国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

射頻加熱技術在糧食儲藏與加工中應用研究進展

2021-03-29 02:14李洪岳李青鸞鄭建軍令博王紹金
關鍵詞:干燥殺蟲

李洪岳 李青鸞 鄭建軍 令博 王紹金

摘要:糧食的儲藏與加工是保障國家糧食安全的重要環(huán)節(jié)。射頻技術憑借具有穿透深度大、加熱迅速、整體加熱、無化學殘留等特點,已廣泛應用于糧食產(chǎn)后研究,并在部分領域工業(yè)化應用前景廣闊。為深入了解射頻加熱技術在糧食儲藏與加工中應用研究進展,本文首先對射頻技術展開概述,闡述了射頻加熱的基本原理,并對目前商業(yè)化應用的射頻加熱系統(tǒng)的類型與特點進行介紹;從糧食與儲糧害蟲的介電特性、儲糧害蟲的耐熱性和糧食的加熱均勻性改善三個方面概述了目前射頻在糧食儲藏與加工中的基礎研究;在此基礎上,結合生產(chǎn)中面臨的實際問題對該技術在糧食產(chǎn)后殺蟲、滅菌、鈍酶和干燥等方面的應用進行了總結;最后,就該技術應用于糧食儲藏與加工尚存的問題與未來研究方向提出了建議。本文可為射頻技術在糧食儲藏與加工中的應用研究提供指導作用。

關鍵詞:射頻加熱;產(chǎn)后糧食;殺蟲;滅菌;鈍酶;干燥

中圖分類號: TS255.36;S37文獻標志碼: A文章編號:202106-SA001

引用格式:李洪岳,李青鸞, 鄭建軍, 令博, 王紹金. 射頻加熱技術在糧食儲藏與加工中應用研究進展[J].智慧農(nóng)業(yè)(中英文), 2021, 3(4):1-13.

LI Hongyue, LI Qingluan, ZHENG Jianjun, LING Bo, WANG Shaojin. Recent advances on application of radio frequency heating in the research of post-harvest grain storage and processing[J]. Smart Agriculture, 2021, 3(4):1-13.(in Chinese with English abstract)

1? 引言

“倉廩實、天下安”,糧食的儲藏與加工是經(jīng)濟社會穩(wěn)定和發(fā)展的基礎。據(jù)統(tǒng)計,中國每年在儲藏、運輸和加工環(huán)節(jié)造成的糧食損失高達3500萬噸[1],造成產(chǎn)后損失的主要因素是儲糧害蟲侵染、微生物污染、品質相關酶降解等。針對上述有害因素,人們通常采用化學處理,如熏蒸處理、殺菌劑處理等,但大部分化學試劑在使用過程中會造成環(huán)境污染和殘留,且不合理使用還會導致害蟲或微生物抗藥性增強。隨著人們食品安全與環(huán)保意識的增強,基于化學法的傳統(tǒng)殺蟲滅菌處理將面臨限用或禁用[2]。因此,探索綠色、高效、安全的物理方法減少糧食產(chǎn)后損失具有重要的現(xiàn)實意義。

射頻(Radio Frequency)是指10~300 MHz的電磁波,為避免干擾通信,美國聯(lián)邦通信委員會規(guī)定僅13.56、27.12和 40.68 MHz 三個射頻頻率可用于工業(yè)、科學和醫(yī)學領域[3]。有別于依靠內(nèi)部傳導,表面對流和輻射的傳統(tǒng)加熱(如熱風/水和蒸汽),射頻能量可穿透至物料內(nèi)部,產(chǎn)生整體加熱效應,使物料內(nèi)外同步受熱。此外,有別于歐姆加熱,射頻屬于非接觸式加熱,可穿透紙或塑料等常規(guī)食品包裝材料,避免包裝時產(chǎn)生二次污染。而與微波或紅外加熱相比,射頻波顯著較長,穿透深度更大,針對大尺寸物料加熱更為均勻[4]。

目前,射頻技術已廣泛應用于產(chǎn)后糧食及其制品的儲藏與加工研究,如殺蟲、滅菌、鈍酶、干燥和烘培等多個領域,并表現(xiàn)出潛在工業(yè)化應用優(yōu)勢。然而,針對該技術在糧食及其制品儲藏與加工中的研究目前尚未出現(xiàn)全面的綜述報道。因此,本文將通過介紹射頻加熱技術的基本原理與常見操作系統(tǒng),結合基于射頻加熱的糧食儲藏與加工基礎研究現(xiàn)狀,闡述射頻技術在糧食儲藏與加工中的應用研究現(xiàn)狀,最后提出射頻加熱技術在該領域的發(fā)展建議,為射頻技術在該領域的工業(yè)化應用提供指導。

2? 射頻加熱技術概述

2.1 射頻加熱原理

射頻加熱系統(tǒng)的基本原理可簡化為上下兩極板所構成的平行板式電容器(圖1)。當糧食處于電極之間時將產(chǎn)生兩種現(xiàn)象:一種是空間電荷極化,即糧食中的帶電離子在外電場作用下的遷移過程;另一種是極性分子旋轉,即糧食中的水分子不斷旋轉以使自身與不斷變化的電場極性一致。在兩者共同作用下,離子和極性分子摩擦產(chǎn)生熱能,從而引起糧食表面與內(nèi)部溫度升高。雖然離子極化與極性分子旋轉并存,但通常認為離子極化是引起射頻加熱的主要因素[5]。

2.2 糧食儲藏加工研究中常見的射頻加熱系統(tǒng)

