于美佳 葉彥輝 韓艷英 張光祖
摘要?森林在生態(tài)系統(tǒng)中有大自然氧吧和維持生態(tài)平衡的意義,通過查閱國(guó)內(nèi)外有關(guān)于氮沉降的文獻(xiàn),從氮沉降對(duì)森林植物、動(dòng)物和微生物的影響等方面和角度綜述氮沉降對(duì)森林生態(tài)系統(tǒng)的影響,介紹了相應(yīng)的響應(yīng)機(jī)制,并對(duì)今后的進(jìn)一步研究工作提出展望。氮沉降的研究還存在一些問題,如目前國(guó)際上對(duì)氮沉降研究方法還沒有形成一套比較完備的標(biāo)準(zhǔn)體系,世界各地氮沉降量測(cè)定的研究方法和儀器設(shè)備都不相同,導(dǎo)致研究結(jié)果會(huì)出現(xiàn)差異,所以對(duì)真實(shí)生態(tài)情況很難進(jìn)行統(tǒng)一的定論和科學(xué)的比較分析。相比國(guó)外研究而言,國(guó)內(nèi)研究雖然形成了比較規(guī)范的監(jiān)測(cè)網(wǎng),但研究的技術(shù)手段缺乏確鑿性和一致性,并且研究對(duì)象不全面,樹種選擇局限,對(duì)闊葉樹種研究較少。
關(guān)鍵詞?氮沉降;森林;生態(tài)系統(tǒng);研究現(xiàn)狀;響應(yīng)機(jī)制
中圖分類號(hào)?S718.55?文獻(xiàn)標(biāo)識(shí)碼?A?文章編號(hào)?0517-6611(2021)03-0019-06
doi:10.3969/j.issn.0517-6611.2021.03.005
Abstract?Forests have a natural oxygen bar in the ecosystem and the significance of maintaining ecological balance. By consulting domestic and foreign literature on nitrogen deposition,this paper summarized the impact of nitrogen deposition on forest ecosystems from the aspects and perspectives of the effect of nitrogen deposition on forest plants, animals and microorganisms, introduced the corresponding response mechanism, and proposed prospects for future research work.There were still some problems in the research of nitrogen deposition. For example, the international research methods for nitrogen deposition had not yet formed a relatively complete standard system, and the research methods and equipment for the determination of nitrogen deposition were different around the world, leading to differences in research results. Therefore, it is difficult to make a unified conclusion and scientific comparative analysis of the real ecological situation.
Key words?Nitrogen deposition;Forest;Ecosystem;Research status;Response mechanism
大氣氮沉降已成為全球變化的一個(gè)主要因子[1]。大氣氮沉降增加呈現(xiàn)全球化趨勢(shì),我國(guó)是繼歐洲、北美之后的第3大氮沉降區(qū),大氣氮沉降遠(yuǎn)高于全球平均水平[2]。近年來,由于化石燃料的燃燒和氮肥的使用,全球大氣氮(N)沉降量已明顯增加,并嚴(yán)重影響陸地生態(tài)系統(tǒng)的物質(zhì)循環(huán)[3-4]。我國(guó)在2000—2009年平均氮沉降量已達(dá)21.1 kg/(hm2·a),并仍將繼續(xù)增長(zhǎng)[5]。同時(shí)在我國(guó)西部的青藏高原東緣地區(qū)大氣氮沉降已十分明顯[濕沉降已達(dá)7.55~12.84 kg/(hm2·a)],并呈逐年增加的趨勢(shì)[6]。研究發(fā)現(xiàn),大氣沉降是許多陸源污染物和營(yíng)養(yǎng)物質(zhì)從陸地輸送到海洋的重要途徑,排放到空氣中的氮70%~80%以大氣干濕沉降的方式返回到陸地和水體[7-10]。氮素是陸地植物凈初級(jí)生產(chǎn)力的限制性因子,大氣氮沉降的增加對(duì)植物凈初級(jí)生產(chǎn)力及土壤固碳能力的提高有一定的貢獻(xiàn),但也產(chǎn)生土壤酸化、生物多樣性喪失、氮損失增加等不利影響[11]。因此,研究氮沉降問題成為各界熱門關(guān)注話題。
國(guó)外對(duì)氮沉降方面的研究起步較早,英國(guó)洛桑實(shí)驗(yàn)站自19世紀(jì)50年代建立起就開始了雨水氮的收集與分析測(cè)定[12]。但是氮沉降研究發(fā)展的一直很緩慢,直至20世紀(jì)70年代末,這些研究還僅集中在歐洲、北美等經(jīng)濟(jì)發(fā)達(dá)的地區(qū),而在偏遠(yuǎn)地區(qū)的研究位點(diǎn)也相對(duì)較為分散,沒有形成整齊劃一的規(guī)模式研究[13]。在歐洲及美洲等一些發(fā)達(dá)國(guó)家,從20世紀(jì)80年代開始,各個(gè)國(guó)家均建立了全國(guó)或跨國(guó)性的大氣沉降監(jiān)測(cè)網(wǎng)絡(luò),如歐洲氮沉降監(jiān)測(cè)網(wǎng)絡(luò)NITREX、EXMAN[14],NITREX在7個(gè)國(guó)家的8個(gè)試驗(yàn)點(diǎn)增加或減少大氣氮沉降,特別是針葉林;EXMAN在4個(gè)國(guó)家的6個(gè)試驗(yàn)站點(diǎn)借由改變周邊大氣氮沉降的化學(xué)組成和數(shù)量來分析氮沉降研究現(xiàn)狀[15]。在美國(guó),長(zhǎng)期試驗(yàn)研究站點(diǎn)有馬薩諸塞州的哈佛森林長(zhǎng)期氮素增加試驗(yàn)和緬因州Bear brook集水區(qū)和Mt.Ascutney森林的模擬氮沉降試驗(yàn)[16-17]。東亞酸沉降網(wǎng)EANET、加拿大的空氣和降水監(jiān)測(cè)網(wǎng)絡(luò)CAPM0 N等[18],這些大氣氮沉降模型對(duì)研究森林生態(tài)系統(tǒng)關(guān)于大氣氮沉降的響應(yīng)和機(jī)理有著重要啟示和借鑒意義。
