何曉紅,蔣琳,浦亞斌,趙倩君,馬月輝
牛、綿羊角的遺傳定位及遺傳機(jī)制研究進(jìn)展
何曉紅,蔣琳,浦亞斌,趙倩君,馬月輝
中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193
角屬于動(dòng)物顱骨附屬物,為反芻動(dòng)物所特有。牛()、綿羊()角的表型包括野生型兩角表型、人工馴化的無(wú)角表型、畸形角等多種。牛和綿羊是闡明角的質(zhì)量性狀和數(shù)量性狀之間的關(guān)系以及質(zhì)量性狀的多基因調(diào)控機(jī)制等方面的理想動(dòng)物模型。近年來(lái),對(duì)角性狀研究不斷深入,在闡明新器官起源進(jìn)化、自然選擇、性別選擇和人工選擇對(duì)角表型的影響等方面取得了一系列進(jìn)展。本文詳細(xì)介紹了角的研究概況、多角表型遺傳定位、無(wú)角位點(diǎn)基因遺傳定位和畸形角等,并對(duì)目前牛和綿羊角的遺傳機(jī)制及存在的問題進(jìn)行了分析,以期為反芻動(dòng)物角性狀和其他特異性性狀遺傳機(jī)制研究提供參考。
綿羊;顱骨附屬物;角性狀;遺傳機(jī)制;無(wú)角表型;多角表型
動(dòng)物角屬于顱骨附屬物(cranial appendages),又稱骨質(zhì)角(headgear),主要出現(xiàn)在反芻動(dòng)物中。顱骨附屬物主要包括4類,分別為???Bovidae)動(dòng)物的洞角[1,2]、長(zhǎng)頸鹿科(Giraffidae)的瘤角、叉角羚科(Antilocapridae)的叉角和鹿科(Cervidae)的實(shí)角。洞角是??苿?dòng)物特有的附屬物,包括牛()、綿羊()、山羊()等,洞角主要由骨質(zhì)角心和外部包裹的堅(jiān)硬角質(zhì)鞘組成,終生不脫落[1,3]。牛和綿羊能夠在包括高原、沙漠在內(nèi)的廣泛生態(tài)環(huán)境下生存并適應(yīng)多種環(huán)境[4,5],據(jù)FAOSTAT (Food and Agriculture Organization of the United Nations)數(shù)據(jù)庫(kù)統(tǒng)計(jì),截至到2018年,全世界牛和綿羊存欄分別為14.90和12.09億只。牛和綿羊角表型具有豐富的多態(tài)性,包括野生型的兩角表型、人工選擇形成的無(wú)角表型以及在古老品種中存在的多角表型(綿羊特有),還包括發(fā)育不完全的畸形角表型,這些表型為角性狀提供了豐富的研究素材。基于牛和綿羊角多樣化的表型特征,多年來(lái)一直是重要的研究熱點(diǎn)之一,也是動(dòng)物表型遺傳進(jìn)化研究的重要模型。
綿羊是唯一具有多角表型的家養(yǎng)反芻動(dòng)物。綿羊角性狀具有豐富的多樣性,按照角的有無(wú)和個(gè)數(shù)分為無(wú)角、兩角、多角表型,其中多角是家養(yǎng)綿羊品種中存在的古老而珍稀的表型[6,7],至少在兩百多年以前就已經(jīng)存在[6]。多角綿羊(multi-horned sheep)即頭上存在2只以上角的綿羊,一般有3~6只角,據(jù)報(bào)道最多角可以達(dá)到9只,一般以4只角表型最多,所以又稱為四角羊(圖1A)。多角綿羊現(xiàn)分布于亞洲[8]、歐洲、非洲和美洲大陸[9~11],是開展綿羊角遺傳調(diào)控的理想動(dòng)物模型。
多角綿羊歷史上曾經(jīng)在亞洲、歐洲廣泛分布[12],經(jīng)過強(qiáng)烈的人工選擇,該表型目前僅有十幾個(gè)品種留存下來(lái),且群體數(shù)量都較小?,F(xiàn)存的多角綿羊品種主要包括Jacob[13]、Manx Loaghtan、Hebridean、Navajo-Churro[10]、Icelandic[9]、Damara[14]、阿勒泰綿羊、蒙古羊[15]、巴什拜羊[16,17]和泗水裘皮羊[18]等。這些品種無(wú)一例外都是當(dāng)?shù)氐墓爬暇d羊品種。最近,在我國(guó)青藏高原海拔5200米的地區(qū)調(diào)查時(shí),新發(fā)現(xiàn)了藏綿羊品種中的多角群體——多角藏綿羊,也是目前唯一在高海拔地區(qū)發(fā)現(xiàn)的多角綿羊群體[19]。此外,由于自然界并不存在多角綿羊的野生祖先,由此推測(cè)多角綿羊可能是在較早時(shí)期完成的馴化[20]。
圖1 綿羊角的表型
A:多角表型;B:兩角表型;C:畸形角;D:無(wú)角表型。
早在1913年,雜志發(fā)表了關(guān)于多角綿羊的研究[7];Alderson[21]推測(cè)綿羊角性狀由2個(gè)基因座調(diào)控,當(dāng)兩個(gè)基因座都為隱性純合基因型時(shí),綿羊表現(xiàn)為多角表型;Dyrmundsson[9]認(rèn)為多角表型對(duì)兩角表型而言為顯性遺傳,對(duì)無(wú)角表型為隱性遺傳。He等[22]以阿勒泰多角羊、蒙古多角羊、泗水裘皮羊?yàn)檠芯繉?duì)象,對(duì)34只兩角和32只多角羊進(jìn)行全基因組關(guān)聯(lián)分析(genome wide association study, GWAS),成功將多角基因位點(diǎn)定位于綿羊2號(hào)染色體的132.6~132.7 Mb 區(qū)間,并發(fā)現(xiàn)畸形角表型并不影響多角表型的遺傳。