国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

電子鼻技術在肉與肉制品檢測中的研究進展和應用展望

2021-03-29 02:14劉洋賈文珅馬潔梁剛汪慧華周巍
智慧農業(yè)(中英文) 2021年4期
關鍵詞:電子鼻模式識別質量安全

劉洋 賈文珅 馬潔 梁剛 汪慧華 周巍

摘要:電子鼻因具備操作簡單、能夠快速、無損檢測的特點,滿足人們對肉與肉制品安全指標高效和高精確度檢測提出了更高的要求。本文闡述了電子鼻技術的檢測原理和其在硬件和軟件系統(tǒng)方面的發(fā)展;從肉與肉制品的新鮮度檢測、摻假檢測、風味評價、病原微生物污染檢測四個方向,對近年來電子鼻技術在肉與肉制品檢測的應用研究進展進行了分析,突出了電子鼻技術應用的可行性和先進性;指出電子鼻技術在肉與肉制品檢測中面臨的檢測效果參差不齊,電子鼻儀器體積大、價格高昂,模型通用性和普及性不夠等不足。最后,本文從硬件系統(tǒng)和軟件系統(tǒng)兩方面,對未來電子鼻技術的發(fā)展及其應用前景進行了展望,包括硬件系統(tǒng)方面提高電子鼻傳感器陣列電極膜材料的性能,增強電子鼻耐用性和識別氣味的靈敏度;軟件系統(tǒng)方面不斷探索引入新的模式識別算法,使電子鼻技術實現(xiàn)對氣味更快、更準確的識別分析。

關鍵詞:電子鼻;肉與肉制品;高效檢測;質量安全;模式識別

中圖分類號: TS207.3;TP29;TP212.9文獻標志碼: A文章編號:202011-SA003

引用格式:劉洋, 賈文珅, 馬潔, 梁剛, 汪慧華, 周巍. 電子鼻技術在肉與肉制品檢測中的研究進展和應用展望[J].智慧農業(yè)(中英文), 2021, 3(4):29-41.

LIU Yang, JIA Wenshen, MA Jie, LIANG Gang, WANG Huihua, ZHOU Wei. Research progress and application prospect of electronic nose technology in the detection of meat and meat products[J]. Smart Agriculture, 2021, 3(4):29-41.(in Chinese with English abstract)

1? 引言

肉與肉制品作為人類獲取蛋白質、維生素和礦物質等營養(yǎng)成分的重要來源,在人類生活中已不可或缺[1,2],其安全問題也逐漸成為人們關注的焦點,安全性檢測已成為至關重要的、關系民生的工程[3-5]。

食品感官檢測是歷史最悠久、也是最常見的傳統(tǒng)食品檢測方法[6]。官方獸醫(yī)通常通過對宰殺動物時的刀口狀態(tài)、肉的放血程度、血液沉積狀態(tài)、肉尸及皮膚的變化等進行觀察分析,來判斷肉與肉制品的品質[7]。這種方法雖然可以實現(xiàn)對肉類簡便、快速地鑒別,但是往往主觀性較強,易受到人的感官的靈敏度、經驗豐富程度、健康狀況或者精神狀態(tài)等因素的影響[8]。隨著科技的發(fā)展,分子生物學檢測技術不斷涌現(xiàn),如聚合酶鏈式反應(Polymerase Chain Reaction ,PCR)技術[9]、濾膜法[10]、環(huán)介導等溫擴增(Loop-Mediated? Isothermal? Amplification , LAMP)技術[11]、基因芯片法[12]、DNA 檢測技術[13]等,分子生物學檢測方法主要是通過生物學的方法檢測一些大分子的結構與功能,在病原微生物的檢測中應用最為廣泛[14]。如今,肉與肉制品在國內外高通量的流通,導致對其檢測方法提出了新的要求,即簡單、快速、準確以及無損[15]。利用分子生物學檢測方法,雖然可以更加客觀地對樣品進行分析檢測,并能夠保證較高的檢測精度,但普遍對樣本制作的要求較高,并且針對某種或者某類病原微生物只能進行對應的一對一檢測,對儀器以及操作者有較高的專業(yè)技術要求,當樣本數(shù)量比較龐大時候,還需耗費更多的時間、財力和物力,應用受到制約。

電子鼻技術作為將人類的感官特征轉移到非生命系統(tǒng)中的熱門技術之一[16],將人類嗅覺系統(tǒng)轉移至電子設備系統(tǒng),實現(xiàn)通過對待檢測樣品所散發(fā)的氣味進行分析、識別和檢測[17, 18]。其操作簡單,對操作者無專業(yè)技術要求,且不受環(huán)境影響,無需接觸樣品,即可達到檢測作用。

為綜合報道電子鼻在肉與肉制品檢測中研究進展,本文在介紹電子鼻技術及其檢測原理的基礎上,梳理了近年來電子鼻技術在肉與肉制品的新鮮度檢測、摻假檢測、風味評價、病原微生物污染檢測等方面的應用研究進展,總結了電子鼻技術的檢測原理,以及在當前肉與肉制品應用中的優(yōu)勢,闡述了電子鼻技術發(fā)展還將面臨的挑戰(zhàn),同時提出了未來發(fā)展的設想。

2  電子鼻技術及檢測原理

電子鼻技術的發(fā)展從初期的電子模擬嗅覺過程到氣體傳感器陣列,再到如今與計算機系統(tǒng)相結合[19],能夠通過氣味快速、準確地對樣品進行檢測,儀器也簡單易操作,實現(xiàn)了官方獸醫(yī)感官評定法和分子生物學檢測技術優(yōu)點的融合,同時因為是對氣味進行檢測分析,不需要直接接觸樣品,實現(xiàn)了無損檢測。圖1 為電子鼻技術的發(fā)展歷程及應用。上個世紀60年代,有研究利用氣體在電極上的反應模擬嗅覺過程,隨之氣體傳感器[20,21]逐漸問世并得到進一步發(fā)展,但未得到重視。直到80年代,Gardner對“電子鼻”概念進行了明確定義,即利用氣敏傳感器采集氣味信息,并與模式識別算法[22,23]相結合的技術,引起了學術界廣泛興趣。在此之后,電子鼻技術得以進入快速發(fā)展時期[24]。電子鼻技術(也稱為電子鼻)是一種通過模擬動物嗅覺系統(tǒng),將傳感器技術、模式識別技術以及計算機技術等有機地結合起來的技術,在若干種混合氣體復雜的環(huán)境中快速、準確地識別各種氣味的濃度,并作出定性、定量的分析[25,26]。

