劉雪松,朱慶賀,楊旭東,張 艷,陳 曦,王 爽,王觀悅,穆永才,羅天瑤,史同瑞
(黑龍江省農(nóng)業(yè)科學(xué)院畜牧獸醫(yī)分院,黑龍江齊齊哈爾 161000)
通常對(duì)某種藥物的研究包含兩個(gè)方面,分別為藥代動(dòng)力學(xué)(Pharmacokinetics,PK)和藥效學(xué)(Pharmacodynamics,PD)。在以往的藥學(xué)研究中,PK和PD被認(rèn)為是兩個(gè)分離的學(xué)科,通常是單獨(dú)進(jìn)行研究的。PK描述的是機(jī)體對(duì)藥物的作用,即藥物是如何吸收、分布、轉(zhuǎn)化以及通過新陳代謝進(jìn)行消除的。PD研究的是藥物對(duì)機(jī)體的作用及其規(guī)律,闡明藥物防治疾病的機(jī)制。單獨(dú)研究PK僅僅可以顯示出劑量-濃度-時(shí)間三者的關(guān)系,而單獨(dú)研究PD也僅僅可以顯示出濃度-效應(yīng)兩者之間的關(guān)系。而PK/PD模型可以將PK和PD結(jié)合在一起,從而將劑量-濃度-效應(yīng)-時(shí)間四者的關(guān)系聯(lián)系在一起進(jìn)行研究[1]。將PK和PD結(jié)合在一起進(jìn)行研究有助于觀察到藥物在臨床表現(xiàn)方面的個(gè)體差異,且有利于探究藥物的作用機(jī)制、機(jī)體內(nèi)外環(huán)境對(duì)藥物影響等相關(guān)方面。近幾年來,PK/PD模型的實(shí)際應(yīng)用得到迅速的發(fā)展,已經(jīng)成為一個(gè)新的學(xué)科增長(zhǎng)點(diǎn)。目前,在獸醫(yī)領(lǐng)域內(nèi),PK/PD模型主要應(yīng)用于為獸用藥物制定具有科學(xué)依據(jù)的用藥劑量以及用藥間隔,并通過與多個(gè)理論和模型進(jìn)行結(jié)合,為獸用藥物常用劑量的有效性進(jìn)行評(píng)估[2]。
在PK/PD模型未廣泛使用時(shí),藥物劑量的測(cè)定通常使用的是藥物劑量滴定試驗(yàn)(does titration studies)。這種試驗(yàn)是將健康動(dòng)物和感染疾病的動(dòng)物模型共同均衡地分配到幾個(gè)藥物劑量組中,將動(dòng)物模型組與健康動(dòng)物組進(jìn)行對(duì)比,并應(yīng)用統(tǒng)計(jì)學(xué)的方法對(duì)藥物的效果進(jìn)行評(píng)估,從而確定藥物的劑量。這種試驗(yàn)只是運(yùn)用到了簡(jiǎn)單的平行設(shè)計(jì)。用這種方法獲得的所謂的“合理劑量”往往比真實(shí)的合理劑量要高很多。因?yàn)閯┝康味ㄔ囼?yàn)的成功與否往往通常與試驗(yàn)設(shè)計(jì)相關(guān),而這種試驗(yàn)想要獲得成功需要獲得統(tǒng)計(jì)學(xué)意義上的差異,而這種差異與試驗(yàn)動(dòng)物的數(shù)量密切相關(guān)[3]。試驗(yàn)動(dòng)物數(shù)量較少,達(dá)不到統(tǒng)計(jì)學(xué)上的差異,可能會(huì)導(dǎo)致獲得的劑量往往比合理劑量要高出許多。盡管將平行試驗(yàn)設(shè)計(jì)改為交叉試驗(yàn)效果會(huì)好一些,但是獲得的劑量依然要比真正的合理劑量要高一些。藥物劑量滴定試驗(yàn)只能將藥物劑量與藥物效果聯(lián)系在一起。而不能將藥物在機(jī)體內(nèi)的血藥濃度與藥效之間的關(guān)系表達(dá)清晰[4]。