Ren等[23]利用700K Illumina高密度芯片對(duì)24只兩角和22只四角泗水裘皮羊進(jìn)行GWAS分析,在綿羊2號(hào)染色體132.0~133.1 Mb區(qū)間篩選出4個(gè)顯著性SNP (single nucleotide poly-morphisms)位點(diǎn)。Kijas等[24]利用芯片對(duì)多角Jacobs和Navajo-Churro羊進(jìn)行GWAS分析,在綿羊2號(hào)染色體131.9~132.6 Mb區(qū)域篩選出10個(gè)顯著性SNP位點(diǎn),最顯著的位點(diǎn)在132.568 Mb處,且發(fā)現(xiàn)Navajo-Churro綿羊的無(wú)角位點(diǎn)定位于10號(hào)染色體29.3~29.5 Mb間。Greyvenstein等[25]對(duì)26只多角和16只兩角的Damara綿羊進(jìn)行GWAS分析,多角位點(diǎn)定位在綿羊2號(hào)染色體128~135 Mb區(qū)間,沒有發(fā)現(xiàn)多角表型的CNV(copy number variations),且發(fā)現(xiàn)顯著性SNP在多角個(gè)體上都是雜合基因型。綜上所述,對(duì)分布于中國(guó)、非洲、美洲和歐洲的6個(gè)多角綿羊群體進(jìn)行多角位點(diǎn)遺傳定位研究(表1),表明多角位點(diǎn)定位在綿羊2號(hào)染色體,首次成功在綿羊上定位到多角基因控制位點(diǎn)。2020年Li等[26]發(fā)表最新研究進(jìn)展,利用高通量重測(cè)序數(shù)據(jù)對(duì)泗水裘皮羊(多角表型)和小尾寒羊(兩角表型)進(jìn)行角性狀SNP關(guān)聯(lián)分析和品種間的選擇性清掃分析,在2號(hào)染色體基因簇()的和等基因上篩選到顯著性信號(hào),基本明確了綿羊多角基因的遺傳定位。
He等[19]對(duì)多角藏綿羊的深入調(diào)查發(fā)現(xiàn),多角綿羊群體中存在角數(shù)量3~6個(gè)不等的遺傳表型,其中4個(gè)角表型個(gè)體比例最高,并將多角分為典型多角表型(4個(gè)角)和非典型多角表型(3、5或者6個(gè)角)兩類,兩種表型定位于染色體的相同位置,均位于綿羊2號(hào)染色體132.8 Mb處,該結(jié)果表明多角表型的兩類亞型(典型和非典型多角)可能具有相同的遺傳位點(diǎn)(表1)。
2.1.1 牛無(wú)角位點(diǎn)()的遺傳定位
1993年,Georges等[27]將牛的無(wú)角位點(diǎn)定位在1號(hào)染色體上,并進(jìn)一步將范圍縮小到1號(hào)染色體的著絲粒區(qū)域[28]。研究人員陸續(xù)在該區(qū)間發(fā)現(xiàn)4個(gè)無(wú)角突變(表2)。Medugorac等[29]首先在歐洲凱爾特地區(qū)牛品種中發(fā)現(xiàn)Celtic POLLED (PC)突變,該突變位于和基因之間,是一個(gè)202 bp的插入–缺失復(fù)合體,研究人員通過基因編輯技術(shù)制成含該突變的荷斯坦牛成纖維細(xì)胞,通過克隆得到了無(wú)角表型的犢牛[30]。Medugorac等[29]和Rothammer等[31]通過對(duì)荷斯坦牛分析,發(fā)現(xiàn)了第二無(wú)角突變,研究表明在260 kb的單體型上存在5個(gè)與荷斯坦牛無(wú)角表型相關(guān)的候選突變,該突變與PC突變彼此不重組也不相互影響,稱為Friesian POLLED(PF)突變(表2),該突變位于PC位點(diǎn)下游200 kb處,是一段80 kb的重復(fù)序列,且無(wú)角荷斯坦牛并不攜帶PC突變[32]。Utsunomiya等[33]在內(nèi)洛爾瘤牛中發(fā)現(xiàn)了第3個(gè)突變——Guarani POLLED(PG)突變,該突變是一段110 kb的重復(fù)片段,分析發(fā)現(xiàn)該無(wú)角基因型來(lái)自普通牛。最后一個(gè)是Mongolian POLLED(PM)突變[34],存在于蒙古牦牛和蒙古Turano牛,蒙古牦牛的無(wú)角突變定位在位點(diǎn)800 kb長(zhǎng)的區(qū)域,存在2個(gè)基因型:一個(gè)是在原序列下游61 bp處插入219 bp重復(fù)–插入片段;第二個(gè)突變是在原序列上游621 bp處6 bp缺失和7 bp的插入。PM突變的219 bp重復(fù)片段內(nèi)有一個(gè)11 bp的基序,其在??苿?dòng)物中完全保守,PM突變同時(shí)也位于PF和PG變異內(nèi)。單倍型分析表明,PM變異是由Turano牛滲入到蒙古牦牛中[34]。
表1 綿羊角性狀相關(guān)遺傳區(qū)間、SNPs和候選基因
表2 牛角性狀相關(guān)遺傳突變和候選基因
2.1.2 牛無(wú)角表型轉(zhuǎn)錄組研究