我國(guó)大氣氮沉降監(jiān)測(cè)研究起步較晚,有關(guān)氮沉降的研究始于20世紀(jì)30年代,系統(tǒng)的研究氮沉降始于20世紀(jì)70年代,以濕沉降為主[19-20]。從這之后我國(guó)對(duì)大氣氮沉降的定量研究開始增加,中國(guó)農(nóng)業(yè)大學(xué)在2004年組建了華北平原的大氣氮素沉降監(jiān)測(cè)網(wǎng)[21],隨后于2010年建立了涵蓋43個(gè)監(jiān)測(cè)點(diǎn)的全國(guó)大氣氮沉降,監(jiān)測(cè)網(wǎng)絡(luò)NNDMN[22],監(jiān)測(cè)點(diǎn)包括草原、城市、農(nóng)田、森林等生態(tài)系統(tǒng)。全國(guó)大氣氮沉降監(jiān)測(cè)網(wǎng)絡(luò)的建立使得大氣氮素干濕沉降的定量研究以及大氣活性氮來源的估測(cè)方面有了很大進(jìn)展。Lu等[23-25]近年來通過在廣東鼎湖山森林建立長(zhǎng)期氮沉降研究樣地,對(duì)我國(guó)南方森林生態(tài)系統(tǒng)的氮沉降及其對(duì)土壤酸化以及植物多樣性和適應(yīng)性的影響等進(jìn)行了一系列研究。中國(guó)科學(xué)院地理科學(xué)與資源研究所組建了中國(guó)生態(tài)系統(tǒng)研究網(wǎng)[26],該研究網(wǎng)絡(luò)涵蓋了40多個(gè)野外站,包括農(nóng)田、森林、湖泊、草地、海洋、沙漠等生態(tài)系統(tǒng)。
人類活動(dòng)加劇以及氮肥大量使用,氮沉降問題在全球范圍內(nèi)普遍存在,而氮作為一種重要的生命元素,無處不在人們的生活當(dāng)中。森林作為人類生存發(fā)展的重要氧吧和關(guān)鍵依托,對(duì)人類健康至關(guān)重要。過多的氮沉降問題會(huì)導(dǎo)致一系列生態(tài)問題,尤其對(duì)森林影響顯著。筆者通過查閱國(guó)內(nèi)外有關(guān)氮沉降的文獻(xiàn),從氮沉降對(duì)森林植物、動(dòng)物和微生物的影響等方面綜述氮沉降對(duì)森林生態(tài)系統(tǒng)的影響,并介紹了相應(yīng)的響應(yīng)機(jī)制。
1?氮沉降對(duì)森林植物的影響
森林生態(tài)系統(tǒng)作為陸地生態(tài)系統(tǒng)的主體,在全球碳循環(huán)中起著極其重要的作用[27-28]。很多專家認(rèn)為森林有著更高的氮沉降速率,氮沉降對(duì)森林生態(tài)系統(tǒng)的影響要大于其他陸地生態(tài)系統(tǒng)[29]。森林生態(tài)系統(tǒng)的結(jié)構(gòu)和功能一般比較復(fù)雜,其多樣性的變化更多與林下植物多樣性變化有關(guān)[30]。氮沉降對(duì)森林生態(tài)系統(tǒng)林下生物多樣性的影響也常有報(bào)道[31-32]。關(guān)于氮沉降對(duì)生物多樣性以及不同生活型植物的影響則各有爭(zhēng)論,有研究認(rèn)為氮沉降會(huì)降低林下植物的物種多樣性[33-34];而Du[35]在溫帶針葉林進(jìn)行的3年氮添加試驗(yàn)發(fā)現(xiàn),氮添加并未改變林下植物的物種多樣性;胡鈞宇等[36]在溫帶針闊混交林進(jìn)行的為期1年的施肥試驗(yàn)表明,低氮處理使林下物種多樣性增加,高氮處理則有抑制作用。眾多研究表明,森林生態(tài)系統(tǒng)不同生活型植物對(duì)氮沉降的響應(yīng)與草原草甸等生態(tài)系統(tǒng)不同生活型植物對(duì)氮沉降的響應(yīng)大體相同,即氮沉降能夠促進(jìn)禾草類植物和落葉灌木的生長(zhǎng),抑制雜類草和常綠灌木的生長(zhǎng)[37-38]。也有研究表明,氮沉降對(duì)草本植物和灌木植物生長(zhǎng)均無顯著影響[39]。當(dāng)然,氮沉降對(duì)生物多樣性的影響還因施肥時(shí)間長(zhǎng)短不同存在差異[40-41]。有研究發(fā)現(xiàn),3年的氮沉降提高了林下植物曲芒發(fā)草的豐富度,而4年氮沉降卻降低了曲芒發(fā)草的豐富度[42-43]。
1.1?氮沉降對(duì)森林植物化學(xué)元素的影響
大氣氮沉降會(huì)直接作用于植物,或者通過改變土壤化學(xué)元素的組成來間接影響植物元素平衡[44-45],并最終導(dǎo)致生態(tài)系統(tǒng)水平上的元素失衡[46-47]。就目前而言,有關(guān)于氮沉降對(duì)森林植物化學(xué)元素的研究多為地上,而地下研究則相對(duì)較少。
地上部分,國(guó)內(nèi)最先出自李德軍等[48]的研究,他總結(jié)前人研究,指出氮沉降會(huì)造成植物體內(nèi)養(yǎng)分元素比例的失衡;對(duì)南亞熱帶3種喬木幼苗的研究表明,氮施肥增加了植物N含量,增加了N與P、K、Ca、Mg和Mn等元素的比值。除N/P比外,N/K比也可以作為植物對(duì)氮沉降響應(yīng)的敏感指標(biāo)[49]。對(duì)溫帶森林的研究表明,氮素輸入普遍增加了植物N含量[50],進(jìn)一步驗(yàn)證了溫帶區(qū)域的氮素限制性[51]。但也有研究報(bào)道5年的N添加對(duì)溫帶落葉松各器官N、P、K、Ca和Mg含量的影響不明顯[52]。最近分析表明,隨著氮沉降的增加,木本和草本植物的葉中氮含量增加,但是葉中磷絕對(duì)含量變化不顯著[53-55]。對(duì)元素比值的整合分析表明,氮沉降普遍降低了中國(guó)各生態(tài)系統(tǒng)植物的C/N比,增加了N/P比,但是對(duì)C/P比的效應(yīng)不顯著,根本原因是氮沉降增加了植物中氮含量[56-58]。另一方面,Lu等[55]在“富氮”的熱帶成熟林的研究表明,為期10年的高氮輸入并沒有顯著改變喬木植物葉片中N、K、Ca、Mg和Al等元素的含量,這主要是由于該生態(tài)系統(tǒng)已經(jīng)達(dá)到氮飽和以及植物產(chǎn)生的自我適應(yīng)性調(diào)整;并由此提出了植物適應(yīng)性新假說:“富氮”生態(tài)系統(tǒng)植物可以通過提升自身蒸騰能力適應(yīng)高氮沉降來維持養(yǎng)分平衡。