圖2為電子鼻系統(tǒng)與人類嗅覺系統(tǒng)對比圖。在電子鼻的發(fā)展前期,傳感器的發(fā)展起到了至關重要的作用,氣體傳感器陣列相當于動物嗅覺系統(tǒng)的嗅感細胞[27-29]。作為一種檢測裝置,通過傳感器將感受到的被測量信息按一定的規(guī)律轉換成其它形式的信息輸出,從而獲取被測樣品的氣味信息。根據(jù)感知功能,可將傳感器分為熱敏、光敏、氣敏、磁敏等類型,在電子鼻中即為氣敏傳感器[30]。隨著技術的發(fā)展,氣敏傳感器的類型也逐漸增多[31],目前在電子鼻中常用到的類型有:電化學傳感器[32]、金屬氧化物傳感器[33,34]、固體電解質氣敏傳感器[35]等。計算機相當于大腦,而模式識別系統(tǒng)則相當于神經信號傳遞系統(tǒng)[36,37]。隨著硬件系統(tǒng)的進步,軟件系統(tǒng)也越來越受到關注。在電子鼻系統(tǒng)中,模式識別技術通過計算機對來自氣敏傳感器的信息進行分析和判讀,從而達到分析識別的目的[38,39]。目前在電子鼻系統(tǒng)中采用的大多還是主成分分析(PrincipalComponents Analysis ,PCA)、線性判別分析(Linear Discriminant Analysis ,LDA)、函數(shù)判別分析(Functional? Discriminant Analysis , DFA)等傳統(tǒng)的算法。

圖3為電子鼻識別分析氣味過程。電子鼻識別氣味即利用傳感器陣列的氣敏器件對復雜的混合氣體進行識別響應,將化學信號轉換為電信號,利用模式識別和計算機技術對電信號進行處理和分析,形成氣味響應譜,并對氣味質量做出分析與評定[40,41]。

3? 電子鼻技術在肉與肉制品檢測中研究進展

據(jù)《中國統(tǒng)計年鑒2020年》,作為肉類消費大國,雖然近幾年由于豬瘟等食源性疫情的影響,人均豬肉消費量有一定的降低,但中國對肉與肉制品的消費總量并未大幅下降[42]。人們生活水平日益提高,在肉與肉制品的飲食上,純粹的肉類新鮮度等問題已不能滿足人們的需求,對于其成分含量、風味評價乃至微生物早期污染狀況等也成為人們在消費過程中重點關注的問題[43,44]。電子鼻技術作為新興的仿生嗅覺技術[45],因其具有簡單、快速、無損檢測的特點,在肉與肉制品的新鮮度、摻假情況、風味評價、微生物污染情況等4方面檢測中得到廣泛應用。

3.1 新鮮度檢測

新鮮度與肉的品質直接相關。人如果誤食了不新鮮的肉或肉制品,輕則造成腹瀉、嘔吐等腸胃疾病,重則危及生命[46,47]。因此,新鮮度是肉與肉制品品質安全的一項重要指標,快速、準確、實時檢測肉的新鮮度非常重要[48]。

部分研究團隊用電子鼻開展了肉新鮮度檢測的相關研究。An等[49]以不同劑量電子束照射的鴨肉為研究對象,利用自制的含有6個氣敏傳感器的電子鼻,結合 PCA 算法,對鴨肉的新鮮度進行檢測,結果表明,電子鼻的氣味數(shù)據(jù)可有效地區(qū)分經過不同劑量輻照的鴨肉,低劑量的電子束輻照和真空包裝有利于熏鴨肉的安全性和貨架期延長。Wijaya等[50]針對不同品質等級的牛肉,利用自制的含有7個金屬氧化物氣敏傳感器電子鼻,結合基于小波變換的噪聲濾波和支持向量機(Support Vector Machine ,SVM)、二次判別分析(Quadratic? Discriminant Analysis , QDA)等算法,研究了通過噪聲濾波處理的電子鼻數(shù)據(jù)信號在不同品質等級牛肉分類的效果,進而實現(xiàn)預測牛肉樣品中微生物種群規(guī)模。Mirzaee等[51]針對區(qū)分恒溫冷凍及凍融雞肉,利用自制的含有8個金屬氧化物氣敏傳感器的電子鼻,結合K近鄰算法(K-Nearest Neighbor ,KNN)進行了分類研究,準確率可達95.83%。Zheng 等[52]針對脊尾白對蝦,利用自制的含有8個金屬氧化物氣敏傳感器的電子鼻采集氣味數(shù)據(jù)信息,結合PCA 和隨機共振(Stochastic Resonance ,SR)方法對數(shù)據(jù)進行處理,建立了電子鼻對脊尾白對蝦的品質評價模型,并對 PCA 和 SR 的分析結果進行對比,結果表明,隨著總活菌計數(shù)的增加,對蝦的品質會下降,且通過檢測結果發(fā)現(xiàn),SR 方法對樣本的判別效果優(yōu)于PCA 。Liu等[53]針對牛腰條肉,利用自制的含有8個金屬氧化物氣敏傳感器的電子鼻,結合 SR 和雙層級聯(lián)序列隨機共振響應進行多變量回歸(Multiple Variable Regres‐sion,MVR),分析了利用不同化學防腐劑對牛腰條肉進行處理后的影響,結果表明,在保證食品食用安全標準的前提下,用4% SL 加2 g/L 乳鏈菌肽處理牛肉,可有效延長樣品的存儲時間,保證了牛肉在貨架期的新鮮度。Wang等[54]對經過焦磷酸鈉(SPP)、三聚磷酸鈉(STP)和混合溶液(SPP + STP ,1:1)處理和未經過處理的羅非魚魚片為實驗對象,利用PEN3電子鼻結合線性判別分析算法,提出了一種有效抑制羅非魚魚片在冷藏過程中脂質氧化的方法以及簡便的測定方法。Gorska等[55]對新鮮豬肉、冷凍后解凍肉和變質肉,利用氣相色譜電子鼻與PCA 、反向傳播神經網絡(Back Propagation Neural Network,BPNN)相結合,建立了豬肉新鮮度的檢測模型,得到新鮮肉、冷凍后解凍肉和變質肉的識別率達80%以上。

上述研究成果表明,電子鼻在肉的新鮮度檢測中應用已經相對比較成熟,各種小型的便捷式自制電子鼻在實驗中已經得到不錯的試驗效果,但是模型應用對象較為單一,適用范圍相對較窄,不能適用于多種肉與肉制品的普適性檢測。