基于射頻加熱的糧食儲藏與加工研究,目前主要采用自由振蕩式和50Ω 式兩類射頻加熱系統(tǒng)。圖2為四種常見的射頻加熱系統(tǒng)。其中自由振蕩式系統(tǒng)應用最為廣泛,它利用三極管形成的標準振蕩電路產(chǎn)生射頻能量,使極板與物料形成調(diào)諧電路,再與輸出電路發(fā)生電感耦合產(chǎn)生熱量,具有結構簡單,制造成本低、加熱效率高等優(yōu)點,但該系統(tǒng)中電容會隨極板間距及物料介電特性變化而改變,從而導致系統(tǒng)頻率改變[7]。如英國Strayfield公司 SO6B型自由振蕩式射頻加熱系統(tǒng),通過調(diào)節(jié)極板間距(9~19 cm)可改變射頻能量輸出功率,達到不同的加熱速率。該系統(tǒng)還配有傳送帶,可實現(xiàn)對物料的連續(xù)化處理。近年來,國產(chǎn)射頻加熱系統(tǒng)的制造水平也有了迅速發(fā)展,如河北華氏紀元電器已開發(fā)并生產(chǎn)出基于自由振蕩式電路的不同頻率、功率、單批次或中試規(guī)模的多種射頻加熱系統(tǒng),并被國內(nèi)多家科研單位使用[8]。50Ω射頻加熱系統(tǒng)的主要結構與自由振蕩式系統(tǒng)相似,但該系統(tǒng)具有自動協(xié)調(diào)裝置,可自動調(diào)節(jié)使工作電路總阻抗保持在50Ω,因而在加熱過程中,具有更加穩(wěn)定的耦合功率,并能提供固定頻率,精確控制功率和反饋。但由于其制造成本較高,并未得到廣泛使用[9, 10]。

3? 射頻加熱技術在糧食儲藏與加工中的基礎研究

射頻技術在糧食的儲藏與加工領域具有極大潛力,而目前針對射頻加熱技術的基礎研究主要包括糧食與儲糧害蟲介電特性、儲糧害蟲的耐熱性研究和糧食的射頻加熱均勻與改善等。

3.1 糧食與儲糧害蟲介電特性

介電特性(Dielectric Properties)描述了電磁場中物料與電磁波的相互作用。它不僅決定了物料對電磁能的吸收和轉化,還間接影響物料的加熱速率和均勻性。介電特性包括介電常數(shù)(ε')和損耗因子(ε")兩個參數(shù),前者表示物料對電磁能的儲存能力,后者反映物料對電磁能的吸收或將電磁能轉換為熱量的能力[15]。

介電特性受許多因素影響。對于糧食等低含水量物料,水分通常是主要因素,一般來說,隨著含水量增加,介電特性數(shù)值逐漸升高[16]。由于害蟲含水率較高,介電損耗遠大于糧食,故在相同時間內(nèi),害蟲將吸收更多能量,致使其升溫速率大于糧食,這種現(xiàn)象被稱為射頻選擇性加熱,因此開展糧食與儲糧害蟲介電特性的定量分析對射頻殺蟲具有重要意義[17]。表1 列出了27.12 MHz下常見糧食及其制品與儲糧害蟲的介電特性。

研究介電特性一方面可預測射頻加熱過程中糧食及其制品的加熱特性(如加熱速率、均勻性等)。為了探究介電特性對射頻加熱速率及加熱均勻性的影響,Lin 和 Wang[18]利用阻抗分析儀測定了摻有麩皮的小麥粉介電特性隨頻率、水分含量、麩皮含量和溫度的變化規(guī)律,并采用27.12 MHz 、6 kW 的射頻加熱系統(tǒng)在10 cm 的極板間距下評估小麥粉的加熱速率和溫度分布。結果表明,水分、麩皮含量和溫度對小麥粉的介電特性有顯著影響,小麥粉的介電特性隨溫度和水分的升高而升高,隨麩皮含量升高而降低。由于介電常數(shù)與損耗因子之差增大,小麥粉加熱速率隨水分的增大先減小后增大,隨麩皮含量的減少而減小。降低水分和麩皮含量可改善射頻加熱均勻性。另一方面,介電特性可為計算機模擬射頻加熱過程提供基礎數(shù)據(jù),以便進一步優(yōu)化射頻系統(tǒng)和改善加熱均勻性。Shrestha和Baik[19]為研究射頻的選擇性加熱特性,基于小麥和銹扁谷盜的介電特性數(shù)據(jù),采用 COMSOL 軟件模擬與實驗結合的方式研究了不同含水量(12%、15%和18%)下,小麥與其所含銹扁谷盜在射頻加熱下的溫度變化過程,結果顯示實驗與模擬的溫度偏差分別不超過13.3%、10.2%和18.1%。

3.2 儲糧害蟲的耐熱性研究

儲糧害蟲的耐熱數(shù)據(jù)對射頻殺蟲工藝的建立與優(yōu)化具有重要指導意義。美國華盛頓州立大學開發(fā)了一種加熱裝置Heating block system ,可獲得理想的加熱均勻性,并在0.1~20°C/min加熱速率下研究害蟲的熱致死參數(shù),有效指導基于熱處理的害蟲殺滅研究[30]。利用該系統(tǒng)獲得的儲糧害蟲熱致死數(shù)據(jù)如圖3所示。由圖3可知,谷蠹最耐熱,100%致死時需54°C 保持5 min 或50°C 保持29 min;而印度谷螟、赤擬谷盜和雜擬谷盜等在50°C 下,僅需3 min 即可100%死亡,耐熱性較低。此外,由于射頻加熱速度顯著高于傳統(tǒng)加熱,為探究射頻快速加熱在糧食殺蟲方面的優(yōu)勢,Yan等[31]利用Heating block system研究發(fā)現(xiàn)6~8°C/min 的快速加熱條件下,米象成蟲死亡率顯著高于0.1 或0.5°C/min 的慢速加熱,并指出原因與害蟲長時間暴露于非致死溫度下形成了熱適應有關,證明了射頻等快速加熱技術更有利于儲糧害蟲的殺滅。由圖3整體來看,在保證理想的加熱均勻性時,糧食經(jīng)射頻快速加熱至55°C保溫5 min或直接加熱至更高溫度(如60~65°C)不經(jīng)保溫處理,可實現(xiàn)對儲糧害蟲的有效殺滅。

3.3 糧食的射頻加熱均勻性與改善

3.3.1?? 射頻加熱不均勻現(xiàn)象產(chǎn)生的原因與傳統(tǒng)及微波加熱相比,射頻加熱雖然穿透深度更大,但加熱不均勻(尤其是邊角效應)仍是阻礙其工業(yè)化應用的主要問題。引起射頻加熱不均勻性的原因主要包括以下三個方面:

