤,同時(shí)結(jié)合紅文蛤較黃文蛤的殼長(zhǎng)相對(duì)增長(zhǎng)率,可確定紅文蛤的生長(zhǎng)速度快于黃文蛤,且其生長(zhǎng)優(yōu)勢(shì)在此次養(yǎng)殖后期更明顯。與此同時(shí),紅文蛤MmCDK7基因的相對(duì)表達(dá)量在多數(shù)情況下顯著高于黃文蛤的相對(duì)表達(dá)量,與2種文蛤的殼長(zhǎng)對(duì)比結(jié)果相吻合,故推測(cè)紅文蛤較黃文蛤生長(zhǎng)快速可能與其MmCDK7基因表達(dá)量水平較高存在一定聯(lián)系。

4 結(jié)論

MmCDK7基因?qū)儆贑DK家族成員,在細(xì)胞分裂旺盛的性腺及多細(xì)胞時(shí)期的相對(duì)表達(dá)量最高,且在生長(zhǎng)速度較快紅文蛤中的相對(duì)表達(dá)量多數(shù)情況下顯著高于黃文蛤,故推測(cè)MmCDK7基因參與調(diào)控文蛤的早期生長(zhǎng)發(fā)育過程。

參考文獻(xiàn):

儲(chǔ)琳,劉清云,錢旻,嚴(yán)緣昌,李逸平. 2006. 斑馬魚cdk7和cyclin H基因的原核表達(dá)及多克隆抗體的制備與鑒定[J]. 細(xì)胞生物學(xué)雜志,28(6):849-854. [Chu L,Liu Q Y,Qian M,Yan Y C,Li Y P. 2006. Prokaryotic expression and polyclonal antibodies preparation of cdk7 and cyclin H in zebrafish[J]. Chinese Journal of Cell Biology,28(6):849-854.] doi:10.3969/j.issn.1674-7666.2006.06.015.

高曉艷. 2015. 文蛤4個(gè)生長(zhǎng)相關(guān)基因克隆、時(shí)空表達(dá)及與生長(zhǎng)的相關(guān)性分析[D]. 寧波:浙江萬里學(xué)院. [Gao X Y. 2015. Cloning,spatiotemporal expression and association analysis of 4 genes with growth traits in hard clam Meretrix meretrix[D]. Ningbo:Zhejiang Wanli University.]

賈復(fù)龍,孟憲亮,劉萍,李健,高保全. 2016. 三疣梭子蟹細(xì)胞Cdk7基因克隆及其在卵巢發(fā)育中的表達(dá)[J]. 中國(guó)水產(chǎn)科學(xué),23(5):1032-1040. [Jia F L,Meng X L,Liu P,Li J,Gao B Q. 2016. Cloning and expression analysis of Cdk7,a gene involved in ovarian development,from swimming crab (Portunus trituberculatus)[J]. Journal of Fishery Sciences of China,23(5):1032-1040.] doi:10.3724/ SP.J.1118.2016.15401.

江艷. 2010. BmCycH基因及其在家蠶中表達(dá)特性的研究[D]. 杭州:浙江理工大學(xué). [Jiang Y. 2010. Study on expression characteristics of BmCycH gene in silkworm,Bombyx mori[D]. Hangzhou:Zhejiang Sci-Tech University.] doi:10.7666/d.y1747463.

李太武,蘇秀榕,季延濱,劉保忠. 2006. 不同發(fā)育階段文蛤同工酶基因的表達(dá)研究[J]. 海洋學(xué)報(bào)(中文版),28(5):162-166. [Li T W,Su X R,Ji Y B,Liu B Z. 2006. Stu-dies on the expressions of isozyme during ontogeny of Meretrix meretrix[J]. Acta Oceanologica Sinica,28(5):162-166.] doi:10.3321/j.issn:0253-4193.2006.05.022.

劉清云. 2006. 斑馬魚中囊胚發(fā)育相關(guān)基因的克隆及功能研究[D]. 上海:中國(guó)科學(xué)院研究生院. [Liu Q Y. 2006. Cloning and function of genes related to blastocyst deve-lopment in zebrafish[D]. Shanghai:Graduate School of Chinese Academy of Sciences.]

宋文濤. 2013. 文蛤的養(yǎng)殖和研究現(xiàn)狀[J]. 山東工業(yè)技術(shù),(11):246. [Song W T. 2013. Cultivation and research status of the clam Meretrix meretrix[J]. Shandong Industrial Technology,(11):246.] doi:10.16640/j.cnki.37-1222/ t.2013.11.107.