3.2 摻假檢測

為謀取利益,部分商家會用一些平價甚至劣質的肉來冒充優(yōu)質肉,使消費者經濟利益和健康受損[56]。因此,摻假問題也是肉與肉制品安全的一項重要指標。對肉與肉制品摻假檢測是維護保護消費者的利益的有效方式。Tian 等[57]利用 PEN2電子鼻檢測羊肉肉糜中摻雜豬肉的含量,結合偏最小二乘分析(Partial Least Square Analy? sis ,PLS)、多元線性回歸(Multiple Linear Regression ,MLR)和BP神經網絡建立了羊肉肉餡豬肉含量的預測模型,結果表明,與 PLS 和 MLR相比,BP神經網絡模型能更準確地預測摻假程度。Wang等[58]利用比色傳感器電子鼻,結合線性判別分析和多層感知器神經網絡分析(Multilayer Perceptron Neural Networks Analysis, MLPN)算法,對羊肉中摻假鴨肉進行鑒定,準確性分別達到98.2%和 96.5%,且摻假10%即可被檢測出,證明電子鼻技術對羊肉摻假檢測具有較高的準確性。Han等[59]利用PEN3電子鼻,分別結合線性判別分析和極限學習機(Extreme? Learning Machine ,ELM)算法對純牛肉、牛肉- 豬肉混合物和純豬肉進行檢測并分析比較,結果 ELM 模型在訓練集和預測集的識別率分別達到91.27%和87.5%,優(yōu)于線性判別模型;另又建立 BP 神經網絡模型,對不同摻雜豬肉比例的牛肉進行摻假水平的預測,預測集相關系數(shù)為0.85,均方根誤差為0.147,表明基于比色傳感器和化學計量學相結合的電子鼻技術在快速檢測摻假豬肉的牛肉方面有很大的潛力。Kalinichenko和Ar?????? seniyeva[60]利用石英晶體傳感器電子鼻,結合 PCA 和概率神經網絡(Probabilistic Neural Network ,PNN),對香腸中大豆蛋白的摻雜情況(0、10%、20%、30%)進行分析鑒別,結果在預測模型中,電子鼻系統(tǒng)對大豆蛋白4種不同摻雜量的香腸,可實現(xiàn)100%的分類,表明電子鼻在肉制品摻假檢測中的有效性。

上述研究成果表明,對于肉與肉制品摻假的檢測,使用的電子鼻設備均為大型已成型的儀器,使用低成本自制的便捷式電子鼻的相關研究極少。主要是由于摻假的成分和種類變化多樣,特征復雜,因此很難用低成本的自制電子鼻設備去鎖定其摻假特征,目前主要還是使用大型、復雜的高成本電子鼻儀器,而自制的便捷式儀器相對很少,推廣難度相對較大。

3.3 風味評價

產地、品種、肉源動物飼養(yǎng)狀況、肉源部位、以及烹飪/加工方式會對肉與肉制品風味均會有不同程度的影響。人們對飲食的要求越來越精致化,肉與肉制品的風味檢測也逐漸引起關注[61,62]。

3.3.1?? 品種

張賓惠等[63]利用自制的含有16個金屬氧化物氣敏傳感器的電子鼻,結合化學計量法提取樣品氣味指紋數(shù)據(jù),并結合逐步線性判別分析(Stepwise Linear Discriminant Analysis ,S-LDA)和 ANN進行數(shù)據(jù)分析,然后利用多層感知器(Multilayer Perceptron ,MLP)和 SVM 對數(shù)據(jù)進行分類,從4個品種雞肉(北京油雞、白羽肉雞、海蘭褐蛋雞和蘇禽綠蛋雞)中快速鑒別出北京油雞,識別率高于90%,驗證了電子鼻技術與化學計量法結合識別雞肉種類的可行性。Zhang等[64]針對外觀上難以區(qū)分的白花魚和小黃魚,利用自制的含有18個金屬氧化物氣敏傳感器的電子鼻,結合 PCA 可對二者氣味特征進行較好地區(qū)分。Giovanelli等[65]利用PEN2電子鼻,對3種不同品種的意大利干腌火腿在加工過程中的揮發(fā)性香氣進行識別分析,結果電子鼻可以有效對火腿的品種以及不同加工階段進行區(qū)分,表明電子鼻不僅可以用于肉制品品種的識別,還可應用于火腿成熟過程的在線監(jiān)測。

3.3.2? 產地

Wang 等[66]利用自制的含有18個金屬氧化物氣敏傳感器的電子鼻和電子舌對產自三個不同地方的中華絨螯蟹風味特征進行檢測,結果發(fā)現(xiàn)3種螃蟹的氣味存在一定的差異,表明受環(huán)境等因素影響,來自不同地區(qū)同種動物的肉質有所不同。Han等[67]利用氣相色譜電子鼻,結合PCA、凝聚層次聚類方法(Agglomerative HierarchicalClustering,AHC)和PLS-DA ,對三個不同地區(qū)的肉源豬的水煮豬肉的揮發(fā)性氣味鑒別,成功對3種煮熟的豬肉進行了區(qū)分,表明電子鼻可以有效識別不同產地的水煮豬肉。Li等[68]利用氣相色譜電子鼻,結合PCA ,對4種不同產地的干腌火腿的揮發(fā)性氣味信息進行分析識別,結果發(fā)現(xiàn)產地不同,干腌火腿的香氣特征也有所不同,電子鼻能夠客觀地反映干腌火腿的整體香氣特征,為干腌火腿的分類提供了新的方法。

3.3.3? 肉源動物飼養(yǎng)狀況

Wojtasik等[69]利用HeraclesⅡ電子鼻,對喂養(yǎng)不同飼料的生豬肉進行揮發(fā)性氣味分析檢測,結果通過定性分析發(fā)現(xiàn),喂養(yǎng)豬的飼料中添加抗氧化劑(維生素 E 和硒的結合物),會使生豬肉的揮發(fā)性化合物成分的分布發(fā)生改變,電子鼻可以有效地對不同飼料喂養(yǎng)的豬肉進行區(qū)分。?? 3.3.4? 肉源部位

Ji 等[70]以中華絨螯蟹四個可食性部位(腹部、爪部、腿部和性腺部位)的肉為研究對象,利用氣相色譜電子鼻和感官評價結合的方式,對其四個不同部位的肉進行氣味分析,結果發(fā)現(xiàn),在腹部、爪部、腿部和性腺部位分別檢測到2 種、7種、7種和10種重要的氣味化合物。張麗萍等[71]以西門塔爾雜交黃牛的五個不同部位的肉(即臀肉、肩肉、黃瓜條、米龍、霖肉)為研究對象,以出品率、嫩度、色澤和感官品質等為指標,利用PEN3電子鼻和電子舌技術測定、感官評定等方法,研究了牛肉的不同部位的品質差異,以米龍制備的黃牛肉干各項指標均顯著高于