地下部分,雖然對(duì)植物細(xì)根的研究頗多,但研究數(shù)量遠(yuǎn)少于對(duì)植物葉片的研究,且研究結(jié)論不統(tǒng)一。Mo等[59]對(duì)熱帶次生林的研究表明,氮添加增加了細(xì)根氮素含量,但對(duì)磷含量沒有影響,進(jìn)而導(dǎo)致了N/P比降低。Zhu等[60]對(duì)南亞熱帶成熟林、混交林和馬尾松林的研究表明,為期5年的氮添加并沒有改變細(xì)根氮和磷的含量。分析表明,全球氮沉降顯著增加了植物總根的生物量和植物細(xì)根的N含量,但是減少了細(xì)根的生物量,降低了細(xì)根的C/N比,且沒有顯著改變細(xì)根的C含量[61]。
不同生態(tài)系統(tǒng)植物元素化學(xué)對(duì)氮沉降的響應(yīng)不同,主要原因有2個(gè):第一,植物在長(zhǎng)期生存進(jìn)化中形成了不同的發(fā)育特征,導(dǎo)致對(duì)氮沉降的敏感度不同。另外,植物自我調(diào)整的適應(yīng)性也是一大影響因素。第二,植物發(fā)育的外部環(huán)境也會(huì)影響植物的響應(yīng)。如中國(guó)北方溫帶地區(qū)一般認(rèn)為氮限制,但是南方熱帶亞熱帶本身富氮,多受磷或其他陽離子限制,因此森林植物對(duì)氮沉降響應(yīng)可能存在不同。
1.2?氮沉降對(duì)森林植物生長(zhǎng)的影響
全球氮添加對(duì)不同植物物種生長(zhǎng)通常表現(xiàn)出刺激效應(yīng)[62]。不同生態(tài)系統(tǒng)和功能類群對(duì)氮沉降響應(yīng)的敏感程度有差異,次生林樹木的生長(zhǎng)一般比原始林敏感[63],草本植物比木本植物敏感[62-64]。另外,氮沉降對(duì)森林凈初級(jí)生產(chǎn)力或植物生長(zhǎng)的影響也隨著氮沉降量而異,具有生態(tài)學(xué)中普遍存在的非線性關(guān)系[65]。中國(guó)東北地區(qū)森林中,較低的氮添加[25 kg/(hm2·a)]導(dǎo)致最大的凈生產(chǎn)力,伴隨氮添加的增加[50 kg/(hm2·a)]正面效應(yīng)降低,氮添加量最大時(shí)(75 kg/(hm2·a)]正面效應(yīng)則會(huì)消失[66]。
早先觀點(diǎn)認(rèn)為,大氣氮沉降對(duì)于森林來說是一種養(yǎng)分,但也需要適量,如果過量的氮沉降會(huì)造成一定程度上的累積效應(yīng)。例如處于溫帶中的美國(guó)Harvard森林的長(zhǎng)期生態(tài)系統(tǒng)研究中,9年的施氮處理,各林木生物量比對(duì)照都有不同幅度的增加,但9年以后,森林林木生物量隨著氮輸入量的增加而減少,高氮處理樣方林木生物量與對(duì)照比顯著減少[67]。
從另外一個(gè)角度來看,過量氮沉降到森林最嚴(yán)重危害是伴隨工業(yè)廢氣中的SO2一起形成酸雨從而直接危害森林,使森林冠層稀疏,降低抵抗病蟲害的能力,隨著時(shí)間逐漸加重甚至有可能導(dǎo)致森林衰亡[68]。此外,長(zhǎng)期在森林酸雨會(huì)導(dǎo)致土壤酸化,主要表現(xiàn)在土壤pH下降、鹽基飽和度降低、Ca2+的大量流失、Al3+的活化與遷移等[69]。
目前在中國(guó)氮沉降對(duì)樹木徑向生長(zhǎng)的影響研究較少。樹木的生長(zhǎng)響應(yīng)因個(gè)體大小或生長(zhǎng)階段而不同[70-72]。劉修元等[70]研究了模擬氮沉降對(duì)落葉松原始林樹木胸徑生長(zhǎng)的影響,認(rèn)為不同高度的樹木對(duì)氮添加的響應(yīng)有明顯差異,較低樹木(樹高<16.5 m)的生長(zhǎng)對(duì)氮添加無顯著響應(yīng),較高樹木(樹高>16.5 m)在中氮和高氮[50和100 kg/(hm2·a)]處理下胸徑生長(zhǎng)顯著加速,但樹木越高,這種加速作用越下降。在亞熱帶闊葉林,Tian等[71]研究表明3年的氮添加[50和100 kg/(hm2·a)]使甜栲幼樹和林下幼苗生長(zhǎng)顯著降低,但是大樹的生長(zhǎng)沒有受到影響。7年的氮添加[40 kg/(hm2·a)]導(dǎo)致重慶馬尾松林土壤酸化和氮飽和,并使馬尾松生長(zhǎng)顯著下降[73]。從長(zhǎng)遠(yuǎn)來看,氮沉降對(duì)森林群落樹木結(jié)構(gòu)的改變、物種組成和碳吸存能力可能存在一定影響。
1.3?氮沉降對(duì)森林植被多樣性的影響
大氣氮沉降升高已成為全球多樣性喪失的第三大驅(qū)動(dòng)因素[74]。但中國(guó)相關(guān)研究報(bào)道較少。由于喬木植物與林下層植物相比對(duì)環(huán)境因素的響應(yīng)較慢,所以現(xiàn)有研究主要在林下層植物多樣性上。長(zhǎng)期氮沉降會(huì)改變林下層物種組成,但改變程度取決于森林類型、功能類群以及氮狀態(tài)等影響因素。在溫帶地區(qū),Du[75]研究發(fā)現(xiàn)3年的氮添加試驗(yàn)對(duì)北方原始森林林下層植物的物種豐富度沒有影響,但顯著增加了禾草類植物的蓋度,并降低了矮小灌木植物的蓋度。在熱帶/亞熱帶原始林,Lu等[76]研究發(fā)現(xiàn)5年的高氮添加[>100 kg/(hm2·a)]顯著降低了林下植物多樣性,并首次提出負(fù)面效應(yīng)主要與土壤酸化機(jī)制有關(guān)而不是傳統(tǒng)上的競(jìng)爭(zhēng)機(jī)制。Wu等[77]研究表明8年的高氮添加[>120 kg/(hm2·a)]可能通過降低土壤pH和菌根真菌豐度來削弱亞熱帶森林林下植物豐富度。Huang等[78]通過對(duì)比NH4NO3和NaNO3處理在亞熱帶馬尾松林的效應(yīng),認(rèn)為林下主要物種多度的降低可能是氮飽和與土壤酸化共同作用的結(jié)果。與模擬氮沉降控制試驗(yàn)的結(jié)果基本一致,Huang等[79]研究發(fā)現(xiàn)在廣州城鄉(xiāng)氮沉降梯度上[30.1~43.3 kg/(hm2·a)],成熟林林下草本層植物多樣性與氮沉降量呈負(fù)相關(guān),與土壤中的有效Ca2+和K+濃度呈正相關(guān)。另外,氮沉降效應(yīng)也與土地利用方式有關(guān),與原始林相比,人工林或次生林中植物多樣性對(duì)氮沉降的響應(yīng)相對(duì)不敏感[80-81]。
2?氮沉降對(duì)森林動(dòng)物的影響
2.1?氮沉降對(duì)森林土壤動(dòng)物生物量的影響