而PK/PD模型可以通過PK/PD參數(shù)將藥物濃度-時(shí)間曲線與藥效結(jié)合在一起,得出不同藥物濃度時(shí)的藥效。并且,通過PK/PD模型算出藥物劑量時(shí),只需要對(duì)動(dòng)物進(jìn)行單次給藥,就可通過已經(jīng)構(gòu)建好的模型,通過算法算出不同抗菌效果時(shí)所需要的最低劑量。對(duì)于以往的劑量滴定試驗(yàn),藥物劑量與治療效果在動(dòng)物體內(nèi)的具體關(guān)系是一個(gè)看不透的黑箱。也就是說在動(dòng)物體內(nèi),多大的藥物濃度產(chǎn)生什么樣的抗菌效果是不清晰的。但是對(duì)于PK/PD模型來說,劑量-濃度-效應(yīng)-時(shí)間四者是清晰可見的,并不再是一個(gè)無法看清的黑箱。PK/PD模型可以真實(shí)的反應(yīng)出藥物、機(jī)體以及病原菌之間復(fù)雜的相互關(guān)系[5]。綜上所述,相比較于以往的藥物劑量滴定試驗(yàn),PK/PD模型具有省時(shí)、省試驗(yàn)動(dòng)物,且算出的給藥劑量以及給藥間隔更加具有科學(xué)性的優(yōu)勢(shì)。
PK/PD參數(shù)是由PK的相關(guān)參數(shù)與PD的相關(guān)參數(shù)結(jié)合在一起重新構(gòu)建起的參數(shù)。對(duì)于PK,有幾個(gè)主要參數(shù)經(jīng)常被研究分別是藥時(shí)曲線下面積(area under concentration,AUC)、達(dá)峰時(shí)間(peak time,Tmax)、達(dá)峰濃度(peak concentration,Cmax)以及在機(jī)體中游離藥物濃度的前綴代表f[6]。PD的最主要的參數(shù)包括最小抑菌濃度(minimal inhabit concentration,MIC)、最小殺菌濃度(minimal bactericidal concentration,MBC)、防突變耐藥濃度(mutant prevention concentration,MPC)以及抗菌后效應(yīng)(post antibiotical effect,PAE)[7]。將PK與PD的參數(shù)結(jié)合在一起,構(gòu)建出3種PK/PD參數(shù),分別為%T>MIC、AUC/MIC以及Cmax/MIC。按照作用類型可以將藥物分為兩大類,分別為濃度依賴性藥物和時(shí)間依賴性藥物。濃度依賴性藥物特點(diǎn)為藥物的作用效果與藥物作用部位的濃度有關(guān)。這類藥物適合的PK/PD參數(shù)為AUC/MIC和Cmax/MIC。運(yùn)用這兩個(gè)PK/PD參數(shù)的目的就是合理地增加藥物濃度來達(dá)到更好的藥效。這類藥物主要包括氨基糖苷類、氟喹諾酮類、甲硝唑、黏菌素等[8]。而時(shí)間依賴性藥物的作用效果是與藥物作用濃度超過MIC的時(shí)間占比相關(guān),故PK/PD參數(shù)為%T>MIC。時(shí)間依賴性藥物主要包括β-內(nèi)酰胺類、萬古霉素、克林霉素、大環(huán)內(nèi)酯類等。根據(jù)抗菌后效應(yīng)長(zhǎng)短,又可將時(shí)間依賴性藥物分為兩類,分別為抗菌后效應(yīng)無或短的藥物以及抗菌后效應(yīng)長(zhǎng)的藥物。目前對(duì)于抗菌后效應(yīng)無或短的藥物,主要使用的PK/PD參數(shù)為%T>MIC,例如β-內(nèi)酰胺類藥物。而對(duì)于抗菌后效應(yīng)長(zhǎng)的藥物,主要使用PK/PD參數(shù)為AUC/MIC和%T>MIC,例如糖肽類藥物[9]。藥物的作用類型通常通過殺菌曲線來進(jìn)行區(qū)分,如果藥物的抗菌效果一直隨著濃度的增加而增加,則為濃度依賴性藥物。如果藥物的抗菌效果在不隨著藥物濃度的增加而增加,而是隨著時(shí)間的推移而增加,則為時(shí)間依賴性。隨著研究的深入,某些藥物在做相關(guān)研究時(shí)出現(xiàn)了兩種藥物的特性,這其中以阿奇霉素最為典型[10]。需要注意的是,在運(yùn)用PK/PD模型的時(shí)候,某種藥物運(yùn)用哪個(gè)PK/PD參數(shù)并非絕對(duì)的和固定不變的。而藥物在動(dòng)物體內(nèi)分為游離型藥物以及結(jié)合型藥物,只有游離型藥物才能發(fā)揮抗菌效果,PK/PD模型擬合時(shí)經(jīng)常以游離型藥物代謝情況為主,以游離型藥物為基礎(chǔ)的PK/PD參數(shù)為%fT>MIC,fAUC/MIC、fCmax/MIC[11]。