其他部位所制成的牛肉干。

3.3.5? 烹飪/加工方式

Zhu 等[72]利用 PEN3電子鼻檢測分析雞肉,得到了烹調過程中雞肉風味形成的臨界點:烹飪溫度為80~90℃,烹飪時間為50~60 min ,此時雞肉蛋白質降解和蛋白質氧化均達到最大值。 Zhou等[73]針對鰱魚糜,利用氣相色譜電子鼻和感官評價結合的方法,對經過鹽水、弱堿性溶液和水洗滌后的鰱魚糜香味特征進行了分析,發(fā)現(xiàn)不同的洗滌方式對氣味的影響程度不同,鹽水和弱堿性洗滌比水洗能除去更多芳香活性成分,且高濃度生理鹽水去除效果更強。

上述研究成果表明,電子鼻對于影響肉與肉制品風味的相關因素的檢測涉獵相對廣泛,將電子鼻應用于肉與肉制品風味的檢測可以輔助品評師進行風味評價工作,大幅減少其工作量。相對于其他儀器,電子鼻設備體現(xiàn)了模擬人類嗅覺的優(yōu)勢,可以更全面地反映肉與肉制品的風味特征,綜合反饋人們對肉與肉制品品質的感受。

3.4 病原微生物污染檢測

肉類易滋生病菌等微生物,一般高溫即可殺死,但是對于生食肉食品,如果其肉源動物攜帶病原微生物,食用后會對人類健康造成威脅,甚至威脅生命。而目前將電子鼻應用于肉類微生物攜帶情況的檢測還處于初步發(fā)展階段[74,75]。

Balasubramanian 等[76]針對接種鼠傷寒沙門氏菌的真空包裝牛肉,利用PEN3電子鼻,結合PCA 和獨立成分分析(Independent ComponentAnalysis,ICA),并建立線性逐步回歸預測模型,對其頂部空間氣味的變化進行了評估,結果顯示采用 ICA 的平均預測精度為82.99%。王丹鳳等[77]針對分別在4℃和20℃條件下保存不同天數(shù)的豬肉,利用氣相色譜電子鼻,結合 PCA和偏最小二乘回歸分析(PLS -Regression)對其揮發(fā)性氣味的成分進行檢測,并通過與微生物數(shù)量變化的比對發(fā)現(xiàn),使用電子鼻檢測的信號信息會隨微生物數(shù)量的變化而發(fā)生變化。Lippolis等[78]以臘腸為研究對象,首先用電子鼻分析培養(yǎng)基培養(yǎng)的青霉菌菌株樣本,并用判別函數(shù)分析(Discrimination Function Analysis ,DFA),得到識別率為82%;然后將菌株接種到臘腸,經在實驗室規(guī)模發(fā)酵后,利用PEN3電子鼻采集接種和未接種菌株的臘腸的氣味信息,并結合DFA 對電子鼻采集的氣味信息數(shù)據(jù)進行分析,通過交叉驗證得到模型的平均識別率為88%。上述研究結果證明了電子鼻技術可以用來檢測肉類是否攜帶病原微生物,但都局限于對某一種微生物的檢測。

有研究進一步探索了電子鼻對多種微生物的檢測及識別情況。例如,Prima等[79]針對胰蛋白酶大豆肉湯(Tryptone Soy Broth ,TSB)培養(yǎng)基中單核細胞增生性李斯特菌和蠟樣芽孢桿菌,利用自制的電子鼻,并結合 LDA 、QDA 以及 SVM ,研究了電子鼻對培養(yǎng)基中是否有單核細胞增生性李斯特菌或蠟樣芽孢桿菌的檢測,準確率可達98%,為動物檢疫食品常規(guī)快速檢測中是否存在單核細胞增生性李斯特菌或蠟樣芽孢桿菌污染提供了理論依據(jù)。

又有研究關注了如何提升病原微生物污染的肉與肉制品檢測的準確性。Bonah等[80]針對被沙門氏菌不同污染水平下的豬肉樣品,采用 PEN3電子鼻,結合PCA 和采用不同優(yōu)化算法的支持向量機回歸(Support Vector Machine Regression ,SVMR),對沙門氏菌污染豬肉的情況進行鑒別,結果表明電子鼻技術可用于豬肉污染情況的鑒別,且采用遺傳算法優(yōu)化的 SVMR (Genetic Algorithm - SVMR ,GA-SVMR)的預測精度最高,模式識別算法的選擇對電子鼻技術的檢測準確率具有很大影響。

上述研究成果表明,由于病菌等微生物的代謝產物的含量相對微弱,雖然已經有利用電子鼻技術檢測肉及其制品被病菌等微生物污染狀況的研究,在培養(yǎng)基中的病菌微生物識別率可達90%以上,而對肉與肉制品病原微生物污染狀況的識別率僅達80%,檢測精度還不夠高,在未來研究中,考慮利用電子鼻技術對培養(yǎng)基中的菌落和接種到肉或肉制品中的菌落獨立比較,對病原微生物污染的肉與肉制品的揮發(fā)性氣味信息進行充分建模。

4? 目前存在的問題

根據(jù)上述研究,目前,對于電子鼻技術在肉與肉制品新鮮度、摻假情況、風味評價、微生物污染情況等方面所開展的具體研究工作主要是針對特定的某種或者幾種樣本數(shù)據(jù)集,其模式識別算法對應于不同的樣本數(shù)據(jù),分析效果也是參差不齊;同時,現(xiàn)階段電子鼻系統(tǒng)的整個裝置相對大型,不利于移動和攜帶,且其使用還處于輔助科研階段,主要應用于高校和科研院所,并且,現(xiàn)在所用的已成規(guī)模的電子鼻機器設備主要還是國外進口,價格昂貴,對于一些小型的元器件只能定制,因此在模型的通用性和普及性方面是電子鼻技術面臨的最大的問題。

5? 結論與展望

5.1 結論

本文對近年來電子鼻技術在肉與肉制品檢測中的研究進行了歸納分析,主要從肉與肉制品的新鮮度、摻假情況、風味評價、微生物污染情況等方面的檢測技術研究進行闡述,突出電子鼻技術應用在肉與肉制品全方面檢測的可行性和先進性。

在硬件方面,對于肉與肉制品新鮮度和風味評價的檢測,相對比較成熟,采用低成本、便捷式的自制電子鼻就可實現(xiàn)較好的檢測效果,而對于肉與肉制品的摻假情況和微生物污染情況,由于樣本揮發(fā)性氣味成分和種類復雜多樣,目前的研究還是基于大型、復雜的高成本電子鼻儀器設備。