(1)電磁場分布不均勻。由于糧食與其周圍介質介電特性存在顯著差異,導致電磁場分布不均,產(chǎn)生不均勻加熱[37]。如圖4 (a)空載狀況下極板內(nèi)部可形成垂直于極板表面的均勻交變電磁場,但在極板邊緣,電磁場則呈現(xiàn)非均勻分布。而當物料置于下極板中心位置并在上方留有空隙時(如圖4(b)),由于容器、空氣和物料介電特性存在差異,因此在三者交界處電磁場分布會發(fā)生改變,使電磁場在物料頂部邊緣匯集導致加熱不均勻,產(chǎn)生邊角效應。由于物料通常是置于下極板中心位置加熱,因此邊角效應廣泛存在于射頻加熱生產(chǎn)過程中。此外,當物料置于極板間的幾何中心時(如圖4(c)),電磁場會發(fā)生偏轉,使物料中間層電磁場強度增加,溫度較高[38]。

(2)熱偏移現(xiàn)象。物料內(nèi)部含水率和介電特性的差異導致了物料內(nèi)部不同區(qū)域對射頻能量吸收效果不同[39]。介電損耗因子越大,則吸收的射頻能量越大。由于介電損耗因子與溫度呈正相關,因此在射頻加熱過程中,介電損耗較高的熱點會吸收更多的射頻能量,進而出現(xiàn)過度加熱[37]。熱偏移是導致射頻加熱不均勻的重要原因,也是阻礙該技術商業(yè)化應用的最大障礙,尤其是當物料的初始溫度、含水率或介電特性差異較大時,該現(xiàn)象更為嚴重[4]。

(3)物料形狀效應。物料的形狀、大小等因素會對射頻波的反射、折射、穿透和吸收等過程產(chǎn)生影響,進而引發(fā)加熱不均勻現(xiàn)象。Huang 等[40]利用計算機模擬并驗證了不同粒徑大小和位置的黃豆在射頻加熱過程中的加熱均勻性,結果表明顆粒直徑越小的物料加熱越均勻,直徑為?????? 1 cm的單個大豆內(nèi)部的最大溫差為3°C ,而直徑為5 cm的顆粒內(nèi)部最大溫差為39°C 。直徑為1、2 、3、4和5 cm的顆粒物料內(nèi)部溫度變化分別為 74% 、113% 、121% 、143%和153% 。Bedane等[41]制備了不同形狀的食品模擬樣品以研究不同幾何形狀(立方體、圓柱體和球體)和取向(垂直和水平)的溫度分布。試驗結果表明,樣品采用垂直取向具有更好的溫度分布,其中圓柱體樣品的加熱均勻性最好,立方體次之。最大的加熱速率和能量吸收率發(fā)生在球型樣品和水平取向的圓柱樣品的底部截面。

3.3.2? 射頻加熱均勻性的改善

射頻加熱不均勻極大影響了糧食及其制品的熱處理效果。其中,局部過熱往往導致物料過度加熱影響產(chǎn)品品質,而冷點產(chǎn)生將導致熱處理達不到預期效果(如殺蟲滅菌不徹底),產(chǎn)生潛在的食品安全問題[42,43]。目前針對改善射頻加熱均勻性的研究主要從以下三方面開展。

(1)改變電磁場分布。主要包括三種方式。第一種是利用特殊的電磁波導體(Electromag‐netic Wave Conductors)增加冷點處對電磁波的吸收以提高冷點溫度改善加熱均勻性,即根據(jù)不同介電特性介質間的電場線彎曲理論,將電磁波導體放置在食品內(nèi)部或覆蓋在食品表面,以此保證電磁強度較低的區(qū)域引入更多電磁能量[19,44]。如 Ling 等[28]在麥胚樣品的頂部和底部(冷點)覆蓋一對矩形聚醚酰亞胺片,并通過實驗證實聚醚酰亞胺片可顯著提高樣品冷點溫度并改善加熱均勻性,且使麥胚中脂肪酶失活更加均勻。

第二種是降低物料與周圍介質介電特性差異,減少射頻能量在物料邊緣和角落的聚集,抑制熱偏移和邊角效應。常用方法是選取與物料介電特性相似的材料作為容器材料或包覆于物料周圍,減少了物料邊角處因介電特性差異而導致的電磁場聚集。如 Huang 等[45]在黃豆射頻殺蟲研究中發(fā)現(xiàn),由于聚苯乙烯介電常數(shù)與黃豆接近且損耗因子較低,因此與聚丙烯相比,聚苯乙烯容器加熱均勻性更好,同時在一定范圍內(nèi)增加容器拐角半徑和側壁厚度可進一步改善加熱均勻性。

第三種是改變物料整體形狀或體積,減少射頻能量在邊角區(qū)域的聚集。如Yu等[46]研究了不同大小容器中油菜籽的射頻加熱均勻性,結果顯示,與小容器中的樣品相比,中等大小樣品的邊角效應更加嚴重,但大容器中的樣品(尺寸大于極板面積)并未發(fā)現(xiàn)這一現(xiàn)象,證明樣品上表面積大于極板面積時邊角效應不明顯。

(2)改變物料在電磁場中的位置。通過改變物料在電磁場中的位置使樣品中熱點與冷點位置不斷變化,提高加熱均勻性。常見方法包括旋轉、傳送帶輸送、攪拌和螺旋式輸送。如Palazo?lu和Miran[47]將裝滿面粉的矩形容器置于可旋轉的轉盤中,并利用傳送帶輸送,將旋轉和平移相結合進一步降低了矩形容器內(nèi)小麥粉的溫度梯度。Chen 等[48]基于 COMSOL軟件建立了靜態(tài)和動態(tài)條件下小麥樣品的射頻加熱模型。模擬和實驗結果均表明,傳送帶輸送可改善小麥的射頻加熱均勻性。Chen等[49]用計算機模擬和實驗驗證的方式研究了27.12 MHz射頻加熱條件下攪拌混合對小麥樣品溫度分布的影響。結果表明,隨著混合次數(shù)的增加,射頻處理小麥樣品的加熱均勻性指數(shù)呈下降趨勢。此外,螺旋輸送的方式可實現(xiàn)在輸送過程中不斷對物料進行攪拌以提高加熱均勻性。Zhou 和 Wang[50]采用定制的螺旋輸送器分別對大豆、玉米和花生進行螺旋輸送,結果表明,采用螺旋輸送的方式可改善加熱均勻性,降低射頻加熱均勻性指數(shù)。