科研人員通過對(duì)角芽和角進(jìn)行轉(zhuǎn)錄組及蛋白質(zhì)組分析,進(jìn)一步開展了角發(fā)育和無(wú)角表型的信號(hào)通路研究。Allais-Bonnet等[35]對(duì)胎兒期90天PC變異區(qū)域的基因表達(dá)和lincRNA (long intergenic non- coding RNA)進(jìn)行分析,發(fā)現(xiàn)有角和無(wú)角表型的角芽組織中基因和LincRNA#1存在顯著差異。無(wú)角表型牛胎兒角芽部位表達(dá)量顯著低于有角表型(< 0.05),LincRNA#1的表達(dá)低于有角表型(= 0.052)。Wiedemar等[32]對(duì)牛胎兒150天的角組織和無(wú)角表型角芽部位RNA測(cè)序,發(fā)現(xiàn)、、、和表達(dá)差異顯著,同時(shí)LincRNA#2表達(dá)量也差異顯著;對(duì)胎兒期70~175天角芽和額部皮膚分析,發(fā)現(xiàn)有角表型的、和 LincRNA#2表達(dá)量都高于無(wú)角表型,但未達(dá)到顯著差異。從以上研究發(fā)現(xiàn),是兩個(gè)研究的共同差異表達(dá)的基因,其他基因僅在某一時(shí)期內(nèi)存在表達(dá)差異。Li等[36]對(duì)PM突變無(wú)角牦牛80~90天胎兒角芽組織部位進(jìn)行蛋白組學(xué)分析,確定了29個(gè)表達(dá)上調(diào)蛋白和71個(gè)表達(dá)下調(diào)蛋白,表達(dá)上調(diào)蛋白涉及代謝活動(dòng),表達(dá)下調(diào)蛋白涉及細(xì)胞鏈接、細(xì)胞骨架形成和細(xì)胞成分組織。有角表型和無(wú)角表型在角芽組織結(jié)構(gòu)上的區(qū)別可能導(dǎo)致了篩選到差異蛋白多與細(xì)胞結(jié)構(gòu)相關(guān)。
2.2.1 綿羊無(wú)角()位點(diǎn)遺傳定位
人類在馴化綿羊時(shí),同時(shí)對(duì)毛色、羊毛類型、角型等性狀進(jìn)行了選擇[37]。角也是人類最早開始研究的性狀之一。Lundrigan[38]發(fā)現(xiàn)野生綿羊和地方綿羊品種公羊一般有角,育種學(xué)家從16世紀(jì)開始選育無(wú)角綿羊,家養(yǎng)綿羊的公羊開始出現(xiàn)無(wú)角表型,研究人員對(duì)“兩角–無(wú)角”這對(duì)表型也開展了大量研究。
在家養(yǎng)綿羊研究及育種中,早期研究認(rèn)為位于常染色體基因座上的3個(gè)等位基因調(diào)控綿羊有角對(duì)無(wú)角表型,分別為Ho、Ho和Ho[39]。Mont-gomery[40]在美利奴羊和羅姆尼羊的雜交群體中,將綿羊的“無(wú)角位點(diǎn)”定位在10號(hào)染色體上。Pic-kering[41]利用美利奴羊和羅姆尼羊的雜交群體,將無(wú)角位點(diǎn)定位區(qū)間縮小到50 kb的區(qū)域內(nèi),17個(gè)標(biāo)記構(gòu)成的單倍型能夠使綿羊角表型預(yù)測(cè)的正確率達(dá)97%。Kijas等[37]利用全基因組信號(hào)選擇分析了陶賽特和美利奴羊,在綿羊10號(hào)染色體上發(fā)現(xiàn)無(wú)角表型的顯著性SNP位點(diǎn)(OAR10_29546872),該位點(diǎn)臨近基因。對(duì)Navajo-Churro綿羊的高密度芯片全基因組關(guān)聯(lián)分析發(fā)現(xiàn),無(wú)角位點(diǎn)定位在綿羊10號(hào)染色體29.3~29.5 Mb區(qū)間[24](表1)。Dominik等[42]也在澳洲美利奴綿羊群體發(fā)現(xiàn)可以鑒定角表型的單堿基多態(tài)性。在美利奴羊品種中,利用OAR10_ 29546872.1和OAR10_29458450兩個(gè)SNP位點(diǎn),對(duì)母羊無(wú)角預(yù)測(cè)準(zhǔn)確率達(dá)到32.3%~71.3%,公羊無(wú)角預(yù)測(cè)準(zhǔn)確率達(dá)到62%~72.5%[43],由于這兩個(gè)SNPs不是致因突變,所以不能100%的預(yù)測(cè)角表型。同時(shí),野生綿羊上也發(fā)現(xiàn)無(wú)角位點(diǎn),利用251個(gè)微衛(wèi)星和等位酶標(biāo)記,Dario等[44]將索艾羊(Soay)的無(wú)角表型定位到10號(hào)染色體。
2.2.2 綿羊角與性別選擇相關(guān)性研究
角在公羊搏斗和獲得交配權(quán)的優(yōu)勢(shì)互作中發(fā)揮了重要作用,角的尺寸越大,公羊的繁殖成功率就越高。性別選擇是野生動(dòng)物強(qiáng)大、持續(xù)定向選擇的源動(dòng)力。對(duì)大角羊家系研究發(fā)現(xiàn),決定角尺寸的QTL位于10號(hào)染色體[45],研究人員對(duì)大角羊進(jìn)行基于重測(cè)序的信號(hào)選擇分析,發(fā)現(xiàn)公羊巨大的角是受到強(qiáng)烈的正選擇而形成的(表1)[46],同時(shí)雄性競(jìng)爭(zhēng)者越多,大角羊的性別選擇強(qiáng)度就越大[47]。而在野生索艾羊群體中,雖然具有大角的公羊在同性競(jìng)爭(zhēng)中具有優(yōu)勢(shì),但公羊群體仍保持了角表型的多態(tài)性,群體內(nèi)存在正常大角和畸形角兩種表型,而母羊群體中存在正常角、畸形角和無(wú)角3種表型[48,49]。這種多態(tài)性是通過2基因在自然選擇和性別選擇上相互妥協(xié)而形成的[50],既索艾羊在2有兩個(gè)等位基因,大角等位基因Ho與高繁殖率相關(guān),小角等位基因P與存活率相關(guān),兩者形成雜合子優(yōu)勢(shì),群體中存在++、+P和PP三種基因型公羊,++和+P基因型公羊的表型是正常角,PP基因型有大約50%公羊?yàn)榛谓潜硇汀?/p>