在軟件方面,電子鼻模式識別系統(tǒng)對數(shù)據(jù)信息進行分析時,多采用的是PCA 、LDA 、ICA等傳統(tǒng)分析方法,隨著算法的發(fā)展、更新,許多新的算法,如MLPN 等,以及傳統(tǒng)算法間的結合,如GA-SVMR等,也逐漸在肉與肉制品的各方面檢測中得到有效的應用驗證。

5.2 展望

電子鼻技術已成功地應用于肉類來源、生產加工到流通儲藏等環(huán)節(jié)的檢測,具有快速、無損、簡便、非侵入式等優(yōu)點,但在通用性和普及性方面仍存在不足處,其性能有待進一步完善和提升[81],圖4主要展現(xiàn)了電子鼻傳感器系統(tǒng)和模式識別系統(tǒng)兩方面的改進與發(fā)展。

在傳感器系統(tǒng)方面,高敏感度、高性能的材料用于電子鼻傳感器陣列電極膜的制備是重點研究方向,電子鼻是通過氣敏傳感器陣列來模擬人類嗅覺系統(tǒng)從而對不同的氣味進行識別,提高對電子鼻傳感器陣列電極膜材料的性能,使其在靈敏度和耐用性上得到提高,數(shù)據(jù)的采集更加快速有效,進而對電子鼻的發(fā)展有一定的促進作用。

模式識別系統(tǒng)即是模擬大腦,對電子鼻識別的氣味信息進行分析,結合前文研究進展,目前在電子鼻模式識別系統(tǒng)中主要采用的還是PCA、 LDA 、DFA 、PLS等的經典方法,而計算機技術的升級為一些復雜的算法提供了支撐的平臺,以往需要耗時數(shù)小時,甚至數(shù)天的算法,現(xiàn)在只需要幾分鐘或更短的時間就能得到結果。所以,不斷有研究對已有的這些算法,如PLS 、LDA 、BP 等進行優(yōu)化改進,根據(jù)其優(yōu)缺點相互結合使用,提高了模式識別系統(tǒng)的分析率;同時也不斷探索引入新的模式識別算法,如DBN 、CNN等。

總而言之,未來在計算機提供的快速運算支撐平臺下,通過不斷擴充建立訓練模型的樣本量,增加樣本訓練集,深度對模型進行訓練,提高電子鼻的識別精度,形成閉環(huán)效應,使電子鼻技術能夠更廣泛地應用于人們的生產生活。

參考文獻:

[1]琚臘紅, 趙麗云, 于冬梅, 等. 2010—2012年不同BMI成年居民膳食能量、蛋白質、脂肪的食物來源構成[C]//營養(yǎng)研究與臨床實踐——第十四屆全國營養(yǎng)科學大會暨第十一屆亞太臨床營養(yǎng)大會、第二屆全球華人營養(yǎng)科學家大會. 北京, 中國:中國營養(yǎng)學會,2019:223-224.

JU L, ZHAO L, YU D, et al. Food source compositionof dietary energy, protein and fat in adult residents withdifferent? BMI? during 2010—2012[C]// Nutrition? Re‐search and Clinical Practice-14th National Congress ofNutrition Sciences, 11th Asia-pacific Congress of Clinical Nutrition, 2nd Global Congress of Chinese Nutrition Scientists. Beijing, China: Chinese Society of Nutrition, 2019:223-224.

[2] XU Z, WANG Z, LI J, et al. The effect of freezing timeon the quality of normal and pale, soft and exudative(PSE)-like pork[J]. Meat Science, 2019, 152:1-7.

[3] FLETCHER B, MULLANE K, PLATTS P, et al. Advances in meat spoilage detection: A short focus on rapid methods and technologies[J]. Cyta-Journal of Food, 2018, 16(1):1037-1044.

[4] RAUDIENE E, GAILIUS D, VINAUSKIENE R, et al.Rapid evaluation of fresh chicken meat quality by electronic nose[J]. Czach Journal of Food Sciences, 2018, 36(5):420-426.

[5] LIU T, ZHANG W, YUWONO M, et al. A data-drivenmeat freshness monitoring and evaluation method using rapid centroid estimation and hidden Markov models[J].? Sensors? and? Actuators? B-Chemical,? 2020,ID 127868.

[6]MARTINEZ? A? M,? HERNANDEZ? P. Evaluation? ofthe? sensory? attributes? along? rabbit? loin? by? a? trained panel[J]. World Rabbit Science, 2018, 26(1):43-48.

[7]邱冬梅, 賈波, 王金芳, 等. 病畜肉和死畜肉檢驗方法的研究[J].畜牧獸醫(yī)雜志, 2008(4):13-15.

QIU D, JIA B, WANG J, et al. Study on the detection method of diseased meat and dead meat [J]. Journal of Animal? Science? and? Veterinary? Medicine, 2008(4):13-15.

[8] DAMAZIAK K, STELMASIAK A, RIEDEL J. Sensory evaluation of poultry meat: A comparative survey of results from normal sighted and blind people[J]. PLoS One, 2019, 14(1): ID e0210722.

[9]KRALIK? P,? RICCHI? M. A basic? guide? to? real? timePCR in microbial diagnostics: Definitions, parameters, and? everything[J]. Frontiers? in? Microbiology, 2017, 8: ID 108.

[10] GHUGARE? G? S,? NAIR? A,? NIMKANDE? V,? et? al.Membrane filtration immobilization techniquea simple and novel method for primary isolation and enrichment of bacteriophages[J]. Journal of Applied Microbiology, 2017, 122(2):531-539.

[11] LV X, WANG L, ZHANG J, et al. Rapid and sensitivedetection of VBNC Escherichia coli O157: H7 in beef by? PMAxx? and? real-time? LAMP[J]. Food? Control, 2020, 115: ID 107292.

[12] 劉瑩, 王海霞. 基因芯片法在食源性疾病中診斷效果及影響多因素Logistic分析研究[J].食品安全質量檢測學報, 2020, 11(11):3625-3630.

LIU Y, WANG H. Diagnostic effect of gene microarray method on foodborne diseases and its influence on multivariate? Logistic? analysis[J]. Journal? of Food? Safety and Quality Inspection, 2020, 11(11):3625-3630.

[13] ALARCON C M, SHAN G M, LAYTON D T, et al.Application of DNA-and protein-based detection methods in agricultural biotechnology[J]. Journal of Agricultural and Food Chemistry, 2019, 67(4):1019-1028.

[14] ROSSMANITH P, WAGNER M. Aspects of systemstheory in the analysis and validation of innovative molecular-biological based food pathogen detection meth‐ods[J]. Trends in Food Science & Technology, 2010, 22(2):61-71.

[15] ZHOU L, ZHANG C, QIU Z J, et al. Information fu‐sion of emerging non-destructive analytical techniquesfor? food? quality? authentication: A? survey[J]. Trac-Trends in Analytical Chemistry, 2020, 127: ID 115901.