(3)控制射頻系統(tǒng)工作參數(shù)。射頻加熱時極板的電壓、形狀、尺寸和間距(功率輸出)等因素均會影響加熱均勻性[51]。通常情況下射頻加熱速率越快,邊角效應和熱偏移現(xiàn)象越明顯,因此調(diào)節(jié)射頻系統(tǒng)的工作參數(shù)可有效改善加熱均勻性。物料射頻加熱時極板間距的選取是保障加熱均勻性的首要因素,如 Shi等[52]通過計算機模擬與實驗驗證的方式研究了小麥粉在不同極板間距下的加熱均勻性。結果表明,加熱均勻性指數(shù)和升溫速率隨電極距離的增加而減少,加熱速率與極板距離呈負相關。Huang 等[53]通過計算機模擬與實驗驗證的方法研究了上極板面積對大豆加熱均勻性的影響,隨著上極板面積的逐漸減小,加熱均勻性指數(shù)會先減小后增大。對比初始上極板尺寸(83 cm×40 cm),使用較小的上極板尺寸(35 cm×25 cm)可獲得更好的加熱均勻性。除此,Wang 等[54]還指出在射頻加熱實際過程中,上極板邊角部位的電壓要高于中心區(qū)域,電壓分布的不均勻也會加劇物料的加熱不均勻。通過對射頻上極板內(nèi)部電感位置和饋電條的對稱設計可提高射頻加熱均勻性。

除了上述三種方法外,采用兩種或多種方法協(xié)同還可進一步提高射頻加熱均勻性。如Zheng等[55]在玉米的射頻加熱中通過輔以70°C熱風、6.6 m/h 的傳送帶輸送、兩次混合攪拌以及熱風保溫等方式有效改善了射頻加熱均勻性。目前,協(xié)同法已廣泛用于大米[56]、綠豆[57]、小麥[43]等糧食作物的采后射頻殺蟲研究中,該方法在未來的工業(yè)化射頻熱處理中具有重要實用價值。

4? 射頻技術在糧食儲藏與加工中應用研究進展

目前射頻技術在糧食儲藏與加工中的應用主要包括儲糧害蟲和有害微生物的殺滅、品質相關酶活性的鈍化、干燥處理以及其它應用。

4.1 儲糧害蟲的殺滅

糧食及其制品的儲藏過程中,害蟲不僅可直接取食造成糧食品質損失,還可促進霉菌生長并產(chǎn)生毒素引發(fā)食品安全問題。射頻憑借其快速加熱、整體加熱和選擇性加熱等優(yōu)勢已被廣泛用于儲糧害蟲的殺滅研究,并成為最具潛力工業(yè)化應用的新型殺蟲技術,表2對糧食及其制品的射頻殺蟲研究進行了總結。

由于儲藏和加工階段的糧食及其制品含水量較低,因此在射頻殺蟲處理過程中具有更好的加熱均勻性且通常對品質無顯著性影響。隨著介電特性、害蟲與糧食的耐熱特性等基礎研究的發(fā)展,射頻殺蟲技術逐漸擴展到不同糧食及其制品的工業(yè)規(guī)模研究中。此外,害蟲的侵染會促進微生物的繁殖,使糧食受到害蟲蟲卵及微生物孢子的侵害。由于射頻殺蟲所需強度較低,因此將其與巴氏殺菌、干燥或鈍酶等目的結合并開展相關研究有利于優(yōu)化商業(yè)處理工藝,降低處理成本。

4.2 有害微生物的殺滅

糧食在種植、收獲和儲運階段均會受到各類微生物污染,一旦外界條件適宜,微生物就會迅速繁殖,產(chǎn)生潛在的食品安全問題。表3對糧食及其制品的射頻殺菌研究進行了總結。

射頻加熱在糧食中有害微生物的殺滅中表現(xiàn)出巨大潛力。然而,部分微生物耐熱性極強,射頻滅菌仍需要較高的強度,易于對糧食中的熱敏性成分產(chǎn)生不利的影響。因此,針對糧食作物中熱敏性和功能性成分開展相關研究對保障射頻滅菌下糧食及其制品的品質具有重要意義。此外,現(xiàn)有研究還表明射頻結合熱風、熱水、冷凍或紫外等可獲得更高的滅菌效率和更好的滅菌效果。

4.3 品質相關酶活性的抑制

糧食收獲后部分酶仍具有一定活性,這些酶往往導致糧食色澤、風味、口感和營養(yǎng)產(chǎn)生不利變化。因此,對產(chǎn)后糧食及其制品中品質相關酶進行抑制或鈍化十分必要。表4總結了糧食及其制品中酶的射頻鈍化研究現(xiàn)狀。

目前射頻技術在糧食及其制品鈍酶方向的研究較少?,F(xiàn)有研究中鈍酶的目標主要集中在與風味產(chǎn)生相關的酶和與顏色變化相關的酶。與射頻滅菌處理相似,酶滅活也需要較高的射頻強度,這對糧食及其制品的品質保障帶來了一定挑戰(zhàn)。此外,盡管射頻具有快速加熱的優(yōu)勢,但目前針對糧食及其制品的射頻鈍酶研究仍為小批量的實驗室規(guī)模,尚未開展射頻工業(yè)規(guī)模的鈍酶研究。

4.4 干燥處理

射頻技術在糧食的干燥處理中也有廣泛應用。如謝永康等[82]針對英國產(chǎn)Strayfield SO6B型射頻加熱系統(tǒng)在干燥過程中存在加熱不均勻、熱風效率低、無法在線稱重等問題,進行了結構優(yōu)化與改進。通過采用多層物料盤堆疊,結合側向熱風對流輔助干燥等方式有效解決了射頻干燥中出現(xiàn)的熱偏移和邊角加熱效應,提高了干燥均勻性。

4.5 其它應用

除上述應用外,近年來也有研究者利用射頻加熱開展了新收獲稻谷的陳化研究,以改善新鮮大米烹飪后普遍存在的黏度大、口感差等問題[83]。結果顯示,稻谷含水量16.3% ,射頻加熱45 min為最優(yōu)陳化參數(shù)。與自然陳化相比,射頻陳化可顯著縮短陳化時間,且可較好地保持大米品質。

5? 未來研究展望

盡管射頻加熱技術已廣泛應用于糧食及其制品儲藏和加工研究的多個領域,但仍然需要更多的研究以實現(xiàn)高效加工處理并工業(yè)化應用。基于目前的研究現(xiàn)狀,未來還需在以下幾個方面開展深入研究。