2.2.3 綿羊無(wú)角表型遺傳的復(fù)雜性
Wiedemar等[51]通過對(duì)5個(gè)歐洲綿羊品種進(jìn)一步分析,發(fā)現(xiàn)基因3′UTR區(qū)域一段1.8 kb插入片段與無(wú)角表型相關(guān),且無(wú)角對(duì)兩角表型為顯性。Wang等[52]在中國(guó)灘羊中也發(fā)現(xiàn)基因上一個(gè)同義突變與無(wú)角表型顯著相關(guān),但對(duì)國(guó)外34個(gè)綿羊品種489個(gè)個(gè)體的大樣本檢測(cè)發(fā)現(xiàn),位于基因3′UTR區(qū)域的插入片段只在部分綿羊品種的角表型中出現(xiàn)分離[53],而對(duì)我國(guó)地方綿羊品種阿勒泰羊的無(wú)角GWAS分析并未發(fā)現(xiàn)顯著性位點(diǎn),同時(shí),檢測(cè)阿勒泰羊基因3′UTR區(qū)域1.8 kb插入片段,結(jié)果發(fā)現(xiàn)該插入片段與無(wú)角表型不存在相關(guān)性[22]。2020年,Li等[26]對(duì)我國(guó)小尾寒羊和湖羊進(jìn)行基于重測(cè)序的角性狀關(guān)聯(lián)分析和品種間選擇性清掃分析,結(jié)果表明CNV和SNP關(guān)聯(lián)分析以及選擇性清掃分析都檢測(cè)到了位于10號(hào)染色體基因附近的信號(hào)(表1)。綜上所述,無(wú)角綿羊在表型上只有無(wú)角一種類型,雖然已經(jīng)在基因組上成功定位了無(wú)角的遺傳區(qū)間,但不同無(wú)角綿羊群體中出現(xiàn)截然不同的結(jié)果,有些品種角型與基因區(qū)域變異關(guān)聯(lián),另一些品種則不存在關(guān)聯(lián),同時(shí)無(wú)角表型在不同品種中得到復(fù)雜多變的結(jié)果表明無(wú)角表型基因遺傳具有復(fù)雜性。
最初,角性狀被認(rèn)為是典型的質(zhì)量性狀,既正常兩角(圖1B)和無(wú)角(圖1D)。但對(duì)索艾羊的研究有了新的發(fā)現(xiàn)。野生索艾羊因其角性狀在群體中具有豐富的表型,成為研究角遺傳調(diào)控的理想模型。Dario等[44]通過連鎖圖譜將野生索艾羊的角性狀定位在10號(hào)染色體上,Johnston等[48]不僅將這一區(qū)域縮小到7.4 cM范圍內(nèi),而且將確定角長(zhǎng)度和角基部位周長(zhǎng)的調(diào)控基因也定位在這一區(qū)域。Johnston等[49]進(jìn)一步利用芯片分析確定了索艾羊角關(guān)鍵候選基因,該基因能解釋具備正常角公羊的角長(zhǎng)76%的數(shù)量QTL,表明基因既是無(wú)角表型候選基因(質(zhì)量性狀),也是角長(zhǎng)度和粗細(xì)等數(shù)量性狀的主效基因。但在其他野生羊群體上并未得到相似的結(jié)果,Miller等[54]對(duì)76個(gè)大角羊(野生綿羊)基于高密度芯片的GWAS分析,并沒有發(fā)現(xiàn)影響角長(zhǎng)度和角基部位周長(zhǎng)的QTL。此外,Pan等[55]對(duì)89個(gè)中國(guó)綿羊的重測(cè)序分析發(fā)現(xiàn)基因與綿羊的半野化相關(guān),且與角長(zhǎng)和角生長(zhǎng)方向(螺旋和水平延伸)相關(guān)(表1)??傊d羊無(wú)角表型(質(zhì)量性狀,既有角或者無(wú)角)與正常角長(zhǎng)度和粗細(xì)的數(shù)量性狀QTL都定位于同一遺傳區(qū)間和同一候選基因——基因。
角性狀除了數(shù)量不同外,其發(fā)育程度也有很大差異,按照后者可分為正常角、畸形角[56]和無(wú)角[12]?;谓鞘切〉?、不規(guī)則的,且不能牢固附著于顱骨的角(圖1C)。畸形角至少在公元前3800~3500年就已經(jīng)在家畜中存在[57]。在很多綿羊、山羊、牛的品種中都存在畸形角現(xiàn)象[52],這種角的表型降低了家畜的價(jià)值[58]。解剖學(xué)上畸形角與正常角有2個(gè)主要的區(qū)別:一是畸形角不與顱骨相連,額竇并不深入角突;二是畸形角的骨質(zhì)角心更加致密[59]。
牛上存在2種類型的畸形角遺傳,White等[60]認(rèn)為牛上存在調(diào)控牛角畸形表型的SCURS位點(diǎn)(位點(diǎn)),并將其定位在19號(hào)染色體[58],II型畸形角表型是由法國(guó)夏洛萊?;虻耐蛔儗?dǎo)致(表2)[59,61],這與有角對(duì)無(wú)角遺傳位點(diǎn)定位并不相同。