[16] DICLEHAN K, OGUZHAN U, MEHMET T. Electron‐ic nose and its applications: A survey[J]. InternationalJournal? of Automation? and? Computing, 2020, 17(2):179-209.

[17] WASILEWSKI T, GEBICKI J, KAMYSZ W. Bioelec‐tronic nose: Current status and perspectives[J]. Biosen‐sors and Bioelectronices, 2017, 87:480-494.

[18] RAYAPPAN J B, KULANDAISAMY A J, EZHILANM, et al. Developments in electronic noses for qualityand? safety control[J]. Advances in Food Diagnostics,2017:63-96.

[19] 高大啟, 楊根興. 電子鼻技術新進展及其應用前景[J].傳感器技術, 2001(9):1-5.

GAO D, YANG G. New progress and application pros‐pect of electronic nose technology[J]. Sensor Technolo‐gy, 2001(9):1-5.

[20] LVOVA L, KIRSANOV D. Editorial: Multisensor sys‐tems for analysis of liquids and gases: Trends and de‐velopments[J]. Frontiers in Chemistry, 2018, 6: ID 591.

[21] CHIU S W, TANG K. Towards a Chemiresistivesen‐sor-integrated? electronic? nose: A? review[J]. Sensors,2013, 13(10):14214-14247.

[22] RAHMAN? MM,? CHAROENLARPNOPPARUT? C,SUKSOMPONG P. Classification and pattern recogni‐tion algorithms applied to E-Nose[C]//2nd Internation‐al Conference on Electrical Information and Communi‐cation? Technology (EICT). Piscataway,? NewYork,USA: IEEE, 2015:44-48.

[23] LIU T, ZHANG W, YE L, et al. A novel multi-odouridentification by electronic nose using non-parametricmodelling-based? feature? extraction? and? time-seriesclassification[J]. Sensors? and? Actuators? B-Chemical,2019, 298: ID 126690.

[24] GARDNER? J W,? BARTLETT P N. Brief history? ofelectronic noses[J]. Sensors and Actuators B, 1994, 18:211-220.

[25] JIA W, LIANG G, JIANG Z, et al. Advances in elec‐tronic nose development for application to agricultural products[J]. Food? Analytical? Methods, 2019, 12(10):2226-2240.

[26] JIA W, LIANG G, WANG Y, et al. Electronic noses asa powerful tool for assessing meat quality: A mini review[J]. Food Analytical Methods, 2018, 11(10):2916-2924.

[27] RENATA Z W, SYLWIA M S. From the human nose toartificial? olfaction[J]. Agro? Food? Industry? Hi-Tech, 2010, 21(5):38-43.

[28] CAVE J W, WICKISER J K, MITROPOULOS A N.Progress in the development of olfactory-based bioelectronic chemosensors[J]. Biosensors and Bioelectronics, 2019, 123:211-222.

[29] MATINDOUST S, BAGHAEI N M, ABADI M H S, etal. Food quality and safety monitoring using gas sensor array in intelligent packaging[J]. Sensor Review, 2016, 36(2):169-183.

[30] ZHANG H, CHAN P, MARY B, et al. Functional poly‐mers and polymer-dye composites for food sensing[J]. Macromolecular? Rapid? Communications. 2020, 41(21): ID 2000279.

[31] JUNG Y H, PARK B, KIM J U, et al. Bioinspired elec‐tronics for artificial sensory systems[J]. Advanced Materials, 2019, 31(34): ID e1803637.

[32] ZAUKUU J L Z, BAZAR G, GILLAY Z, et al. Emerg‐ing? trends? of advanced? sensor based? instruments? for meat, poultry and fish quality——A review[J]. Critical Reviews in Food Science and Nutrition, 2019, 60(20):3443-3460.

[33] KULAGIIN V P, KUZNETSOV Y M, LVOV S A. As‐sess the feasibility of metal oxide? sensors in devices such? as "electroinc? nose"[J]. Sensors? and? Systems.2016, 11:39-48.

[34] 王俊, 崔紹慶, 陳新偉, 等. 電子鼻傳感技術與應用研究進展[J].農業(yè)機械學報 , 2013, 44 (11): 160-167, 179.

WANG J, CUI S, CHEN X, et al. Research progress of electronic nose sensing technology and application[J]. Transactions? of  the? CSAM,? 2013,? 44? (11):? 160-167, 179.

[35] ZHAO D, ZHANG Y, KONG D, et al. Research on rec‐ognition system of agriculture products gas sensor ar‐ray and its application[J]. Procedia Engineering, 2012,29:2252-2256.

[36] ROPODI A, PANAGOU E, NYCHAS G. Data miningderived from food analyses using non-invasive/non-de‐structive? analytical techniques; determination? of foodauthenticity, quality & safety in tandem with computerscience? disciplines[J]. Trends? in? Food? Science? andTechnology, 2016, 50:11-25.

[37] SANAEIFAR A, ZAKI D H, JAFARI A, et al. Earlydetection of contamination and defect in foodstuffs byelectronic nose: A review[J]. Trac-Trends in AnalyticalChemistry, 2017, 97:257-271.

[38] Gu Y, Li Q. Application of the new pattern recogni‐tion? system? in? the? new? e-nose? to? detecting? Chinesespirits[J]. Chinese Physics B, 2014, 23(4): ID 044213.

[39] Zhang H, Balaban M O, Principe JC. Improving pat‐tern recognition of electronic nose data with time-delayneural networks[J]. Sensors and Actuators B-Chemical,2003, 96(1-2):385-389.

[40] JIANG S, LIU Y. Gas sensors for volatile compoundsanalysis in muscle foods: A review[J]. Trends in Analytical Chemistry, 2020, 126: ID 115877.

[41] 吳楠京, 賈文珅, 馬潔, 等. 仿生嗅覺技術在微生物代謝產物氣味檢測中的應用研究進展[J].分析試驗室,2018, 37(3):366-372.

WU N, JIA W, MA J, et al. Research progress in the application? of biomimetic? olfactory? technology? in? theodor? detection? of microbial? metabolites[J]. AnalysisLaboratory, 2018, 37(3):366-372.

[42] 韓磊. 中國肉類供需形勢及穩(wěn)產保供對策研究[J].價格理論與實踐, 2020(7):57-61.

HAN L. Study on the situation of meat supply and de‐mand in China and the countermeasure of stable pro‐duction and supply [J]. Price Theory and Practice, 2020(7):57-61.

[43] GORSKA H E, GUZEK D, MOLEDA Z, et al. Appli‐cations? of electronic noses? in meat? analysis[J]. FoodScience and Technology, 2016, 36(3):389-395.