體外PK/PD模型(invitroPK/PD model)是一種依靠體外模擬裝置進(jìn)行的一種藥理模型。該種模擬裝置可以模擬藥物在體內(nèi)的代謝過程,可以模擬得到抗菌藥物在機(jī)體內(nèi)藥物濃度隨著時(shí)間變化的過程中的抗菌效果。這種模型適合用于抗菌藥物體外PK/PD參數(shù)的選擇以及給藥方案的初步篩選。體外PK/PD模型主要包括稀釋模型和擴(kuò)散模型,常用的擴(kuò)散模型為中空纖維感染模型(hollow fiber infection model,HFIM)[12]。
目前,抗菌藥物所用的動(dòng)力學(xué)模型模擬的基本上為一級(jí)吸收和消除的動(dòng)力學(xué)過程,包括一室模型、二室模型等。不同的模型在結(jié)構(gòu)上基本相似,大體上都有幾個(gè)液體容器通過管道連接組成。通常包括含有培養(yǎng)基的儲(chǔ)存容器、廢液收集容器以及一個(gè)模擬體內(nèi)藥物濃度變化的容器。血管外給藥模型中還會(huì)增加一個(gè)容器叫吸收室用來模擬抗菌藥物的吸收過程。幾個(gè)容器之間培養(yǎng)液的流動(dòng)通過蠕動(dòng)泵實(shí)現(xiàn)[13]。
目前,體外PK/PD模型多應(yīng)用于抗菌藥物PK/PD參數(shù)上的篩選。這種方法節(jié)省了實(shí)驗(yàn)動(dòng)物的經(jīng)費(fèi),并且克服了測(cè)定殺菌曲線時(shí),藥物濃度恒定的缺點(diǎn)。但是正是由于缺乏實(shí)驗(yàn)動(dòng)物,沒有考慮到動(dòng)物自身的免疫機(jī)制,成為了這種模式最主要的缺點(diǎn)[14]。
半體內(nèi)PK/PD模型(exvivoPK/PD model)也是目前獸醫(yī)上經(jīng)常使用的PK/PD模型之一。半體內(nèi)的特點(diǎn)是將體內(nèi)的藥動(dòng)學(xué)和體外的藥效學(xué)結(jié)合在一起,通常使用的方法便是在試驗(yàn)動(dòng)物上安裝組織籠,給藥后定時(shí)采集組織液和血液,檢測(cè)血液和組織液的藥物濃度,并用體外殺菌曲線的方法獲得組織液和血液的藥物抗菌效果。這種PK/PD模型適用于大中動(dòng)物例如牛、豬、羊、駱駝等[15-17]。半體內(nèi)的PK/PD模型優(yōu)點(diǎn)在于不需要去犧牲動(dòng)物來獲得藥物的抗菌效果。在做殺菌曲線時(shí),由體外的培養(yǎng)液換成了來自體內(nèi)的血液或組織液,更加貼近于試驗(yàn)動(dòng)物的情況。缺點(diǎn)便是不適用于小動(dòng)物,且組織液和血液中藥物的抗菌效果大多是通過體外殺菌曲線的方式來獲得的,比起體內(nèi)模型,動(dòng)物自身免疫因素考慮的相對(duì)較少。
體內(nèi)PK/PD模型(invivoPK/PD model)是需要建造動(dòng)物感染模型后,在動(dòng)物體內(nèi)進(jìn)行的模型。最常用到的動(dòng)物感染模型包括粒細(xì)胞減少小鼠大腿感染模型[18]、小鼠乳房炎模型[19]、粒細(xì)胞減少小鼠肺炎感染模型等[20]。由于是體內(nèi)PK/PD模型,首先需要制造細(xì)菌感染模型,最常見的方式是用免疫抑制劑例如環(huán)磷酰胺在制造模型前進(jìn)行注射,之后將細(xì)菌注入到動(dòng)物體內(nèi)[21]。
這種模式的優(yōu)點(diǎn)在于將試驗(yàn)動(dòng)物的自身免疫因素考慮在內(nèi),并且可以分析不同給藥方式,不同部位以及不同病原菌的PK/PD參數(shù)是否相近。該模型的缺點(diǎn)需要大量犧牲試驗(yàn)動(dòng)物,所以該模型不適用于大型動(dòng)物[22]。