近期研究發(fā)現(xiàn),索艾羊和野生大角羊的畸形角表型定位到綿羊10號(hào)染色體2基因,這與綿羊的有角對(duì)無(wú)角位點(diǎn)定位相同。對(duì)畸形角的iTRAQ分析發(fā)現(xiàn)了PARVA、TNN、TNC、COL6A1、COL6A2等一系列顯著性差異蛋白(表1),并發(fā)現(xiàn)(ECM)- receptor interactions、focal adhesion和PI3K-Akt是影響綿羊角發(fā)育(畸形)的重要信號(hào)通路[62]。另有研究表明,前兩個(gè)信號(hào)通路參與細(xì)胞粘附功能[63,64],并可能參與細(xì)胞存活和細(xì)胞交流[65]。有趣的是,Mariasegaram等[66]在牛的研究中發(fā)現(xiàn)(ECM)-receptor interactions信號(hào)通路也是畸形角對(duì)無(wú)角的顯著性信號(hào)通路。PI3K-Akt信號(hào)通路能調(diào)節(jié)上皮細(xì)胞中細(xì)胞外基質(zhì)的表達(dá)[67],focal adhesion信號(hào)通路在體內(nèi)還調(diào)節(jié)修復(fù)性骨形成[68]。
牛的有角表型為野生型,對(duì)無(wú)角位點(diǎn)()是隱形遺傳,I型畸形角對(duì)無(wú)角是上位遺傳,同時(shí)受性別影響[32,60];II型畸形對(duì)正常角表型是顯性的,但都是雜合子,目前沒有發(fā)現(xiàn)純合的突變,推測(cè)該突變是胚胎致死;而瘤牛公牛的有角表型對(duì)無(wú)角表型為上位遺傳[69],在非洲瘤牛和安格斯牛的雜交群體中,后代母牛全部是無(wú)角表型,而后代公牛為3種表型,分別為有角、畸形角和無(wú)角,推測(cè)可能存在另外一個(gè)基因參與角的遺傳。
目前已經(jīng)發(fā)現(xiàn)4個(gè)牛的無(wú)角表型遺傳位點(diǎn),它們位于牛1號(hào)染色體一段比較集中的區(qū)域,分別為PC、PF、PM和PG突變(表2),這4個(gè)變異沒有定位于任何已知基因、lncRNA(long non-coding RNA)或者miRNAs上,推測(cè)是通過影響DNA調(diào)控因子,如增強(qiáng)子來(lái)調(diào)控基因的表達(dá)。這一區(qū)域包含23個(gè)編碼基因和非編碼基因的拓?fù)浣Y(jié)構(gòu)域,包括、、、等。Wang等[70]研究發(fā)現(xiàn)是有角反芻類動(dòng)物的特異性正選擇基因,其與神經(jīng)脊分化通路相關(guān)[71],在基因側(cè)翼65 kb區(qū)域的212 bp的重復(fù)片段是牛無(wú)角表型的致因突變[29,30]?;蚩赡茉诠琴|(zhì)角的發(fā)育上發(fā)揮重要作用[70]。同時(shí),Tetens等[72]發(fā)現(xiàn)、和等基因?yàn)榻茄糠只嚓P(guān)基因。
骨組織是由致密的間充質(zhì)細(xì)胞形成[73,74],神經(jīng)脊的上皮細(xì)胞變成遷移間充質(zhì)細(xì)胞被稱為上皮-間質(zhì)轉(zhuǎn)型(epithelial-to-mesenchymal transition, EMT),該過程導(dǎo)致細(xì)胞類型多元化和形成器官的組織發(fā)育[75]。Betancur等[71]發(fā)現(xiàn)、、和基因簇等參與神經(jīng)脊細(xì)胞遷徙。同時(shí),研究發(fā)現(xiàn)基因調(diào)控成骨過程,其突變可以造成顱縫早閉[76,77],而是牛II型畸形角的突變基因。同時(shí)Wang等[70]研究還發(fā)現(xiàn)、、、、和等6個(gè)神經(jīng)脊細(xì)胞遷移相關(guān)基因在角組織中特異性表達(dá),該家族的、、、和等基因是影響?;谓堑牟町惢騕66]。研究表明TWIST1、TWIST2、ZEB2和FOXC2等轉(zhuǎn)錄因子可以直接抑制E-鈣粘蛋白的表達(dá)[78],而E-鈣粘蛋白是EMT的標(biāo)記蛋白,可能通過影響神經(jīng)脊細(xì)胞遷徙影響牛角的發(fā)育。以上研究表明這些候選基因可能通過影響神經(jīng)脊細(xì)胞遷移影響角的形成和發(fā)育,從而影響牛角的表型。
綿羊角性狀至少由2個(gè)位點(diǎn)調(diào)控,一個(gè)是位于10號(hào)染色體的“無(wú)角位點(diǎn)”,另一個(gè)是位于2號(hào)染色體的“多角位點(diǎn)”,多角表型對(duì)兩角表型為顯性遺傳。目前綿羊角的遺傳機(jī)制并不清楚,僅定位到無(wú)角表型和多角表型的遺傳區(qū)間和候選基因。其中無(wú)角表型的候選基因?yàn)?松弛素/類胰島素樣家族肽受體2,relaxin/insulin like family peptide receptor 2),位于綿羊10號(hào)染色體。Wang等[70]研究表明基因?yàn)榻墙M織高表達(dá)基因,RXFP2為G蛋白偶聯(lián)受體蛋白,其突變可以導(dǎo)致骨質(zhì)疏松[79]。RXFP2的配基RLN可以通過激活骨膜內(nèi)化調(diào)控因子,包括ALP、RUNX2和BMP2誘導(dǎo)成骨分化[80],表明RXFP2對(duì)角發(fā)育起到重要作用,如果RXFP2減少,可能通過減少與配基松弛素的結(jié)合,抑制成骨分化,從而抑制骨質(zhì)角心的形成。