[44] VON? B? C, BROCKMEYER J, HUMPF H U,? et? al.Meat? authentication: A? new? HPLC-MS/MS? basedmethod for the fast and sensitive detection of horse andpork in highly processed food[J]. Journal of Agricultur‐al and Food Chemistry, 2014, 62(39):9428-9435.

[45] LI G, FU J, ZHANG J, et al. Progress in bionic infor‐mation? processing? techniques? for? an? electronic? nose based on olfactory models[J]. Chinese Science Bulletin, 2009, 54(4):521-534.

[46] GIUNGATO P, DI G, PALMISANI J, et al. Synergisticapproaches for odor active compounds monitoring and identi? cation: State of the art, integration, limits and potentialities of analytical and sensorial techniques[J]. TrAC Trends Anal Chem, 2018, 107:116-129.

[47] GASIOR R, WOJTVCZA K. Sense of smell and vola‐tile aroma compounds and their role in the evaluation of the quality of products of animal origin-a review[J]. Annals of Animal Science, 2016, 16(1):3-31.

[48] KUTSANEDZIE,? GUO,? CHEN. Advances? innonde‐structive methods for meat quality and safety monitoring[J].? Food? Reviews? International,? 2019,? 35(6):536-562.

[49] AN K A, ARSHAD M S, JO Y, et al. E-beam irradia‐tion? for? improving? the? microbiological? quality? of smoked duck meat with minimum effects on physicochemical properties during storage[J]. Journal of Food Science, 2017, 82(4):865-872.

[50] WIJAYA D R, SARNO R, ZULAIKA E. Noise filtering framework for electronic nose signals: An application? for? beef? quality? monitoring[J]. Computers? and Electronics in Agriculture, 2019, 157:305-321.

[51] MIRZAEE G E, TAHERI G A, AYARI F, et al. Identifi‐cation of fresh-chilled and frozen-thawed chicken meat and estimation of their shelf life using an e-nose machine? coupled? fuzzy KNN[J]. Food Analytical Methods, 2020, 13(3):678-689.

[52] ZHENG H, YING X, WANG W, et al. Study of sensi‐tivity evaluation on ridgetail white prawn (Exopalaemoncarinicauda) quality examination methods[J]. International?; Journal? of? Food? Properties, 2019, 22(1):942-951.

[53] LIU Y, ZHANG F, ZHU B, et al. Effect of sodium lac‐tate coating enriched with nisin on beef strip loins (M. Longissimus? lumborum) quality? during? cold? storage and? electronic? nose? rapid? evaluation[J]. Journal? of Food?? Measurement?? and?? Characterization,?? 2020, 14:2998-3009.

[54] WANG Z, LU Y, YAN Y, et al. Effective inhibition andsimplified detection of lipid oxidation in tilapia (Oreochromis niloticus) fillets during ice storage[J]. Aquacul‐ture, 2019, 511: ID 634183.

[55] GORSKA H E, HORCZYCZAK M, GUZEK D, et al.Chromatographic? fingerprints? supported? by? artificialneural network for differentiation of fresh and frozenpork[J]. Food Control, 2017, 73:237-244.

[56] WASINSKI B, OSEK J. New methods of meat speciesidentification? and? detection? of meat? adulterations[J].MedycynaWeterynaryjna-Veterinary?? Medicine-Sci‐ence and Practice, 2013, 69(6):348-352.

[57] TIAN X, WANG J, CUI S. Analysis of pork adultera‐tion in minced mutton using electronic nose of metaloxide? sensors[J]. Journal of Food Engineering, 2013,119(4):744-749.

[58] WANG Q, LI L, DING W, et al. Adulterant identifica‐tion in mutton by electronic nose and gas chromatogra‐phy-mass? spectrometer[J]. Food? Control, 2019, 98:431-438.

[59] HAN F, HUANG X, AHETO J, et al. Detection of beefadulterated with pork using a low-cost electronic nosebased? on? colorimetric? sensors[J]. Foods, 2020, 9(2):ID 193.

[60] KALINICHENKO? A,? ARSENIYEVA? L. Electronicnose combined with chemometric approaches to assessauthenticity and adulteration of sausages by soy pro‐tein[J].? Sensors? and? Actuators? B-Chemical,? 2020,303: ID 127250.

[61] ZHANG J, CAO J, PEI Z, et al. Volatile flavour com‐ponents and the mechanisms underlying their produc‐tion? in? golden? pompano (Trachinotusblochii) filletssubjected to different drying methods: A comparativestudy? using? an ?electronic? nose,? an? electronic? tongueand? SDE-GC-MS[J].? Food? Research? International,2019, 123:217-225.

[62] HUSSEIN K N, FRIEDRICH L, KISKO G, et al. Useof allyl-isothiocyanate and carvacrol to preserve freshchicken meat during chilling storage[J]. Czech Journalof Food Sciences, 2019, 37(6):417-424.

[63] 張賓惠, 高嵩, 賈飛, 等. 基于電子鼻技術結合化學計量法鑒別北京油雞肉[J]. 肉類研究 , 2020, 34(2):53-59.

ZHANG B, GAO S, JIA F, et al. Identification of Bei‐jing oily chicken based on electronic nose technologycombined with chemometrics [J]. Meat Research, 2020,34(2):53-59.

[64] ZHANG J, WANG X, SHI W. Odor characteristics ofwhite croaker and small yellow croaker fish during refrigerated? storage[J]. Journal? of? Food? Biochemistry, 2019, 43(10): ID e12852.

[65] GIOVANELLI G, BURAYYI S, LAUREATI M, et al.Evolution of physicochemical, morphological and aromatic? characteristics? of Italian? PDO? dry-cured? hams during? processing[J]. European? Food? Research? and Technology, 2016, 242(7), 1117-1127.

[66] WANG S, HE Y, WANG Y, et al. Comparison of fla‐vour? qualities? of three? sourced? Eriocheir? sinensis[J]. Food Chemistry, 2016, 200:24-31.

[67] HAN D, ZHANG C, FAUCONNIER M, et al. Charac‐terization and differentiation of boiled pork from Tibetan, Sanmenxia and Duroc x (Landrac x Yorkshire) pigs by? volatiles? profiling? and? chemometrics? analysis[J]. Food Research International, 2020, 130: ID 108950.

[68] LI F, FENG X, ZHANG D, et al. Physical properties,compositions? and? volatile? profiles? of? Chinese? dry- cured hams from different regions[J]. Journal of Food Measurement?? and?? Characterization,?? 2020,? 14(1):492-504.

[69] WOJTASIK K, GUZAK D, GORSKA H, et al. Volatilecompounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components[J]. Lwt-Food? Science? and? Technology, 2016, 67:112-117.