土壤動(dòng)物在土壤和生態(tài)系統(tǒng)中都占有重要作用,氮添加對(duì)土壤動(dòng)物會(huì)產(chǎn)生影響。南亞熱帶地區(qū)人工苗圃樣地研究成果表明,首先是在1年的試驗(yàn)處理中,氮沉降整體上一直表現(xiàn)對(duì)土壤動(dòng)物群落的促進(jìn)作用;其次是氮沉降增加具有明顯的閾值效應(yīng),在1年的時(shí)間內(nèi),中氮處理(100 kg/hm2)始終為動(dòng)物各參數(shù)取值高峰及變化的臨界點(diǎn)[82]。研究表明,氮沉降的閾值作用確實(shí)存在,一定限度內(nèi)的氮輸入是有利的,但過量的氮沉降則會(huì)造成負(fù)面影響[83],對(duì)植物和微生物也有參考價(jià)值。Xu等[84]對(duì)南亞熱帶3種典型森林(季風(fēng)常綠林、針闊混交林和針葉林)的研究表明,1年的氮處理并未對(duì)土壤動(dòng)物生物量產(chǎn)生顯著影響,但低氮處理[50 kg/(hm2·a)]各林分生物量都有不同程度的上升,而高氮處理[100 kg/(hm2·a)]均出現(xiàn)下降。Xu等[85]對(duì)鼎湖山森林苗圃地的研究進(jìn)一步表明,氮沉降對(duì)土壤動(dòng)物群落多樣性的影響存在閾值效應(yīng)[100 kg/(hm2·a)]。在北亞熱帶楊樹人工林進(jìn)行2年氮添加試驗(yàn)表明,中等濃度的氮添加對(duì)土壤動(dòng)物群落有促進(jìn)作用,高濃度則有抑制作用[86];氮添加4年后,低氮和高氮水平分別顯著增加和降低了土壤動(dòng)物總密度和植食性土壤動(dòng)物密度,均表明氮添加對(duì)土壤動(dòng)物的影響存在閾值作用[87]。
另外,氮沉降對(duì)不同土壤動(dòng)物的影響也可能不同。溫帶人工林的研究表明,施肥改變了兩林分不同食性土壤動(dòng)物的密度,導(dǎo)致腐食性土壤動(dòng)物數(shù)量降低,植食性土壤動(dòng)物數(shù)量增加,但捕食性土壤動(dòng)物數(shù)量變化不明顯;這表明不同食性土壤動(dòng)物對(duì)氮沉降的響應(yīng)也不一致[88]。也有研究表明,加氮對(duì)植食性線蟲密度無顯著影響,但可以改變外來生物(如蚯蚓)和植食性線蟲之間的相互作用關(guān)系,從而潛在影響生態(tài)系統(tǒng)的功能[89]。
目前關(guān)于氮沉降對(duì)森林生態(tài)系統(tǒng)土壤動(dòng)物影響的研究報(bào)道缺乏,但在農(nóng)業(yè)土壤添加氮素對(duì)土壤動(dòng)物影響的研究中,有觀點(diǎn)認(rèn)為存在氮沉降量的問題。在針葉林內(nèi)進(jìn)行氮處理的正效應(yīng)不僅在處理樣地表現(xiàn)出來,而且也明顯提高了對(duì)照樣地土壤動(dòng)物類群的生物量[90]。
2.2?氮沉降對(duì)森林動(dòng)物多樣性的影響
動(dòng)物群落對(duì)環(huán)境的微弱變化能產(chǎn)生靈敏的反應(yīng)[91]。諸多外界因素對(duì)研究結(jié)果都可能出現(xiàn)一定程度的影響,目前氮沉降對(duì)動(dòng)物影響研究較少,僅在歐美國(guó)家和中國(guó)的鼎湖山等少數(shù)地區(qū),如NITREX項(xiàng)目,以及Huhta等[92]和Xu等[91]開展的相關(guān)研究,大多認(rèn)為氮沉降增加使土壤動(dòng)物多樣性降低。如在鼎湖山森林生態(tài)系統(tǒng)的長(zhǎng)期氮研究項(xiàng)目中,Xu等[91]研究發(fā)現(xiàn)模擬氮沉降增加顯著降低了成熟林土壤動(dòng)物群落的多樣性。然而也有研究表明,低濃度氮沉降在一定程度上增加動(dòng)物多樣性[93-95]。如徐國(guó)良等[90]對(duì)馬尾松林土壤動(dòng)物研究發(fā)現(xiàn),為期16個(gè)月的氮處理促進(jìn)了動(dòng)物群落的多樣性,所以閾值效應(yīng)值得關(guān)注。此外,Xu等[91]對(duì)針闊混交林的研究則認(rèn)為氮沉降對(duì)土壤動(dòng)物沒有明顯影響,這可能與氮沉降量有關(guān)。所以,森林動(dòng)物多樣性降低很有可能是由過量氮沉降產(chǎn)生的土壤酸化和土壤結(jié)構(gòu)破壞危害造成的。
3?氮沉降對(duì)森林微生物的影響
土壤微生物適應(yīng)了一直以來的低氮環(huán)境,過量的氮沉降會(huì)對(duì)土壤微生物造成影響。薛璟花等[96]研究發(fā)現(xiàn)過量的氮沉降不僅可以改變微生物群落結(jié)構(gòu)組成,具體表現(xiàn)為真菌與細(xì)菌生物量比率的減少、土壤真菌細(xì)菌的相關(guān)豐富度發(fā)生改變、真菌生物量的減少、土壤微生物量的減少、微生物群落結(jié)構(gòu)發(fā)生改變,甚至改變一些微生物的生物功能,如減少土壤呼吸率、降低土壤酶活性等。在研究哈佛森林氮沉降對(duì)其土壤微生物影響的試驗(yàn)中,Wallenstein[97]研究也發(fā)現(xiàn),真菌與細(xì)菌比率隨施氮水平增加而減少。所以施氮對(duì)真菌的生長(zhǎng)有抑制,真菌在限制因子是碳的生態(tài)環(huán)境中優(yōu)勢(shì)明顯,而在氮的環(huán)境中優(yōu)勢(shì)不足,說明真菌對(duì)氮的利用率不高。
增氮對(duì)微生物量的影響還與氮添加的量、類型、季節(jié)、微生物種類及森林類型有關(guān)。低氮添加[50 kg/(hm2·a)]沒有顯著改變溫帶油松林土壤微生物生物量,但中氮和高氮添加[>100 kg/(hm2·a)]則顯著降低了微生物生物量[98],氨態(tài)氮添加[20~80 kg/(hm2·a)]增加了亞熱帶的冷杉種植園細(xì)菌生物量,但硝態(tài)氮添加[20~80 kg/(hm2·a)]則降低了細(xì)菌生物量[99]。Wang等[100]研究發(fā)現(xiàn)氨態(tài)氮添加[120 kg/(hm2·a)]在非生長(zhǎng)季顯著降低了亞熱帶冷杉和松樹種植園真菌生物量,在生長(zhǎng)季則對(duì)真菌生物量影響不顯著,但在2個(gè)季節(jié)對(duì)細(xì)菌生物量都沒有顯著影響。鼎湖山南亞熱帶森林的研究表明,氮添加降低了季風(fēng)常綠闊葉林的土壤微生物量,但對(duì)針闊混交林和針葉林的土壤微生物量則沒有顯著影響[101]。
3.1?氮沉降對(duì)土壤微生物的影響