多角位點(diǎn)的遺傳區(qū)域位于2號(hào)染色體128~135 Mb,該區(qū)域包括、、和基因簇等,其中屬于轉(zhuǎn)錄因子家族成員,是一類十分重要并在進(jìn)化上保守的轉(zhuǎn)錄因子,其主要作用是協(xié)調(diào)肢體對(duì)稱發(fā)育,從而影響肢體的形態(tài)。研究發(fā)現(xiàn)基因簇長(zhǎng)度約100 kb,包括13個(gè)基因,其中下游2.7 kb的缺失可以導(dǎo)致馬()的脊椎發(fā)育缺陷[81],基因家族部分成員的突變可以導(dǎo)致人的多趾畸形[82],如、、和與手指和腳趾的發(fā)育相關(guān),其突變會(huì)影響手指和腳趾的數(shù)量[83],基因在肢體末端表達(dá),是切斷其臨近基因調(diào)控和開啟末端發(fā)育調(diào)控的轉(zhuǎn)換開關(guān)[84],通過這一基因的調(diào)控從而實(shí)現(xiàn)肢體從中央?yún)^(qū)域到末端區(qū)域發(fā)育調(diào)控的轉(zhuǎn)換[85]。Jerkovi?等[86]進(jìn)一步的研究還發(fā)現(xiàn),HOXD9~HOXD13蛋白是通過輔因子與DNA相結(jié)合,而非HOXD轉(zhuǎn)錄因子直接與DNA相結(jié)合。綿羊角主要由外部堅(jiān)硬的角質(zhì)化外鞘和內(nèi)部骨質(zhì)化角心兩部分構(gòu)成[87],兩部分中間還包含骨膜、皮下結(jié)締組織、真皮和表皮[3]。骨質(zhì)角心主要是由骨組織構(gòu)成,來(lái)源于中胚層(軸旁中胚層和側(cè)中胚層)和神經(jīng)脊。軸旁中胚層形成中軸骨骼,如肋骨、椎骨和顱骨的頂骨。側(cè)中胚層形成附屬骨骼,如四肢[73,88]。神經(jīng)脊細(xì)胞遷移形成額骨和面骨[74],這些影響中胚層形成和神經(jīng)脊細(xì)胞遷移的基因可能是角形成的候選基因。Betancur等[71]發(fā)現(xiàn)基因簇以及、和等基因參與神經(jīng)脊細(xì)胞遷徙,Wang等[70]在基因簇下游發(fā)現(xiàn)一個(gè)3.6 kb有角反芻動(dòng)物特有轉(zhuǎn)座因子插入,進(jìn)一步分析發(fā)現(xiàn)該插入存在一個(gè)25 bp的特異性保守元件;同時(shí)發(fā)現(xiàn)等神經(jīng)脊細(xì)胞遷移相關(guān)基因在角中特異性表達(dá),而基因與綿羊畸形角顯著差異蛋白COL6A2、COL6A3、COL6A1和COL1A2同屬于膠原蛋白家族成員,這些元件和基因可能對(duì)角發(fā)育起重要作用。
角是反芻動(dòng)物的標(biāo)志性特征(少數(shù)野生反芻動(dòng)物如麝科無(wú)角),是演化最為成功的器官之一,角的發(fā)生、進(jìn)化和遺傳機(jī)制一直是遺傳學(xué)研究的熱點(diǎn)之一,也是其他特異性遺傳性狀研究的參考模型之一。2019年,西北農(nóng)林科技大學(xué)姜雨團(tuán)隊(duì)和西北工業(yè)大學(xué)王文團(tuán)隊(duì)[70,89]在上連續(xù)發(fā)表了兩篇反芻動(dòng)物角的相關(guān)研究文章,發(fā)現(xiàn)反芻動(dòng)物的角具有共同的基因、細(xì)胞和組織起源;馴鹿基因上游的突變賦予雄激素受體額外的功能性結(jié)合基序,可能導(dǎo)致雌性鹿茸生長(zhǎng)。前人對(duì)牛和綿羊角的遺傳調(diào)控開展了多年的研究,在多角表型、無(wú)角表型和畸形角的遺傳位點(diǎn)定位、遺傳機(jī)制等方面取得了重要進(jìn)展,目前的研究表明,牛無(wú)角表型有4個(gè)突變,都位于1號(hào)染色體,畸形角有2個(gè)突變位點(diǎn);綿羊角性狀至少由2個(gè)位點(diǎn)調(diào)控,分別是位于10號(hào)染色體的“無(wú)角位點(diǎn)”和位于2號(hào)染色體的“多角位點(diǎn)”。
但是對(duì)牛和綿羊角性狀形成的分子機(jī)制仍有待進(jìn)行深入研究,包括確定角形成的因果突變基因、及其早期發(fā)育關(guān)鍵基因,解析角不同表型的遺傳調(diào)控機(jī)制。牛、綿羊不僅為人類提供肉、奶、毛(皮)等生產(chǎn)生活資料,在人類農(nóng)業(yè)發(fā)展中扮演著重要角色,同時(shí)也是人類農(nóng)耕文明傳播的重要組成部分。牛和綿羊角性狀具有豐富的表型,開展角形成和遺傳機(jī)制的研究將有助于推進(jìn)動(dòng)物特異性性狀的多基因調(diào)控機(jī)制機(jī)理解析和新器官起源進(jìn)化等基礎(chǔ)研究的進(jìn)展,為闡明基因在性狀調(diào)控和遺傳分化中的作用提供參考。
[1] Dove WF. The physiology of horn growth: A study of the morphogenesis, the interaction of tissues, and the evo-lutionary processes of a Mendelian recessive character by means of transplantation of tissues., 2010, 69(3): 347–405.