PK/PD模型的最終目的是為臨床用藥提供科學(xué)依據(jù),其中的方式之一便是獲得PK/PD靶值(pharmacodynamics target,PDT)[23]。PK/PD靶值更像是一種臨界值,是藥物達(dá)到某種抗菌效果時(shí)需要的最小值。PK/PD靶值對(duì)于不同種動(dòng)物是具有針對(duì)性的,它的獲得是基于臨床前和臨床藥物-微生物相互作用關(guān)系的[24]。在理想情況下,PK/PD靶值是確保治療成功的保障。通過PK/PD模型獲得PK/PD靶值的方式多用于模式動(dòng)物,最常用的動(dòng)物為小鼠,在大動(dòng)物上也有使用。
PK/PD模型也可以最終通過計(jì)算獲得合理的給藥劑量[25]。算出計(jì)量的公式如下。
其中,CL為藥物清除率,fu為血漿中的游離型藥物,F(xiàn)為生物利用度。這個(gè)劑量的計(jì)算公式經(jīng)常使用在濃度依賴性藥物的劑量計(jì)算。對(duì)于時(shí)間依賴性藥物,可先算出其T>MIC的值,然后算出該藥物的加權(quán)AUC,即WAUC。WAUC的定義為藥物濃度-時(shí)間曲線下血漿藥物濃度超過MIC的面積。獲得了WAUC后,在再講WAUC帶入到劑量公式中,便可以算出相應(yīng)的合理劑量。T>MIC以及WAUC的計(jì)算公式如下[26]。它們的計(jì)算一般用相應(yīng)的藥理學(xué)分析軟件進(jìn)行,例如Winnonlin軟件等。
其中,D為計(jì)劃劑量,Vd為表觀分布容積,T1/2β為消除半衰期,t為給藥間隔。
其中,(T>MIC)Max為24 h時(shí)的情況。
蒙特卡羅(Monte Carlo Simulation,MCS)模擬法原用于社會(huì)、經(jīng)濟(jì)、工業(yè)、商業(yè)、醫(yī)學(xué)等領(lǐng)域,主要用于預(yù)測(cè)某種后果發(fā)生的幾率或可能性。MCS是采用不同統(tǒng)計(jì)取樣技術(shù)來提供定量問題近似解決方案的隨機(jī)模擬方法。簡(jiǎn)單來說,MCS是通過計(jì)算機(jī)創(chuàng)造一個(gè)隨機(jī)事件或“試驗(yàn)”的分析方法,當(dāng)運(yùn)行到指定的次數(shù),可以獲得任何特定目標(biāo)的概率[27]。
1998年10月美國(guó)食品和藥物管理局(FDA)抗感染藥物顧問委員會(huì)首次把該方法用于制定藥物的劑量和確定藥敏試驗(yàn)的臨界濃度。大多數(shù)情況下,根據(jù)某種細(xì)菌MIC調(diào)查,并通過試驗(yàn)獲得某種藥物的PK參數(shù)值,應(yīng)用MCS來獲得某種藥物現(xiàn)如今使用劑量的治療效果。通常進(jìn)行MCS的軟件為水晶球軟件(Crystal ball software)[28]。
進(jìn)行MCS時(shí),首先要計(jì)算出相應(yīng)的%fT>MIC、fAUC/MIC以及fCmax/MIC,并獲得相應(yīng)的PK/PD靶值,通過模擬計(jì)算抗菌藥物不同給藥方案對(duì)某一細(xì)菌PK/PD指數(shù)達(dá)到該靶值的累積響應(yīng)百分率(cumulative fraction of response,CFR),以及不同MIC下對(duì)某一細(xì)菌達(dá)到PK/PD靶值的達(dá)標(biāo)概率(probability of target attainment,PTA)。通過這種模擬可以確定達(dá)到最佳臨床和細(xì)菌學(xué)療效時(shí)抗菌藥物的給藥方案,包括給藥劑量、間隔和給藥方式。MCS可以測(cè)定小樣本量試驗(yàn)動(dòng)物的PK的平均參數(shù),模擬大于10 000個(gè)試驗(yàn)動(dòng)物的PK變化情況,根據(jù)病原菌MIC的分布情況和范圍,計(jì)算不同的給藥方案達(dá)到預(yù)期藥效學(xué)靶值的概率分布。這是以往靠人力無法進(jìn)行的[29]。