氮添加可以改變土壤微生物組成。第一,氮添加會(huì)改變真菌群落(真菌、叢枝菌根真菌和外生菌根真菌)的組成,氮添加[70 kg/(hm2·a)]在春季會(huì)增加北方落葉松森林擔(dān)子菌門的相對(duì)豐度,但在夏季則會(huì)減少擔(dān)子菌門的相對(duì)豐度[102]。氮添加[50~100 kg/(hm2·a)]會(huì)降低武夷山的亞熱帶常綠闊葉林叢枝菌根真菌的比例,但氮添加[150 kg/(hm2·a)]增加了鼎湖山季風(fēng)常綠闊葉林叢枝菌根真菌的相對(duì)豐度[103-104]。氮添加[50~300 kg/(hm2·a)]能使亞熱帶濕地松林對(duì)氮敏感的外生菌根真菌缺失[105]。第二,氮添加會(huì)影響細(xì)菌組成,基于磷脂脂肪酸分析技術(shù),氮添加會(huì)降低革蘭氏陰性細(xì)菌的相對(duì)豐度,增加革蘭氏陽性細(xì)菌/革蘭氏陰性細(xì)菌比[103]?;诟咄拷沽姿釡y(cè)序的研究也表明,氮添加會(huì)影響細(xì)菌群落的組成[102,106-107]。Nie等[107]研究發(fā)現(xiàn)氮添加[105 kg/(hm2·a)]在干季會(huì)降低鼎湖山南亞熱帶常綠闊葉林酸桿菌門的相對(duì)豐度,但會(huì)增加變形菌門和放線菌門的相對(duì)豐度。第三,氮添加會(huì)影響真菌與細(xì)菌之比。如氮添加增加了中國(guó)南部亞熱帶森林真菌的相對(duì)豐度,減少細(xì)菌的相對(duì)豐度,從而提高真菌/細(xì)菌比[103,108]。然而,氮添加降低了千煙洲的亞熱帶森林真菌/細(xì)菌比[100,108-110]。還有研究表明氮添加對(duì)真菌/細(xì)菌比沒有顯著影響[111-112]。
3.2?氮沉降對(duì)微生物多樣性的影響
過量氮沉降的輸入和氮飽和的出現(xiàn),微生物群落的結(jié)構(gòu)和功能都將會(huì)發(fā)生改變,過高的氮沉降則會(huì)減少微生物量,降低物種多樣性[113-116]。在氮沉降條件下,由喜氮物種和厭氮物種共同主導(dǎo)的群落,將逐漸演替成以喜氮物種為優(yōu)勢(shì)種,而厭氮物種則逐漸淪為衰退種的新的群落結(jié)構(gòu)[117]。另外,外生菌根真菌,盡管短期的氮沉降促進(jìn)了種群數(shù)量的增加和子實(shí)體的生產(chǎn),但是長(zhǎng)期的氮沉降具有抑制作用,故降低了菌根根系的拓展能力、真菌子實(shí)體的產(chǎn)量和物種的豐富度[118-120]。氮沉降對(duì)土壤細(xì)菌的影響通常不如真菌明顯,可能與生態(tài)系統(tǒng)的氮狀態(tài)、植被組成以及施氮時(shí)間長(zhǎng)短有關(guān),一定限度內(nèi)的氮沉降對(duì)生物多樣性可能是有利的[121-122]。另外大多數(shù)研究都表明,氮沉降量的增加降低外生菌根真菌的數(shù)量、物種的豐富度和群落的組成[113,123-124]。
4?結(jié)論
目前國(guó)際上對(duì)氮沉降研究方法還沒有形成一套比較完備的標(biāo)準(zhǔn)體系,如收集、保存和測(cè)定氮沉降量等。世界各地由于地形、氣候、文化和歷史等差異,氮沉降量測(cè)定的研究方法和儀器設(shè)備都不相同,導(dǎo)致研究結(jié)果會(huì)出現(xiàn)差異,所以對(duì)真實(shí)生態(tài)情況很難進(jìn)行統(tǒng)一的定論和科學(xué)的比較分析。相比國(guó)外研究而言,國(guó)內(nèi)研究雖然形成了比較規(guī)范的監(jiān)測(cè)網(wǎng),但研究的技術(shù)手段缺乏確鑿性和一致性,并且研究對(duì)象不全面,樹種選擇局限,對(duì)闊葉樹種研究較少。已經(jīng)得出的研究數(shù)據(jù),由于地區(qū)不同、時(shí)間不同、方法不同以及植物不同,研究結(jié)果也存在一定偏差,很難得出氮沉降對(duì)森林影響的普適性研究結(jié)論。雖然氮沉降研究始于20世紀(jì)50年,但是一直到20世紀(jì)80年代才逐步開始完善起來,不過短短30年左右時(shí)間,國(guó)內(nèi)研究起步較國(guó)外更遲。準(zhǔn)確了解氮沉降對(duì)森林影響還需要持續(xù)研究。
參考文獻(xiàn)
[1] STEVENS C J.How long do ecosystems take to recover from atmospheric nitrogen deposition?[J].Biological conservation,2016,200:160-167.
[2] LIU L,ZHANG T,GILLIAM F S,et al.Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J].PloS One,2013,8(4):1-10.
[3] BERGSTRM A K,JANSSON M.Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the Northern Hemisphere[J].Glob Change Biol,2006,12(4):635-643.
[4] FANG Y T,YOH M,KOBA K,et al.Nitrogen deposition and forest nitrogen cycling along an urbanrural transect in Southern China[J].Glob Change Biol,2011,17(2):872-885.
[5] JIA Y L,YU G R,HE N P,et al.Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J].Scientific reports,2014,4:1-7.
[6] ZHU J X,HE N P,WANG Q F,et al.The composition,spatial patterns,and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J].Science of the total environment,2015,511:777-785.
[7] 韓麗君,朱玉梅,劉素美,等.黃海千里巖島大氣濕沉降營(yíng)養(yǎng)鹽的研究[J].中國(guó)環(huán)境科學(xué),2013,33(7):1174-1184.
[8] 朱玉梅,劉素美.東海大氣濕沉降中營(yíng)養(yǎng)鹽的研究[J].環(huán)境科學(xué),2011,32(9):2724-2731.
[9] 王江飛,周柯錦,汪小泉,等.杭嘉湖地區(qū)大氣氮、磷沉降特征研究[J].中國(guó)環(huán)境科學(xué),2015,35(9):2754-2763.
[10] 王歡博,石光明,田密,等.三峽庫(kù)區(qū)大氣活性氮組成及干沉降通量[J].中國(guó)環(huán)境科學(xué),2018,38(1):44-50.
[11] LEBAUER D S,TRESEDER K K.Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J].Ecology,2008,89(2):371-379.
[12] GOULDING K W T,BAILEY N J,BRADBURY N J,et al.Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes[J].New phytologist,1998,139(1):49-58.