(1)研發(fā)設計針對糧食儲藏加工的專用射頻加熱系統(tǒng)。目前,已有研究所采用的射頻加熱系統(tǒng)均為通用設備(即未針對某種特定目標研發(fā)的射頻加熱系統(tǒng))。因此,未來可考慮針對糧食這類特定物料(如低水分、顆粒狀、粉狀等共性特點),結合射頻加熱均勻性改善研究,開發(fā)針對糧食殺蟲、滅菌、鈍酶、干燥等處理的專用射頻加熱系統(tǒng),以更好地滿足科學研究與工業(yè)化應用需求。

(2)射頻協(xié)同其它技術在糧食儲藏加工研究中的應用。目前,相比傳統(tǒng)熱處理技術,盡管射頻加熱具有速度快、時間短、溫度更均勻等優(yōu)勢,但糧食的低水分特性導致微生物與酶耐熱性極強,射頻殺菌或鈍酶仍需較高強度,對品質保持帶來了一定挑戰(zhàn)。因此,未來可考慮采用其它物理或化學手段協(xié)同射頻加熱,進一步提高熱處理效率,降低糧食品質損失。

(3)目前射頻干燥過程多采用單一方法,這使得糧食在前期受熱率和干燥速率較低而在后期產(chǎn)生加熱失控和品質下降。因此,未來在糧食射頻干燥過程中可將整個周期劃分為多階段,針對不同階段采取多級干燥的方式提高加熱均勻性和產(chǎn)品品質。

(4)射頻殺蟲的工業(yè)化應用。射頻殺蟲是該技術在糧食儲藏與加工領域開展最早且研究最為深入的方向,通過多年研究已積累了豐富的基礎性數(shù)據(jù)。因此,未來應主要針對工業(yè)化射頻殺蟲過程中糧食的加熱均勻性、品質以及能耗效率等開展深入研究,早日實現(xiàn)其工業(yè)化應用。

參考文獻:

[1]竹立家. 必須從國家戰(zhàn)略的高度深刻認識糧食安全——對習近平總書記關于制止餐飲浪費行為重要指示精神的解讀[J].理論探討, 2020(5):5-10.

ZHU? L. Deeply? understand? food? security? from? the height? of? nationalstrategy—Interpretation? of? generalsecretary Xi Jinping's important instructions on? stopping food waste[J]. Theoretical Investigation, 2020(5):5-10.

[2] MACANA R J, BAIK? O? D. Disinfestation? of insectpests in stored agricultural materials using microwaveand? radio ?frequency? heating: A review[J]. Food? Reviews International, 2018, 34(5):483-510.

[3] PIYASENA P, DUSSAULT C, KOUTCHMA T, et al.Radio frequency heating of foods: Principles, applications and related properties—A review[J]. Critical Reviews? in? Food? Science? and? Nutrition, 2003, 43(6):587-606.

[4]劉嫣紅, 楊寶玲, 毛志懷. 射頻技術在農(nóng)產(chǎn)品和食品加工中的應用 [J].農(nóng)業(yè)機械學報 , 2010, 41(8):115-120.

LIU Y, YANG B, MAO Z. Radio frequency technologyand its application in agro-product and food processing[J].? Transactions? of? the? CSAM,? 2010,? 41(8):115-120.

[5] JIAO Y, TANG J, WANG Y, et al. Radio-frequency applications for food processing and safety[J]. Annual Review? of Food? Science? and? Technology, 2018, 9(1):105-127.

[6] AWUAH G, RAMASWAMY H, TANG J. Radio frequency heating in food processing: Principles and applications[M]. Boca Raton, Florida: CRC Press, 2015:106-108.

[7] ZHAO Y, FLUGSTAD B, KOLBE E, et al. Using capacitive (radio? frequency) dielectric? heating? in? foodprocessing? and? preservation: A review[J]. Journal? ofFood Process Engineering, 2000, 23(1):25-55.

[8] MAO Y, WANG P, WU Y, HOU L, et al. Effects of various radio frequencies on combined drying and disinfestation treatments for in-shell walnuts[J]. LWT-FoodScience and Technology, 2021, 144: ID 111246.

[9]周洪學. 射頻系統(tǒng)加熱性能及均勻性改善研究[D].楊凌:西北農(nóng)林科技大學, 2018.

ZHOU? H. Heating? performance? and? uniformity? improvement? of radio? frequency? systems[D]. Yangling:Northwest A&F University, 2018.

[10] MOIRANGTHEM? TT,? MACANA? R,? BAIK? O? D.Characterization of 50-ohm radio frequency heating ofbulk canola seeds (Brassica napus. L) in a tubular applicator? with? parallel? electrodes? and? post-treatmentquality[J]. Innovative Food Science & Emerging Technologies, 2020, 64: ID 102409.

[11] 令博. 開心果采后射頻殺蟲技術及綜合利用研究[D].楊凌:西北農(nóng)林科技大學, 2016.

LING ?B. Studies? on? radio? frequency? disinfestationtechnology and comprehensive utilizations of postharvest pistachio[D]. Yangling: Northwest A&F University, 2016.

[12] ZHOU H, GUO C, WANG S. Performance comparisonbetween the free running oscillator and 50Ω radio frequency systems[J]. Innovative Food Science & Emerging Technologies, 2017, 39:171-178.

[13] MACANA R J, MOIRANGTHEM T T, BAIK O D.50ohm RF technology based applicator design and fabrication? for? disinfestation? of? insect? pests? in? stored grains[C]// 2018 ASABE Annual? International? Meeting. St. Joseph, MI, USA: ASABE, 2018.

[14] CUI M, SUN W, XIA L, et al. Effect of radio frequency heating on the mortality of Rhizoperthadominica (F.) and? its? impact? on? grain? quality[J]. Journal? of Stored Products Research, 2020, 89: ID 101695.

[15] ROUTRAY W, ORSAT V. Recent advances in dielectric properties—Measurements and importance[J]. Current Opinion in Food Science, 2018, 23:120-126.

[16] TIWARI G, WANG S, TANG J, et al. Analysis of radiofrequency (RF) power distribution in dry food materials[J]. Journal? of? Food? Engineering, 2011,? 104(4):548-556.

[17] KRAUS M, HOLZER F, HOYER C, et al. Chemicalfree pest control by means of dielectric heating with radio waves: Selective heating[J]. Chemical Engineering and Technology, 2018, 41(1):116-123.

