李祥林,馬玉軍
(1.齊齊哈爾大學 理學院,黑龍江 齊齊哈爾 161006;2.齊齊哈爾技師學院 教務處,黑龍江 齊齊哈爾 161002)
令 g (x ) = 39 x4+ 78 x3+ 59 x2+ 20 x+ 2,
則 g ′ ( x ) = 156 x3+ 234 x2+ 118 x + 20, g ′ ( x ) = 468 x2+ 468 x+ 118,
當 x<- 1時, g ′ (x)> 0, g ′ (x)在( -∞,- 1)上是增函數,又 g′ ( - 1) =- 20 < 0;
當 x<- 1時, g ′ ( x)< 0; g (x )在( -∞,- 1)上是減函數,又g ( -1 ) = 2 > 0,當 x <- 1時, g ( x )> 0,故當 x<- 1時, f ′ (x) > 0,
定理2當 0x > 時,
令 k (x ) = 186 x6+ 558 x5+ 749 x4+ 568 x3+ 248 x2+ 57 x+ 6,
則 k ′ ( x ) = 1116 x5+ 2790 x4+ 2996 x3+ 1704 x2+ 496 x+ 57,
k(4)(x )= 66960 x2+ 66960 x+ 17976,
k(4)( - 1) = 17976 > 0,故當 x <- 1時, k(4)( x)> 0,
k ′ (x)在( -∞,- 1)上是增函數,又 k′ ( - 1) =-5 7 < 0,當 x<-1 時, k ′ ( x) < 0;
k (x )在( -∞,- 1)上是減函數,又 k( - 1) = 6 > 0,當 x <- 1時, k ( x )> 0,
故當 x<-1 時, h ′ (x) > 0;
定理3當 0x > 時,
當 1x<- 時,
證明:令
令 q (x ) = 10332 x8+ 41328 x7+ 80109 x6+ 95679 x5+ 74889 x4+ 38529 x3+ 12711x2+ 2505 x+ 220,則
q ′ ( x ) = 82656 x7+ 289296 x6+ 480654 x5+ 478395 x4+ 299556 x3+ 115587 x2+ 25422 x+ 2505
q(4)( x )=17357760 x4+34715520 x3+28839240 x2+11481480 x+ 1797336
q(5)(x )=69431040 x3+104146560 x2+57678480 x+ 11481480
q(6)( x )=208293120 x2+208293120 x+ 57678480
q(6)( -1 ) = 57678480 > 0,
故當 x<-1 時, q(6)( x)> 0,
q(5)( x )在( -∞,- 1)上是增函數,又 q(5)( -1 ) =-1 1481480 < 0,當 x <-1 時, q(5)( x)< 0;
q(4)( x )在( -∞,- 1)上是減函數,又q(4)( -1 ) = 1797336 > 0,當 x<- 1時, q(4)( x )> 0;
q ′ (x)在( -∞,- 1)上是增函數,又 q′ ( - 1) =-2 505 < 0,當 x <- 1時, q ′ (x)< 0;
q (x )在( -∞,- 1)上是減函數,又 q( - 1) = 220 > 0,當 x<-1 時, q (x) > 0;
故當 x<- 1時, p ′ ( x)> 0;
p (x )在( -∞,- 1)上是增函數[7],又xl→im-∞p ( x) = 0,故當 x <- 1時, p (x) > 0,
即當 1x<- 時,