[13] 鄭世偉,江洪.氮沉降對(duì)森林生態(tài)系統(tǒng)影響的研究進(jìn)展[J].浙江林業(yè)科技,2014,34(2):56-64.
[14] DE FAGERLI H,AAS W.Trends of nitrogen in air and precipitation:Model results and observations at EMEP sites in Europe,1980-2003[J].Environmental pollution,2008,154(3):448-461.
[15] 魯顯楷,莫江明,張煒,等.模擬大氣氮沉降對(duì)中國(guó)森林生態(tài)系統(tǒng)影響的研究進(jìn)展[J].熱帶亞熱帶植物學(xué)報(bào),2019,27(5):500-522.
[16] ABER J,MCDOWELL W,NADELHOFFER K,et al.Nitrogen saturation in temperate forest ecosystems[J].BioScience,1998,48(11):921-934.
[17] MAGILL A H,ABER J D,CURRIE W S,et al.Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER,Massachusetts,USA[J].For Ecol Manage,2004,196(1):7-28.
[18] 吳玉鳳,高霄鵬,桂東偉,等.大氣氮沉降監(jiān)測(cè)方法研究進(jìn)展[J].應(yīng)用生態(tài)學(xué)報(bào),2019,30(10):3605-3614.
[19] 張修峰.上海地區(qū)大氣氮濕沉降及其對(duì)濕地水環(huán)境的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2006,17(6):1099-1102.
[20] 周國(guó)逸,閆俊華.鼎湖山區(qū)域大氣降水特征和物質(zhì)元素輸入對(duì)森林生態(tài)系統(tǒng)存在和發(fā)育的影響[J].生態(tài)學(xué)報(bào),2001,21(12):2002-2012.
[21] 張穎,劉學(xué)軍,張福鎖,等.華北平原大氣氮素沉降的時(shí)空變異[J].生態(tài)學(xué)報(bào),2006,26(6):1633-1639.
[22] 劉學(xué)軍,張福鎖.環(huán)境養(yǎng)分及其在生態(tài)系統(tǒng)養(yǎng)分資源管理中的作用:以大氣氮沉降為例[J].干旱區(qū)研究,2009,26(3):306-311.
[23] LU X K,MAO Q G,GILLIAM F S,et al.Nitrogen deposition contributes to soil acidification in tropical ecosystems[J].Global change biology,2014,20(12):3790-3801.
[24] LU X K,MAO Q G,MO J M,et al.Divergent responses of soil buffering capacity to longterm N deposition in three typical tropical forests with different landuse history[J].Environmental science & technology,2015,49(7):4072-4080.
[25] LU X K,VITOUSEK P M,MAO Q G,et al.Plant acclimation to longterm high nitrogen deposition in an Nrich tropical forest[J].Proceedings of the national academy of sciences of the United States of America,2018,115(20):5187-5192.
[26] ZHU J X,HE N P,WANG Q F,et al.The composition,spatial patterns,and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J].Science of the total environment,2015,511:777-785.
[27] FALKOWSKI P,SCHOLES R J,BOYLE E A,et al.The global carbon cycle:A test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296.
[28] 樊后保,黃玉梓,袁穎紅,等.森林生態(tài)系統(tǒng)碳循環(huán)對(duì)全球氮沉降的響應(yīng)[J].生態(tài)學(xué)報(bào),2007,27(7):2997-3009.
[29] GILLIAM F S,ROBERTS M R.The herbaceous layer in forests of eastern North America[M].2nd ed.New York:Oxford University Press,2003.
[30] GILLIAM F S.The ecological significance of the herbaceous layer in temperate forest ecosystems[J].BioScience,2007,57(10):845-858.
[31] STRENGBOM J,NORDIN A,NSHOLM T,et al.Slow recovery of boreal forest ecosystem following decreased nitrogen input[J].Functional ecology,2001,15(4):451-457.
[32] GILLIAM F S.Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition[J].Journal of ecology,2006,94(6):1176-1191.
[33] HEDWALL P O,NORDIN A,STRENGBOM J,et al.Does background nitrogen deposition affect the response of boreal vegetation to fertilization?[J].Oecologia,2013,173(2):615-624.
[34] WALTER C A,ADAMS M B,GILLIAM F S,et al.Nonrandom species loss in a forest herbaceous layer following nitrogen addition[J].Ecology,2017,98(9):2322-2332.
[35] DU E Z.Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition[J].Environmental pollution,2017,221:392-397.
[36] 胡鈞宇,朱劍霄,周璋,等.氮添加對(duì)4種森林類型林下植物多樣性的影響[J].北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,50(5):904-910.
[37] VAN DOBBEN H F,TER BRAAK C J F,DIRKSE G M.Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest[J].Forest ecology and management,1999,114(1):83-95.
[38] STRENGBOM J,NORDIN A.Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests[J].Journal of vegetation science,2012,23(2):361-371.
[39] LU X K,MO J M,GILLIAM F S,et al.Effects of experimental nitrogen additions on plant diversity in an oldgrowth tropical forest[J].Global change biology,2010,16(10):2688-2700.
[40] BOBBINK R,HICKS K,GALLOWAY J,et al.Global assessment of nitrogen deposition effects on terrestrial plant diversity:A synthesis[J].Ecological applications,2010,20(1):30-59.
[41] GILLIAM F S,WELCH N T,PHILLIPS A H,et al.Twentyfiveyear response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition[J].Ecosphere,2016,7(4):1-16.
[42] STRENGBOM J,WALHEIM M,NSHOLM T,et al.Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests[J].AMBIO:A Journal of the Human Environment,2003,32(2):91-97.
[43] NORDIN A,STRENGBOM J,F(xiàn)ORSUM ,et al.Complex biotic interactions drive longterm vegetation change in a nitrogen enriched boreal forest[J].Ecosystems,2009,12(7):1204-1211.
[44] HE X J,HOU E Q,LIU Y,et al.Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China[J].Sci Rep,2016,6:1-9.
[45] GILLIAM F S,MAY J D,ADAMS M B.Response of foliar nutrients of Rubus allegheniensis to nutrient amendments in a central Appalachian hardwood forest[J].For Ecol Manage,2018,411:101-107.
[46] LU X K,MO J M,GILLIAM F S,et al.Effects of experimental nitrogen additions on plant diversity in an oldgrowth tropical forest[J].Glob Change Biol,2010,16(10):2688-2700.
[47] LIU X J,DUAN L,MO J M,et al.Nitrogen deposition and its ecological impact in China:An overview[J].Environ Pollut,2011,159(10):2251-2264.
[48] 李德軍,莫江明,方運(yùn)霆,等.模擬氮沉降對(duì)南亞熱帶兩種喬木幼苗生物量及其分配的影響[J].植物生態(tài)學(xué)報(bào),2005,29(4):543-549.
[49] MO J M,LI D J,GUNDERSEN P.Seedling growth response of two tropical tree species to nitrogen deposition in Southern China[J].Eur J For Res,2008,127(4):275-283.
[50] YUAN Z Y,CHEN H Y H.Negative effects of fertilization on plant nutrient resorption[J].Ecology,2015,96(2):373-380.