[18] LIN B, WANG? S. Dielectric properties, heating rate,and heating uniformity of wheat flour with added bran associated with radio frequency treatments[J]. Innovative? Food? Science &? Emerging? Technologies, 2020, 60: ID 102290.

[19] SHRESTHA B L, BAIK O D. Multi-physics computersimulation of radio frequency heating to control pest insects? in? stored-wheat[J]. Engineering? in? Agriculture, Environment and Food, 2019, 12(1):71-80.

[20] SHRESTHA B L, BAIK O D. Dielectric behaviour ofwhole-grain wheat with temperature at 27.12 MHz: A novel use of a liquid dielectric test fixture for grains[J]. International? Journal? of Food? Property, 2015, 18(1):100-112.

[21] SHRESTHA B L, BAIK O D. Radio frequency selective heating of stored-grain insects at 27.12MHz: A feasibility? study[J]. Biosystems? Engineering, 2013, 114(3):195-204.

[22] WANG S, TANG J, JOHNSON J A, et al. Dielectricproperties of fruits and insect pests as related to radio frequency? and? microwave? treatments[J]. Biosystems Engineering, 2003, 85(2):201-212.

[23] YANG C, ZHAO Y, TANG Y, et al. Radio frequencyheating? as? a? disinfestation? method? against? Corcyracephalonica? and? its? effect? on? properties? of? milledrice[J]. Journal of Stored Products Research, 2018, 77:112-121.

[24] NELSON S O, BARTLEY P G, LAWRENCE K C. RFand microwave dielectric properties of stored-grain insects? and? their? implications? for potential? insect? control[J].? Transactions? of? the? ASAE,? 1998,? 41(3):685-692.

[25] OZTURK S, KONG F B, SINGH R K, et al. Radio frequency heating of corn flour: Heating rate and uniformity[J]. Innovative Food Science & Emerging Technologies, 2017, 44:191-201.

[26] NELSON? S. RF? and microwave permittivities? of insects and some applications[C]// URSI EMTS International Symposium on Electromagnetic Theory. Pisa, Italy: Pisa University, 2004:1224-1226.

[27] JIAO? S,? JOHNSON? J A,? TANG? J,? et? al. Dielectricproperties? of? cowpea? weevil,? black-eyed? peas? andmung beans with respect to the development of radiofrequency heat treatments[J]. Biosystems Engineering,2011, 108(3):280-291.

[28] LING B, LYNG J G, WANG S. Radio-frequency treatment for stabilization of wheat germ: Dielectric properties? and? heating? uniformity[J]. Innovative? Food? Science & Emerging Technologies, 2018, 48:66-74.

[29] LING B, LIU X, ZHANG L, et al. Effects of temperature,? moisture,? and? metal? salt? content? on? dielectricproperties of rice bran associated with radio frequencyheating[J]. Scientific Reports, 2018, 8(1):4427.

[30] 嚴榮軍. 儲藏害蟲熱致死動力學與氣調(diào)加熱板加熱均勻性研究[D].楊凌:西北農(nóng)林科技大學, 2015.

YAN R. Thermal death kinetics of storage pests andheating? uniformity? of? controlled? atmosphere/heatingblock systems[D]. Yangling: Northwest A&F University, 2015.

[31] YAN R, HUANG Z, ZHU H, et al. Thermal death kinetics of adult Sitophilus oryzae and effects of heatingrate on thermotolerance[J]. Journal of Stored ProductsResearch, 2014, 59:231-236.

[32] HOU L, WU Y, WANG S. Thermal death kinetics ofCryptolestespusillus (Schonherr), Rhyzoperthadominica (Fabricius), and Triboliumconfusum (Jacquelin duVal) using a heating block system[J]. Insects, 2019, 10(5):1-13.

[33] YANG L, LI Z, MA W, et al. Thermal death kinetics offifth-instar Corcyrascephalonica (Lepidoptera: Galleriidae)[J]. Journal? of? Insect? Science, 2015, 15: ID25843578.

[34] LI W, WANG K, CHEN L, et al. Tolerance of Sitophilus zeamais (Coleoptera: Curculionidae) to heated controlled? atmosphere? treatments[J]. Journal? of? Stored Products Research, 2015, 62:52-57.

[35] JOHNSON J A, VALERO K A, WANG S, et al. Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae) [J]. Journal? of? Economic? Entomology, 2004, 97(6):1868-1873.

[36] JOHNSON J A, WANG S, TANG J. Thermal death kinetics? of fifth-instar? Plodia? interpunctella (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology, 2003, 96(2):519-524.

[37] HUANG Z, MARRA F, WANG S J. A novel strategyfor? improving? radio? frequency? heating? uniformity? of dry food products using computational modeling[J]. Innovative? FoodScience? & Emerging? Technologies, 2016, 34:100-111.

[38] JIAO Y, SHI H, TANG J, et al. Improvement of radiofrequency (RF) heating? uniformity? on? low? moisture foods with Polyetherimide (PEI) blocks[J]. Food Research International, 2015, 74:106-114.

[39] 黃智. 大豆射頻加熱過程有限元模擬及均勻性優(yōu)化研究[D].楊凌:西北農(nóng)林科技大學, 2018.

HUANG Z. Finite element simulation and uniformity optimization? for? radio? frequency? heating? process? of soybeans[D]. Yangling: Northwest? A&F? University,2018.

[40] HUANG Z, DATTAA, WANG S J. Modeling radio frequency heating? of granular? foods: Individual particle vs. effective property approach[J]. Journal of Food Engineering, 2018, 234:24-40.

[41] BEDANE T F, ERDOGDU F, LYNG J G, et al. Effectsof geometry and orientation of food products on heating uniformity during radio frequency heating[J]. Food and Bioproducts Processing, 2021, 125:149-160.

[42] JIAO? S,? JOHNSON? J A,? TANG? J,? et? al. Industrialscale radio frequency treatments for insect control in lentils[J]. Journal of Stored Products Research, 2012, 48:143-148.

[43] 陳龍. 運動與攪拌對小麥射頻加熱均勻性影響研究[D].楊凌:西北農(nóng)林科技大學, 2016.

CHEN L. Effects of conveyor movement and mixing on? radio? frequency? (RF)? heating? uniformity? in wheat[D]. Yangling: Northwest A&F University, 2016.