王超,陳愛華,曹奕,吳楊平,張雨,姚國(guó)興,蔡永祥. 2016. 6個(gè)不同海域文蛤地理群體的親緣關(guān)系分析[J]. 海洋漁業(yè),38(3):262-272. [Wang C,Chen A H,Cao Y,Wu Y P,Zhang Y,Yao G X,Cai Y X. 2016. Genetic relationship analysis of six Meretrix meretrix populations from diffe-rent sea areas[J]. Marine Fisheries,38(3):262-272.] doi:10.13233/j.cnki.mar.fish.2016.03.005.

王如才. 2008. 海水貝類養(yǎng)殖學(xué)[M]. 青島:中國(guó)海洋大學(xué)出版社. [Wang R C. 2008. Science of marine shellfish culture[M]. Qingdao:China Ocean University Press.]

王曉梅. 2008. 文蛤(Meretrix meretrix)幼蟲生長(zhǎng)發(fā)育相關(guān)基因的克隆和功能分析[D]. 青島:中國(guó)科學(xué)院研究生院. [Wang X M. 2008. Molecular cloning and functional analysis of genes involved in larval development in clam Meretrix meretrix[D]. Qingdao:Graduate School of Chinese Academy of Sciences.]

張潔妤,張靜怡,黃孝天. 2013. TFⅡH參與調(diào)控RNA聚合酶Ⅱ介導(dǎo)的mRNA轉(zhuǎn)錄的研究進(jìn)展[J]. 南昌大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),53(7):72-75. [Zhang J Y,Zhang J Y,Huang X T. 2013. Advances in studies of TFⅡH in the regulation of RNA polymeraseⅡmediated mRNA transcription[J]. Journal of Nanchang University (Medical Sciences),53(7):72-75.] doi:10.3969/j.issn.1000-2294.2013.07.025.

張雨,陳愛華,吳楊平,曹奕,姚國(guó)興. 2018. 紅殼色文蛤選育子代養(yǎng)殖效果分析[J]. 江蘇農(nóng)業(yè)科學(xué),46(6):145-147. [Zhang Y,Chen A H,Wu Y P,Cao Y,Yao G X. 2018. Analysis of breeding offspring culture effect of red-shelled Meretrix meretrix[J]. Jiangsu Agricultural Sciences,46(6):145-147.] doi:10.15889/j.issn.1002-1302.2018.06. 037.

Adzigbli L,Zhao Z H,Wang Z M,Yang C Y,Hao R J,Deng Y W. 2020. Characterization of cyclin dependent kinase-7 and its differential response to grafting challenge in the black shell colored selected line of pearl oyster Pinctada fucata martensii[J]. Fish and Shellfish Immunology,101:277-283. doi:10.1016/j.fsi.2020.04.008.

Ebmeier C C,Erickson B,Allen B L,Allen M A,Kim H,Nova F,Jacobsen J R,Liang K,Shilatifard A,Dowell R D,Old W M,Bentley D L,Taatjes D J. 2017. Human TFIIH kinase CDK7 regulates transcription-associated chromatin modifications[J]. Cell Reports,20(5):1173-1186. doi:10.1016/j.celrep.2017.07.021.

Fisher R P. 2005. Secrets of a double agent:CDK7 in cell-cycle control and transcription[J]. Journal of Cell Science,118(22):5171-5180.

Ganuza M,Sáiz-Ladera C,Ca?amero M,Gómez G,Schneider R,Blasco M A,Pisano D,Paramio J M,Santamaría D,Barbacid M. 2012. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion[J]. The EMBO Journal,31(11):2498-2510. doi:10.1038/emboj.2012.94.

Larochelle S,Amat R,Glover-Cutter K,Sansó M,Zhang C,Allen J J,Shokat K M,Bentley D L,F(xiàn)isher R P. 2012. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II[J]. Nature Structural and Molecular Biology,19(11):1108-1115. doi:10.1038/nsmb.2399.

Liu Q Y,Wu Z L,Lv W J,Yan Y C,Li Y P. 2007. Developmental expression of Cyclin H and Cdk7 in zebrafish:The essential role of Cyclin H during early embryo deve-lopment[J]. Cell Research,17(2):163-173. doi:10.1038/sj.cr.7310144.

Lolli G,Johnson L N. 2005. CAK-Cyclin-dependent activa-ting kinase:A key kinase in cell cycle control and a target for drugs?[J]. Cell Cycle,4(4):565-570. doi:10.4161/cc.4.4.1607.