[51] DENG M F,LIU L L,SUN Z Z,et al.Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principisrupprechtii plantations[J].New Phytol,2016,212(4):1019-1029.
[52] 趙瓊,劉興宇,胡亞林,等.氮添加對(duì)興安落葉松養(yǎng)分分配和再吸收效率的影響[J].林業(yè)科學(xué),2010,46(5):14-19.
[53] TIAN D,DU E Z,JIANG L,et al.Responses of forest ecosystems to increasing N deposition in China:A critical review[J].Environ Pollut,2018,243:75-86.
[54] YUE K,YANG W Q,PENG Y,et al.Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools:A metaanalysis[J].Sci Total Environ,2018,630:181-188.
[55] LU X K,VITOUSEK P M,MAO Q G,et al.Plant acclimation to longterm high nitrogen deposition in an Nrich tropical forest[J].Proc Natl Acad Sci USA,2018,115(20):5187-5192.
[56] YUE K,PENG Y,PENG C H,et al.Stimulation of terrestrial ecosystem carbon storage by nitrogen addition:A metaanalysis[J].Sci Rep,2016,6:1-10.
[57] DENG Q,HUI D F,DENNIS S,et al.Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition:A metaanalysis[J].Glob Ecol Biogeogr,2017,26(6):713-728.
[58] YUE K,F(xiàn)ORNARA D A,YANG W Q,et al.Effects of three global change drivers on terrestrial C∶N∶P stoichiometry:A global synthesis[J].Glob Change Biol,2017,23(6):2450-2463.
[59] MO Q F,ZOU B,LI Y W,et al.Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest[J].Sci Rep,2015,5:1-12.
[60] ZHU F F,YOH M,GILLIAM F S,et al.Nutrient limitation in three lowland tropical forests in Southern China receiving high nitrogen deposition:Insights from fine root responses to nutrient additions[J].PLoS One,2013,8(12):1-8.
[61] LI W B,JIN C J,GUAN D X,et al.The effects of simulated nitrogen deposition on plant root traits:A metaanalysis[J].Soil Biol Biochem,2015,82:112-118.
[62] XIA J Y,WAN S Q.Global response patterns of terrestrial plant species to nitrogen addition[J].New Phytol,2008,179(2):428-439.
[63] WRIGHT S J,TURNER B L,YAVITT J B,et al.Plant responses to fertilization experiments in lowland,speciesrich,tropical forests[J].Ecology,2018,99(5):1129-1138.
[64] SIDDIQUE I,VIEIRA I C G,SCHMIDT S,et al.Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories[J].Ecology,2010,91(7):2121-2131.
[65] DE VRIES W,DU E Z,BUTTERBACHBAHL K.Short and longterm impacts of nitrogen deposition on carbon sequestration by forest ecosystems[J].Current opinion in environmental sustainability,2014,9/10:90-104.
[66] YAN G Y,XING Y J,WANG J Y,et al.Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China:Effects of nitrogen deposition[J].Agric For Meteorol,2018,248:70-81.
[67] MAGILL A H,ABER J D,BERNTSON G M,et al.Longterm nitrogen additions and nitrogen saturation in two temperate forests[J].Ecosystems,2000,3(3):238-253.
[68] 王鴻玲.酸雨對(duì)森林危害及其對(duì)策[J].安徽林業(yè)科技,2004(4):42-43.
[69] 凌大炯,章家恩,歐陽穎.酸雨對(duì)土壤生態(tài)系統(tǒng)影響的研究進(jìn)展[J].土壤,2007,39(4):514-521.
[70] 劉修元,杜恩在,徐龍超,等.落葉松原始林樹木生長(zhǎng)對(duì)氮添加的響應(yīng)[J].植物生態(tài)學(xué)報(bào),2015,39(5):433-441.
[71] TIAN D,LI P,F(xiàn)ANG W J,et al.Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China[J].Biogeosciences,2017,14:3461-3469.
[72] JIANG L,TIAN D,MA S H,et al.The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest[J].Sci Total Environ,2018,618:1064-1070.
[73] HUANG Y M,KANG R H,MULDER J,et al.Nitrogen saturation,soil acidification,and ecological effects in a subtropical pine forest on acid soil in southwest China[J].J Geophys ResBiogeo,2015,120(11):2457-2472.
[74] SALA O E,CHAPIN F S III,ARMESTO J J,et al.Global biodiversity scenarios for the year 2100[J].Science,2000,287(5459):1770-1774.
[75] DU E Z.Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition[J].Environ Pollut,2017,221:392-397.
[76] LU X K,MO J M,GILLIAM F S,et al.Effects of experimental nitrogen additions on plant diversity in an oldgrowth tropical forest[J].Glob Change Biol,2010,16(10):2688-2700.
[77] WU J P,LIU W F,F(xiàn)AN H B,et al.Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest[J].Ecol Evol,2013,3(11):3895-3905.
[78] HUANG Y M,KANG R H,MULDER J,et al.Nitrogen saturation,soil acidification,and ecological effects in a subtropical pine forest on acid soil in southwest China[J].J Geophys Res Biogeo,2015,120(11):2457-2472.
[79] HUANG L J,ZHU W X,REN H,et al.Impact of atmospheric nitrogen deposition on soil properties and herblayer diversity in remnant forests along an urbanrural gradient in Guangzhou,Southern China[J].Plant Ecol,2012,213(7):1187-1202.
[80] LU X K,MO J M,GILLIAM F S,et al.Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China[J].Environ Pollut,2011,159(10):2228-2235.
[81] 李化山,汪金松,劉星,等.模擬N沉降對(duì)太岳山油松人工林和天然林草本群落的影響[J].生態(tài)學(xué)報(bào),2015,35(11):3710-3721.
[82] 徐國(guó)良,周小勇,周國(guó)逸,等.N沉降增加對(duì)森林生態(tài)系統(tǒng)地表土壤動(dòng)物群落的影響[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,44(S1):213-221.
[83] MAGILL A H,ABER J D,BERNTSON G M,et al.Longterm nitrogen additions and nitrogen saturation in two temperate forests[J].Ecosystems,2000,3(3):238-253.
[84] XU G L,MO J M,ZHOU G Y,et al.Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests[J].Pedosphere,2006,16(5):596-601.
[85] XU G L,MO J M,F(xiàn)U S L,et al.Response of soil fauna to simulated nitrogen deposition:A nursery experiment in subtropical China[J].J Environ Sci,2007,19(5):603-609.
[86] 周丹燕,卜丹蓉,葛之葳,等.氮添加對(duì)沿海不同林齡楊樹人工林土壤動(dòng)物群落的影響[J].生態(tài)學(xué)雜志,2015,34(9):2553-2560.
[87] BIAN H X,GENG Q H,XIAO H R,et al.Fine root biomass mediates soil fauna community in response to nitrogen addition in poplar plantations(Populus deltoids)on the east coast of China[J].Forests,2019,10(2):122-138.
[88] 莊海峰,孫玥,谷加存,等.施氮肥對(duì)落葉松和水曲柳人工林土壤動(dòng)物群落的影響[J].生物多樣性,2010,18(4):390-397.