[44] ZHU H, LI D, LI S, et al. A novel method to improveheating uniformity in mid-high moisture potato starch with radio frequency assisted treatment[J]. Journal of Food Engineering, 2017, 206:23-36

[45] HUANG Z, ZHANG B, MARRA F, et al. Computational modelling of the impact of polystyrene containers? on? radio? frequency? heating? uniformity? improvement for dried soybeans[J]. Innovative Food Science &Emerging Technologies, 2016, 33:365-380.

[46] YU D, SHRESTHA B L, BAIK O D. Temperature distribution in a packed-bed of canola seeds with variousmoisture contents and bulk volumes during radio frequency? (RF)? heating[J].? Biosystems? Engineering,2016, 148:55-67.

[47] PALAZO?LU T K, MIRAN W. Experimental investigation? of? the? combined? translational? and? rotationalmovement on an inclined conveyor on radio frequencyheating? uniformity[J].? Innovative? Food? Science? &Emerging Technologies, 2018, 47:16-23.

[48] CHEN L, HUANG Z, WANG K, et al. Simulation andvalidation? of radio? frequency? heating? with? conveyormovement[J]. Journal? of Electromagnetic Waves? andApplications, 2016, 30(4):473-491.

[49] CHEN L, WANG K, LI W, et al. A strategy to simulateradio? frequency? heating? under? mixing? conditions[J].Computers? and Electronics in Agriculture, 2015, 118(C):100-110.

[50] ZHOU H, WANG S. Developing a screw conveyor inradio frequency systems to improve heating uniformityin granular products[J]. International Journal of Agricultural? and? Biological? Engineering,? 2019,? 12(3):174-179.

[51] HOU L X, JOHNSON J A, WANG S J. Radio frequency heating for postharvest control of pests in agricultural products: A review[J]. Postharvest Biology and Technology, 2016, 113:106-118.

[52] SHI H, SUN Z, YAN Z, et al. Influence of electrodedistance on heating behaviourassociated to radio frequency processing of low moisture foods[J]. Acta Alimentaria, 2017, 46(4):517-526.

[53] HUANG Z, ZHU H, YAN R, et al. Simulation and prediction of radio frequency heating in dry soybeans[J].Biosystems Engineering, 2015, 129:34-47.

[54] WANG S, LUECHAPATTANAPORN K, TANG J. Experimental methods for evaluating heating uniformityin? radio? frequency? systems[J]. Biosystems? Engineering, 2008, 100(1):58-65.

[55] ZHENG A J, ZHANG B, ZHOU L Y, et al. Applicationof radio? frequency? pasteurization? to? corn (Zea? maysL.): Heating uniformity improvement and quality stability? evaluation[J]. Journal? of? Stored? Products? Research, 2016, 68:63-72.

[56] ZHOU L, LING B, ZHENG A, et al. Developing radiofrequency technology for postharvest insect control inmilled? rice[J]. Journal? of? Stored? Products? Research,2015, 62:22-31.

[57] SONG X, MA B, KOU X, et al. Developing radio frequency heating treatments to control insects in mungbeans[J]. Journal of Stored Products Research, 2020, 88: ID 101651.

[58] SHRESTHA B L, YU D, BAIK O D. Elimination ofcruptolestesferrungineus S. in wheat by radio frequency dielectric heating at different moisture contents[J]. Progress? in? Electromagnetics? Research, 2013,? 139:517-538.

[59] 孫為偉, 曹陽, 劉璐, 等. 射頻加熱防治5種儲糧害蟲的初步研究[J].中國糧油學報, 2019, 34(5):95-100.?? SUN W, CAO Y, LIU L, et al. Preliminary study on radio? frequency? control? of 5? kinds? of? stored? grain pests[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(5):95-100.

[60] HOU L, LIU Q, WANG S. Efficiency of industrial-scaleradio? frequency? treatments? to? control? Rhyzoperthadominica (Fabricius) in rough, brown, and milled rice[J]. Biosystems Engineering, 2019, 186:246-258.

[61] ZHOU? L, WANG? S. Verification? of radio? frequencyheating? uniformity? and? Sitophilus? oryzae? control? in rough,? brown,? and? milled? rice[J]. Journal? of? Stored Products Research, 2016, 65:40-47.

[62] ZHOU L, WANG? S. Industrial-scale radio? frequencytreatments? to? control? Sitophilus? oryzae? in? rough, brown, and milled rice[J]. Journal of Stored Products Research, 2016, 68:9-18.

[63] JIAO S, SUN W, YANG T, et al. Investigation of thefeasibility of radio frequency energy for controlling insects in milled rice[J]. Food and Bioprocess Technology, 2017, 10(4):781-788.

[64] LI Y,? CHEN? S, YAO? M. Effects? of radio? frequencyheating? on? disinfestation? and? pasteurization? of? rice flour[J]. Taiwanese Journal of Agricultural Chemistry and Food Science, 2015, 53(4):125-134.

[65] WANG S, TIWARI G, JIAO S, et al. Developing postharvest disinfestation treatments for legumes using radio? frequency? energy[J].? Biosystems? Engineering, 2010, 105(3):341-349.

[66] HASSAN A, HOERSTEN DVON, AHMED I. Effectof radio? frequency? heat? treatment? on? protein? profile and? functional? properties? of? maize? grain[J]. Food Chemistry, 2019, 271:142-147.

[67] JIAO? S, ZHONG Y, DENG Y. Hot air-assisted radiofrequency? heating? effects? on? wheat? and? corn? seeds: Quality? change? and? fungi? inhibition[J]. Journal? of Stored Products Research, 2016, 69:265-271.

[68] ZHENG A, ZHANG L, WANG S. Verification of radiofrequency pasteurization treatment for controlling Aspergillus? parasiticus? on? corn? grains[J]. International Journal of Food Microbiology, 2017, 249:27-34.

[69] OZTURK S, LIU S, XU J, et al. Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B2354 in corn flour by radio frequency heating with subsequent freezing[J]. LWT-Food Science and Technology, 2019, 111:782-789.

[70] VILLA-ROJAS R, ZHU M J, MARKS B, et al. Radiofrequency inactivation of Salmonella Enteritidis PT 30and Enterococcus faecium in wheat flour at differentwater activities[J]. Biosystems Engineering, 2017, 156:7-16.