[2] Chen L, Qiu Q, Pan XY, Wang W. Evolutionary genotype- phenotype systems biology and study on the ruminant evolution., 2019, 49(4): 223–232. 陳壘, 邱強(qiáng), 潘香羽, 王文. 進(jìn)化系統(tǒng)生物學(xué)與反芻動(dòng)物的進(jìn)化研究. 中國(guó)科學(xué):生命科學(xué), 2019, 49(4): 223– 232.
[3] Davis EB, Brakora KA, Lee AH. Evolution of ruminant headgear: a review., 2011, 278(1720): 2857– 2865.
[4] Lv FH, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW, Joost S, Li MH, Ajmone Marsan P. Adaptations to climate-mediated selective pressures in sheep., 2014, 31(12): 3324–3343.
[5] Chen NB, Cai YD, Chen QM, Li R, Wang K, Huang YZ, Hu S, Huang SS, Zhang HC, Zheng ZQ, Song WN, Ma ZJ , Ma Y, Dang RH, Zhang ZJ, Xu L, Jia YT, Liu SZ, Yue XP, Deng WD, Zhang XM, Sun ZY, Lan XY, Han JL, Chen H, Bradley DG, Jiang Y, Lei CZ. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia., 2018, 9(1): 2337.
[6] Ritchie J. Four-horned sheep in Scotland., 1913, 91(2262): 10.
[7] Elwes HJ. Four-horned sheep., 1913, 91(2265): 86.
[8] Zhao YX, Li MH. Research advances on the origin, evolution and genetic diversity of Chinese native sheep breeds., 2017, 39(11): 958–973.趙永欣, 李孟華. 中國(guó)綿羊起源、進(jìn)化和遺傳多樣性研究進(jìn)展. 遺傳, 2017, 39(11):958–973.
[9] Dyrmundsson, óR. Four-hornedness; a rare peculiarity still found in Icelandic sheep., 2005, 9(4): 6–8.
[10] Maiwashe AN, Blackburn HD. Genetic diversity in and conservation strategy considerations for Navajo Churro sheep., 2004, 82(10): 2900–2905.
[11] Sponenberg DP, Taylor C. Navajo-Churro sheep and wool in the United States.Resources, 2009, 45(45): 99–105.
[12] Ryder ML. Sheep and man. Duckworth, London, 1983.
[13] Alderson L. Polycerate inheritance., 1992, 19:177.
[14] Epstein H. The origin of the domestic animals of Africa. 1971, Africana Publishing Corporation, New York.
[15] Zhao QJ, Guan WJ, Qiao HY, Meng XR, Han JL, Li XC, He XH, Pu YB, Ma YH. Phylogenetics of domestic sheep and multi-horned sheep based on Cytb gene., 2010, 43(14): 3005–3011.趙倩君, 關(guān)偉軍, 喬海云, 孟詳人, 韓建林, 李向臣, 何曉紅, 浦亞斌, 馬月輝. 基于Cytb基因探討家綿羊和多角綿羊的系統(tǒng)發(fā)育. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(14): 3005– 3011.
[16] Joken Anwax. Study on the biological characteristics and genetic diversity of Bashbay sheep[Dissertation]. Nanjing Agriculture University, 2010. 決肯·阿尼瓦什. 巴什拜羊生物學(xué)特性及其遺傳多樣性研究[學(xué)位論文]. 南京農(nóng)業(yè)大學(xué), 2010.
[17] 決肯·阿尼瓦什, 哈米提·哈凱莫夫, 買買提明·巴拉提. 巴什拜羊質(zhì)量性狀遺傳的初步研究. 草食家畜, 1998(2): 12–14.