[89] SHAO Y H,ZHANG W X,EISENHAUER N,et al.Nitrogen deposition cancels out exotic earthworm effects on plantfeeding nematode communities[J].J Anim Ecol,2017,86(4):708-717.
[90] 徐國(guó)良,莫江明,周國(guó)逸.氮沉降對(duì)三種林型土壤動(dòng)物群落生物量的影響[J].動(dòng)物學(xué)研究,2005,26(6):609-615.
[91] XU G L,MO J M,ZHOU G Y,et al.Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests[J].Pedosphere,2006,16(5):596-601.
[92] HUHTA V,SETL H,HAIMI J.Leaching of N and C from birch leaf litter and raw humus with special emphasis on the influence of soil fauna[J].Soil Biol Biochem,1988,20(6):875-878.
[93] BOXMAN A W,BLANCK K,BRANDRUD T E,et al.Vegetation and soil biota response to experimentally changed nitrogen inputs in coniferous forest ecosystems of the NITREX project[J].Forest ecology and management,1998,101(1/2/3):65-79.
[94] 徐國(guó)良,周小勇,周國(guó)逸,等.N沉降增加對(duì)森林生態(tài)系統(tǒng)地表土壤動(dòng)物群落的影響[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,44(S1):213-221.
[95] HEDWALL P O,NORDIN A,STRENGBOM J,et al.Does background nitrogen deposition affect the response of boreal vegetation to fertilization?[J].Oecologia,2013,173(2):615-624.
[96] 薛璟花,莫江明,李炯,等.氮沉降增加對(duì)土壤微生物的影響[J].生態(tài)環(huán)境,2005,14(5):777-782.
[97] WALLENSTEIN M D.Effects of increased nitrogen deposition on forest soil nitrogen cycling and microbial community structure[D].Durham,NC:Duke University,2004.
[98] ZHAO B,GENG Y,CAO J,et al.Contrasting responses of soil respiration components in response to fiveyear nitrogen addition in a Pinus tabulaeformis forest in Northern China[J].Forests,2018,9:544-558.
[99] LIU C X,DONG Y H,SUN Q W,et al.Soil bacterial community response to shortterm manipulation of the nitrogen deposition form and dose in a Chinese fir plantation in southern China[J].Water Air Soil Pollut,2016,227:447-459.
[100] WANG Y S,CHENG S L,F(xiàn)ANG H J,et al.Contrasting effects of ammonium and nitrate inputs on soil CO2 emission in a subtropical coniferous plantation of southern China[J].Biol Fert Soils,2015,51(7):815-825.
[101] CHEN X M,LI Y L,MO J M,et al.Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S China[J].J Plant Nutr Soil Sci,2012,175(6):947-953.
[102] YAN G Y,XING Y J,XU L J,et al.Effects of different nitrogen additions on soil microbial communities in different seasons in a boreal forest[J].Ecosphere,2017,8(7):1-19.
[103] WANG C,LU X K,MORI T,et al.Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogenrich tropical forest[J].Soil Biol Biochem,2018,121:103-112.
[104] TIAN D,JIANG L,MA S H,et al.Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China[J].Sci Total Environ,2017,607/608:1367-1375.
[105] NING C,MUELLER G M,EGERTONWARBURTON L M,et al.Diversity and enzyme activity of ectomycorrhizal fungal communities following nitrogen fertilization in an urbanadjacent pine plantation[J].Forests,2018,9(3):99-116.
[106] CUI J,WANG J J,XU J,et al.Changes in soil bacterial communities in an evergreen broadleaved forest in east China following 4 years of nitrogen addition[J].J Soil Sediment,2017,17(8):2156-2164.
[107] NIE Y X,WANG M C,ZHANG W,et al.Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment[J].Sci Total Environ,2018,624:407-415.
[108] LIU L,ZHANG T,GILLIAM F S,et al.Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J].PLoS One,2013,8(4):1-10.
[109] ZHANG C,ZHANG X Y,ZOU H T,et al.Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China[J].Biogeosciences,2017,14(20):4815-4827.
[110] KOU L,ZHANG X Y,WANG H M,et al.Nitrogen additions inhibit nitrification in acidic soils in a subtropical pine plantation:Effects of soil pH and compositional shifts in microbial groups[J].J For Res,2019,30(2):669-678.
[111] WU J P,LIU W F,F(xiàn)AN H B,et al.Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest[J].Ecol Evol,2013,3(11):3895-3905.
[112] 王小云,溫騰.模擬氮沉降對(duì)小興安嶺地區(qū)人工紅松林土壤氮轉(zhuǎn)化的影響[J].土壤通報(bào),2017,48(3):604-610.
[113] LILLESKOV E A,F(xiàn)AHEY T J,LOVETT G M.Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient[J].Ecological applications,2001,11(2):397-410.
[114] JONSSON L,ANDERS D,TORERIK B.Spatiotemporal distribution of an ectomycorrhizal community in an oligotrophic Swedish Picea abies forest subjected to experimental nitrogen addition:Aboveand belowground views[J].For Ecol Manage,2000,132(2/3):143-156.
[115] EGERTONWARBURTON L M,ALLEN E B.Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient[J].Ecological applications,2000,10(2):484-496.
[116] DEFOREST J L,ZAK D R,PREGITZER K S,et al.Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J].Soil biology and biochemistry,2004,36(6):965-971.
[117] 薛璟花,莫江明,李炯,等.氮沉降對(duì)外生菌根真菌的影響[J].生態(tài)學(xué)報(bào),2004,24(8):1789-1796.
[118] LILLESKOV E A,F(xiàn)AHEY T J,HORTON T R,et al.Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska[J].Ecology,2002,83(1):104-115.
[119] CARFRAE J A,SKENE K R,SHEPPARD L J,et al.Effects of nitrogen with and without acidified sulphur on an ectomycorrhizal community in a Sitka spruce(Picea sitchensis Bong.Carr)forest[J].Environmental pollution,2006,141(1):131-138.
[120] DIGHTON J,TUININGA A R,GRAY D M,et al.Impacts of atmospheric deposition on New Jersey pine barrens forest soils and communities of ectomycorrhizae[J].Forest ecology and management,2004,201(1):131-144.
[121] ABER J,MCDOWELL W H,NADELHOFFER K J,et al.Nitrogen saturation in temperate forest ecosystems:Hypotheses revisited[J].BioScience,1998,48(11):921-934.
[122] MAGILL A H,ABER J D,BERNTSON G M,et al.Longterm nitrogen additions and nitrogen saturation in two temperate forests[J].Ecosystems,2000,3(3):238-253.
[123] WALLENDA T,KOTTKE I.Nitrogen deposition and ectomycorrhizas[J].New phytologist,1998,139(1):169-187.
[124] TAYLOR A F S,MARTIN F,READ D J.Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies(L.)Karst.]and beech (Fagus sylvatica L.)along northsouth transects in Europe[M]∥SCHULZE F D.Carbon and nitrogen cycling in European forest ecosystems.Berlin:Springer Verlag,2000:343-365.