細(xì)菌的耐藥性的發(fā)生通常與新的基因獲取或者染色體上的點(diǎn)突變有關(guān)。細(xì)菌耐藥性問題在世界范圍內(nèi)逐漸成為了一個(gè)亟待解決的難題。隨著藥物的濫用,這種問題正在逐漸加劇。對(duì)于某些發(fā)展中國(guó)家來說,細(xì)菌耐藥性問題成為了一個(gè)阻礙養(yǎng)殖業(yè)發(fā)展的重要難題,因?yàn)樵谶@些國(guó)家中無法獲得第二段或者第三代抗生素,即使能夠獲得,價(jià)格也異常昂貴[30]。對(duì)于一些舊的藥物來說,由于幾十年的使用,在許多種類的細(xì)菌菌株上產(chǎn)生了耐藥性。為了讓這些舊的藥物得到持續(xù)合理的使用,也為了讓新的藥物有合理的用藥劑量,預(yù)防細(xì)菌耐藥性的產(chǎn)生,有必要根據(jù)PK/PD模型的藥物與病原體的作用關(guān)系對(duì)這些藥物劑量進(jìn)行評(píng)估。突變選擇窗理論的出現(xiàn),也為這種評(píng)估提供了一種新的思路。突變選擇窗(mutant selection window,MSW)以及防突變濃度(mutant prevention concentration,MPC)是由Zhao與Drlica在研究細(xì)菌對(duì)于氟喹諾酮類藥物耐藥機(jī)制時(shí)提出的新理論[31]。該理論認(rèn)為對(duì)于不同種細(xì)菌存在一個(gè)濃度,這個(gè)濃度是可以防止突變株選擇性富集擴(kuò)增的最低濃度,這個(gè)濃度就是MPC。MSW就是MIC與MPC之間的差值。該理論認(rèn)為當(dāng)細(xì)菌處于MSW中的藥物濃度時(shí),由于藥物選擇壓力的影響,細(xì)菌很容易對(duì)該種藥物產(chǎn)生耐藥性。只有藥物濃度高于MPC時(shí),既可以有效地殺滅細(xì)菌,又可以防止細(xì)菌耐藥突變株的產(chǎn)生?;贛IC為基礎(chǔ)的PK/PD模型只能起到抑制或殺滅細(xì)菌的目的,未考慮細(xì)菌在該種藥物的選擇壓力下產(chǎn)生耐藥情況。MPC彌補(bǔ)了MIC的這個(gè)缺陷。以MPC為基礎(chǔ)的PK/PD模型逐漸被人們所接受并使用。以MPC為基礎(chǔ)的PK/PD模型,其PK/PD參數(shù)為%T>MPC、AUC/MPC以及Cmax/MPC[32]。PK/PD模型與MSW理論的聯(lián)合使用為藥物的合理應(yīng)用提供了一個(gè)新的方向。
目前PK/PD模型因其可以科學(xué)地指導(dǎo)藥物的使用劑量,在獸藥相關(guān)領(lǐng)域得到了廣泛的應(yīng)用。運(yùn)用該模型可以讓獸藥的研發(fā)人員更有把握地根據(jù)試驗(yàn)相關(guān)數(shù)據(jù)來計(jì)算出臨床最佳用藥方案,并且具有省時(shí)、省力、快速、高效以及經(jīng)濟(jì)的優(yōu)勢(shì)。用這個(gè)模型可以指導(dǎo)使用年限相對(duì)較長(zhǎng)的獸藥持續(xù)地、合理地治療動(dòng)物相關(guān)疾病。對(duì)于新研發(fā)的獸藥,可以運(yùn)用該模型對(duì)將會(huì)出現(xiàn)的耐藥情況進(jìn)行預(yù)測(cè),從而提出科學(xué)的用藥方案防止耐藥性的產(chǎn)生。隨著科技的進(jìn)步與研究的深入,PK/PD模型可以與多種模型以及相關(guān)軟件進(jìn)行聯(lián)合使用,充分發(fā)揮其潛能,對(duì)未來獸醫(yī)的臨床用藥提供一定的理論基礎(chǔ),為防止細(xì)菌耐藥性的出現(xiàn)提供大量的試驗(yàn)數(shù)據(jù)。在未來的發(fā)展中,PK/PD模型在獸藥相關(guān)領(lǐng)域的應(yīng)用會(huì)越來越完善,應(yīng)用也會(huì)越來越廣泛,不僅可以使用在化學(xué)藥物上,在中獸藥的應(yīng)用上也逐漸發(fā)展起來,為相關(guān)研究提供試驗(yàn)數(shù)據(jù)。PK/PD模型將會(huì)為獸藥的科學(xué)合理使用起到關(guān)鍵作用。