Malumbres M. 2014. Cyclin-dependent kinases[J]. Genome Biology,15:122. doi:10.1186/gb4184.

Martinez A M,Afshar M,Martin F,Cavadore J C,Labbé J C,Dorée M. 1997. Dual phosphorylation of the T-loop in Cdk7:Its role in controlling cyclin H binding and CAK activity[J]. The EMBO Journal,16(2):343-354. doi:10.1093/emboj/16.2.343.

Matthew R W,Geraldine S. 2002. cdk-7 is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos[J]. Proceedings of the National Academy of Sciences of the United States of America,99(8):5527-5532. doi:10.1073/pnas.082618399.

Peissert S,Schlosser A,Kendel R,Kuper J,Kisker C. 2020. Structural basis for CDK7 activation by MAT1 and Cyclin H[J]. Proceedings of the National Academy of Scien-ces of the United States of America,117(43):26739-26748. doi:10.1073/pnas.2010885117.

Phinyo M,Nounurai P,Hiransuchalert R,Padermsak J,Si-rawut K. 2014. Characterization and expression analysis of Cyclin-dependent kinase 7 gene and protein in ovaries of the giant tiger shrimp Penaeus monodon[J]. Aquaculture,432:286-294. doi:10.1016/j.aquaculture.2014.05. 022.

Sava G P,F(xiàn)an H L,Coombes R C,Buluwela L,Ali S. 2020. CDK7 inhibitors as anticancer drugs[J]. Cancer Metastasis Reviews,39(3):805-823. doi:10.1007/s10555-020-09885-8.

Schachter M M,F(xiàn)isher R P. 2013. The CDK-activating kinase Cdk7[J]. Cell Cycle,12(20):3239-3240. doi:10.4161/cc.26355.

Tanaka T,Ochi H,Takahashi S,Ueno N,Taira M. 2017. Genes coding for cyclin-dependent kinase inhibitors are fragile in Xenopus[J]. Developmental Biology,426(2):291-300. doi:10.1016/j.ydbio.2016.06.019.

Wang C,Jin H J,Gao D M,Wang L Q,Evers B,Xue Z,Jin G Z,Lieftink C,Beijersbergen R L,Qin W X,Bernards R. 2018. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma[J]. Cell Research,28(6):690-692. doi:10.1038/s41422-018-0020-z.

Wang Q H,Li M H,Zhang X L,Huang H,Huang J F,Ke J,Ding H F,Xiao J Z,Shan X H,Liu Q Q,Bao B J,Yang L. 2016. Upregulation of CDK7 in gastric cancer cell promotes tumor cell proliferation and predicts poor pro-gnosis[J]. Experimental & Molecular Pathology,100(3):514-521. doi:10.1016/j.yexmp.2016.05.001.

Wood D J,Endicott J A. 2018. Structural insights into the functional diversity of the CDK-cyclin family[J]. Royal Society Open Biology,8(9):108112. doi:10.1098/rsob. 180112.

Wu S Y,McNae I,Kontopidis G,McClue S J,McInnes C,Stewart K J,Wang S D,Zheleva D,Marriage H,Lane D P,Taylor P,F(xiàn)ischer P M,Walkinshaw M D. 2003. Discovery of a novel family of CDK inhibitors with the program LIDAEUS:Structural basis for ligand-induced disordering of the activation loop[J]. Structure,11(4):399-410. doi:10.1016/S0969-2126(03)00060-1.

(責(zé)任編輯 陳德元)

猜你喜歡
基因克隆生長(zhǎng)發(fā)育
秸稈覆蓋和保水劑對(duì)烤煙生長(zhǎng)發(fā)育的影響
溫度與降水條件對(duì)玉米生長(zhǎng)發(fā)育的影響
三個(gè)小麥防御素基因的克隆及序列分析
玉米紋枯病病菌y—谷氨酰轉(zhuǎn)肽酶基因克隆與表達(dá)分析
修文县| 礼泉县| 襄垣县| 曲靖市| 义乌市| 彭水| 潢川县| 健康| 通许县| 湾仔区| 正镶白旗| 渝中区| 赞皇县| 宁海县| 泰顺县| 河东区| 新疆| 额尔古纳市| 大石桥市| 汉川市| 扬中市| 奇台县| 纳雍县| 芜湖市| 岳普湖县| 聂拉木县| 陆良县| 延寿县| 纳雍县| 齐齐哈尔市| 鸡西市| 罗甸县| 河北区| 东海县| 洪湖市| 黄龙县| 长岭县| 专栏| 广汉市| 信宜市| 宣恩县|