[71] XU J, YANG R, JIN Y, et al. Modeling the temperature-dependent? microbial? reduction? of? Enterococcusfaecium NRRL B-2354 in radio-frequency pasteurizedwheat flour[J]. Food Control, 2020, 107: ID 106778.

[72] JEONG K O, KIM S S, PARK S H, et al. Inactivationof Escherichia? coli,? Salmonella? enterica? serovar? Typhimurium, and Bacillus cereus in roasted grain powder by radio frequency heating[J]. Journal of AppliedMicrobiology, 2020, 129(5):1227-1237.

[73] 伍瀟潔, 萬云雷, 韓紅霞, 等. 射頻處理對稻谷貯藏品質的影響[J].食品科技, 2016, 41(6):187-190.

WU X, WANG Y, HAN H, et al. Effect of radio frequency on paddy storage quality[J]. Food Science andTechnology, 2016, 41(6):187-190.

[74] CAO X, ZHANG M, CHITRAKAR B, et al. Radiofrequency? heating? for? powder?; pasteurization? of barleygrass: Antioxidant substances, sensory quality, microbial load and energy consumption[J]. Journal of the Science of Food and Agriculture, 2019, 99(9):4460-4467.

[75] 于殿宇, 郝凱越, 程杰, 等. 射頻處理提高米糠穩(wěn)定性及其對品質的影響[J].食品科學, 2020, 41(20):20-26.

YU D, HAO K, CHENG J, et al. Radio frequency improves the? stability and quality of rice bran[J]. FoodScience and Technology, 2020, 41(20):20-26.

[76] 史樂偉, 王珂, 鄧紅, 等. 射頻加熱滅酶處理對米糠穩(wěn)定性和品質的影響[J].食品工業(yè)科技, 2014, 35(12):113-117.

SHI L, WANG K, DENG H, et al. Effect of lipase deactivation through radio frequency on therice bran's quality and stability[J]. Science and Technology of Food Industry, 2014, 35(12):113-117.

[77] LING B, LYNG J, WANG S. Effects of hot air-assistedradio frequency heating on enzyme inactivation, lipidstability and product quality of rice bran[J]. LWT-FoodScience and Technology, 2018, 91:453-459.

[78] LING B, OUYANG S, WANG S. Effect of radio frequency treatment on functional, structural and thermalbehaviors? of? protein? isolates? in? rice? bran[J]. FoodChemistry, 2019, 289:537-544.

[79] LING? B,? OUYANG? S,? WANG? S. Radio-frequencytreatment for stabilization of wheat germ: Storage stability? and? physicochemical? properties[J]. Innovative Food? Science&? Emerging? Technologies, 2019, 52:158-165.

[80] JIANG Y, WANG S, HE F, et al. Inactivation of lipoxygenase in soybean by radio frequency treatment[J]. International? Journal? of Food? Science? and Technology, 2018, 53(12):2738-2747.

[81] JIANG Y M, LI L, HE F, et al. Highly effective inactivation of anti nutritional factors (lipoxygenase, urease and trypsin? inhibitor) in? soybean by radio? frequency treatment[J]. International Journal of Food Science & Technology, 2020, 56(1):93-102.

[82] 謝永康, 林雅文, 朱廣飛, 等. 基于加熱均勻性的射頻干燥系統(tǒng)結構優(yōu)化與試驗[J].農(nóng)業(yè)工程學報, 2018,34(5):248-255.

XIE Y, LIN Y, ZHU G, et al. Structure optimizationand experiment of radio frequency dryer based on heating uniformity[J]. Transactions of the CSAE, 2018, 34(5):248-255.

[83] IFTIKHAR F, HUSSAIN S Z, NASEER B, et al. Investigations on the process and product parameters of radio frequency-induced accelerated aged paddy[J]. Journal? of? Food? Process? Engineering, 2020, 43(11): IDe13521.

Recent Advances on Application of Radio Frequency Heating in the Research of Post-Harvest Grain Storage and Processing

LI Hongyue, LI Qingluan, ZHENG Jianjun, LING Bo*, WANG Shaojin*

(College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China)

Abstract: The storage and processing of grain are the basis for economic and social stability and development. As a new heating treatment technology based on electromagnetic wave, radio frequency technology has the characteristics of large penetration depth, rapid heating, volumetric heating and no chemical residue. It has been widely used in post-harvest research of grain and has potential industrial application prospects in some fields. To expound the research progress of the application of radio frequency heating technology in grain storage and processing, this review briefly described the basic principle and characteristics of radio frequency heating as well as the current commercial radio frequency heating system including free oscillation type and 50Ω type. The basic research of radio frequency heating in grain storage and processing was summarized from three aspects: Dielectric properties of grain and pests, heat resistance of stored grain pests and heating uniformity of sample. The dielectric properties refer to the interaction between materials and electromagnetic waves in an electromagnetic field and determines the absorption and conversion of electromagnetic energy. It can predict the heating characteristics of grain and provide basic data for computer simulation to optimize process during radio frequency treatment. The heat resistance data of pests are necessary for the establishment and optimization of dis-infestations technology, so the kinetic date of thermal death of common stored grain pests were reported in this review. As a main hinder in the commercial application of radio frequency treatments, the heating uniformity has significant effect on heat treatment quality and results in potential food safety problems. The major factors causing heating non-uniformity are the non-uniformity of electromagnetic field, runaway heating and the sample shape effect. The improvement methods of heating uniformity were summarized from three aspects in this article including changing the electromagnetic field distribution, sample position, and optimizing the radio frequency working parameters. Based on the above basic research of radio frequency technology and combining with the practical problems in grain storage and processing, the applications of radio frequency heating in the fields of dis-infestations, sterilizing, enzyme inactivation and drying were also summarized. Finally, some suggestions on the application of this technology in grain storage and processing and future research directions were proposed. This review may play a certain guiding role for the application of radio frequency technology in grain storage and processing.

猜你喜歡
干燥殺蟲
蟲咬瘙癢,涂苦參百部
“殺蟲專列”
華南沿海地區(qū)富氦低氧氣調(diào)儲糧技術的應用與探索
小學生發(fā)明殺蟲劑
苦參洗液治疥瘡
佳多頻振式殺蟲燈
冬瓜皮成分及抗氧化活性成分分析
噴霧制粒技術在現(xiàn)代維藥中的應用