[70] JI S, GU S, WANG X, et al. Comparison of olfactomet‐rically? detected? compounds? and? aroma? properties? of four? different? edible parts? of Chinese mitten? crab[J]. Fisheries Science, 2015, 81(6):1157-1167.

[71] 張麗萍, 柳艷霞, 趙改名, 等. 不同部位西門塔爾雜交黃牛肉干品質差異分析[J].肉類研究, 2020, 34(2):7-12.

ZHANG L, LIU Y, ZHAO G, et al. Analysis on quality difference? of different? parts? of Simmental? crossbred yellow? cattle? jerky[J]. Meat? Research, 2020, 34(2):7-12.

[72] ZHU C, TIAN W,? SUN L, et al. Characterization ofprotein? changes? and? development? of? flavor? components induced by thermal modulation during the cooking of chicken meat[J]. Journal of Food Processing and Preservation, 2019, 43(7): ID e13949.

[73] ZHOU X, CHONG Y, DING Y, et al. Determination ofthe? effects? of different? washing? processes? on? aromacharacteristics in silver carp mince by MMSE-GC-MS,e-nose? and? sensory? evaluation[J]. Food? Chemistry,2016, 207:205-213.

[74] BONAH E, HUANG X, AHETO J H, et al. Applica‐tion of electronic nose as a non-invasive technique forodor? fingerprinting? and? detection? of bacterial? food‐borne pathogens: A review[J]. Journal of Food Scienceand Technology-Mysore, 2020, 57(6):1977-1990.

[75] BALBIN J R, SESE J T, BABAAN C V, et al. Detec‐tion? andclassi? cation? of bacteria? in? common? streetfoods? using? electronic? nose? and? support? vector? ma‐chine[C]//20177th IEEE international conference oncontrol system, computing and engineering (ICCSCE).Piscataway, New York, USA: IEEE, 2017:247-252.

[76] BALASUBRAMANIAN? S, PANIGRAHI? S, LOGUEC M, et al. Independent component analysis-processedelectronic? nose? data? for? predicting? Salmonella? ty‐phimurium populations in contaminated beef[J]. FoodControl, 2008, 19(3):236-246.

[77] 王丹鳳, 王錫昌, 劉源, 等. 電子鼻分析豬肉中負載的微生物數(shù)量研究[J].食品科學, 2010, 31(6):148-150.

WANG D, WANG X, LIU Y, et al. Study on the num‐ber? of microorganisms? loaded? in? pork? by? electronicnose analysis [J]. Food Science, 2010, 31(6):148-150.

[78] LIPPOLIS V, FERRARA M, CERVELLIERI S, et al.Rapid prediction of ochratoxin a-producing strains ofPenicillium on dry-cured meat by MOS-based electron‐ic nose[J]. International Journal of Food Microbiology,2016, 218:71-77.

[79] PRIMA F A, WREDHA S A, KUWAT T, et al. Lab-made electronic nose for fast detection of listeria mono‐cytogenes and bacillus cereus[J]. Veterinary Sciences,2020, 7(1): ID 20.

[80] BONAH E, HUANG X, YANG H, et al. Detection ofSalmonella Typhimuriumcontamination levels in freshpork samples using electronic nose smellprints in tan‐dem with support vector machine regression and meta‐heuristic? optimization? algorithms[J]. Journal? of FoodScience and Technology-Mysore, 2020:1-10.

[81] YAN K, ZHANG D. Improving the transfer ability ofprediction models for electronic noses[J]. Sensors andActuators B-Chemical, 2015, 220:115-124.

Research Progress and Application Prospect of Electronic?? Nose Technology in the Detection of Meat and Meat Products

LIU Yang1, JIA Wenshen1,2,3,4*, MA Jie1, LIANG Gang2,3,4, WANG Huihua5, ZHOU Wei6

(1. School of Automation, Beijing Information Science and Technology University, Beijing 100192, China;2. Instituteof Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,China;3. Department of Risk Assessment LabforAgro-products (Beijing), Ministry of Agriculture and Rural Affairs,Beijing 100097, China;4. Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China;5. Beijing Vocational College of Agriculture, Beijing 102400, China;6. Hebei Food Inspection and Research Institute, Shijiazhuang 050000, China)

Abstract: With the continuous increase of import and export of various countries, people have put forward higher requirements on the efficiency and accuracy of meat and meat products safety indicators detection. Since electronic nose technology is simple to operate and allows rapid and nondestructive testing, it can meet today's need for efficient test of meat and meat products. In this paper, the detection principle of electronic nose technology was introduced firstly, and its development process was described from two aspects of hardware and software system. Then, the application research progress of electronic nose technology in meat and meat products detection in recent years from the aspects of freshness, adulteration, flavor evaluation and microbial contamination of meat and meat products was analyzed. Different electronic nose instruments and equipment or different pattern recognition algorithms result in different analysis results. Therefore, it highlighting the feasibility and advancement of electronic nose technology application in various aspects of meat and meat products detection. At the same time, in view of the application research results of electronic nose technology in the detection of meat and meat products, the paper pointed out the shortcomings of electronic nose technology, for example: The analysis effect of electronic nose technology was uneven, the price of electronic nose equipment was relatively expensive, and the application range of large electronic nose equipment was limited. Therefore, there were still some difficulties and problems of electronic nose technology in the aspects of universality and popularization. Finally, in view of the shortcomings of the current electronic nose technology, the development and application prospects of the electronic nose technology in the future were prospected. In terms of hardware system, with the research and development continuously of new gas sensitive materials, the durability and sensitivity to smell recognition of the electronic nose by improving the performance of the electrode film material of the electronic nose sensor array was enhanced. In terms of software system, with the upgrading continuously of computer systems, a supporting platform for the emerging and complex pattern recognition algorithms was provided. New pattern recognition algorithms in the pattern recognition system of electronic nose technology were explored and introduced, so that electronic nose technology can achieve faster and more accurate recognition and analysis of odors.

猜你喜歡
電子鼻模式識別質量安全
基于DFI-RSE電子鼻傳感器陣列優(yōu)化的葡萄酒SO2檢測
輕身調脂消渴片的指紋圖譜建立、化學模式識別及含量測定
汽車外觀造型創(chuàng)新設計遺傳算法的應用
農產品質量安全追溯系統(tǒng)的混合模式研究
農產品質量安全檢驗檢測體系建設的創(chuàng)新策略分析
自動潔地機器人的設計
我國農產品農藥殘留的困境
分布式光纖傳感邊坡工程檢測設計
基于電子鼻技術多算法檢測熱帶水果品質的實驗研究
可探測超級細菌的電子鼻