[18] 何紹欽, 劉召乾, 劉家園. 世界多角綿羊品種—泗水裘皮羊. 中國(guó)畜牧獸醫(yī), 2007, 34(8): 133–135.
[19] He XH, Song S, Chen XF, Song TZ, Lobsang T, Guan WJ, Pu YB, Zhao QJ, Jiang L, Ma YH. Genome-wide association analysis reveals the common genetic locus for both the typical and atypical polycerate phenotype in Tibetan sheep.,2018, 49(2): 142–143.
[20] Noodle BA. Polycerate sheep: Past history and present problems., 1980, 7(5): 156–164.
[21] Alderson L. A review of HEBRID., 2007, 26–29.
[22] He XH, Zhou ZK, Pu YB, Chen XF, Ma YH, Jiang L. Mapping the four-horned locus and testing the polled locus in three Chinese sheep breeds., 2016, 47(5): 623–627.
[23] Ren X, Yang GL, Peng WF, Zhao YX, Zhang M, Chen ZH, Wu FA, Kantanen J, Shen M, Li MH. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries)., 2016, 6: 21111.
[24] Kijas JW, Hadfield T, Naval Sanchez M, Cockett N. Genome-wide association reveals the locus responsible for four-horned ruminant., 2016, 47(2): 258–262.
[25] Greyvenstein OF, Reich CM, van Marle-Koster E, Riley DG, Hayes BJ. Polyceraty (multi-horns) in Damara sheep maps to ovine chromosome 2., 2016, 47(2): 263–266.
[26] Li X, Yang J, Shen M, Xie XL, Liu GJ, Xu YX, Lv FH, Yang H, Yang YL, Liu CB, Zhou P, Wan PC, Zhang YS, Gao L, Yang JQ, Pi WH, Ren YL, Shen ZQ, Wang F, Deng J, Xu SS, Hosein SD, Hehua E, Esmailizadeh A, Mostafa DQ, ?těpánek O, Weimann C, Erhardt G, Amane A, Mwacharo JM, Han JL, Hanotte O, Lenstra JA, Kantanen J, Coltman DW, Kijas JW, Bruford MW, Periasamy K, Wang XH, Li MH. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits., 2020, 11(1): 2815.
[27] Georges M, Drinkwater R, King T, Mishra A, Moore SS, Nielsen D, Sargeant LS, Sorensen A, Steele MR, Zhao X, Womack J, Hetzel J. Microsatellite mapping of a gene affecting horn development in Bos taurus., 1993, 4(2): 206–210.
[28] Schmutz SM, Marquess FL, Berryere TG, Moker JS. DNA marker-assisted selection of the polled condition in Charolais cattle., 1995, 6(10): 710-713.
[29] Medugorac I, Seichter D, Graf A, Russ I, Blum H, G?pel KH, Rothammer S, F?rster M, Krebs S. Bovine polledness--an autosomal dominant trait with allelic heterogeneity., 2012, 7(6): e39477.
[30] Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC. Production of hornless dairy cattle from genome-edited cell lines.2016, 34(5): 479–481.
[31] Rothammer S, Capitan A, Mullaart E, Seichter D, Russ I, Medugorac I. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin., 2014, 46(1): 44.
[32] Wiedemar N, Tetens J, Jagannathan V, Menoud A, Neuenschwander S, Bruggmann R, Thaller G, Dr?gemüller C. Independent polled mutations leading to complex gene expression differences in cattle., 2014, 9(3): e93435, doi: 10.1371/journal.pone.0093435.
[33] Utsunomiya YT, Torrecilha RBP, Milanesi M, de Cássia Paulan S, Utsunomiya ATH, Garcia JF. Hornless Nellore cattle (Bos indicus) carrying a novel 110 kbp duplication variant of the polled locus., 2019, 50(2): 187–188.
[34] Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y, Gladyr E, Zinovieva N, Barbieri J, Seichter D, Russ I. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks., 2017, 49(3): 470–475.
[35] Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I, Bouet S, Rothammer S, Wahlberg P, Esquerré D, Hoze C, Boussaha M, Weiss B, Thépot D, Fouilloux MN, Rossignol MN, van Marle-K?ster E, Hreiearsdóttir GE, Barbey S, Dozias D, Cobo E, Reversé P, Catros O, Marchand JL, Soulas P, Roy P, Marquant-Leguienne B, Bourhis DL, Clément L, Salas-Cortes L, Venot E, Pannetier M, Phocas F, Klopp C, Rocha D, Fouchet M, Journaux L, Bernard-Capel C, Ponsart C, Eggen A, Blum H, Gallard Y, Boichard D, Pailhoux E, Capitan A. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae., 2013, 8(5): e63512.
[36] Li MN, Wu XY, Guo X, Bao PJ, Ding XZ, Chu M, Liang CN, Yan P. Comparative iTRAQ proteomics revealed proteins associated with horn development in yak., 2018, 16(1): 14.
[37] Kijas JW, Lenstra JA, Hayes B, Boitard S, Neto LRP, Cristobal MS, Servin B, Mcculloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, Raadsma H, McEwan J, Dalrymple B. International Sheep Genomics Consortium Members. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection., 2012, 10(2): e1001258.
[38] Lundrigan B. Morphology of horns and fighting behavior in the family Bovidae., 1996, 77(2): 462–475.
[39] Dolling CHS. Breeding Merinos. Rigby, Adelaide, Australia, 1970.
[40] Montgomery GW, Henry HM, Dodds KG, Beattie AE, Wuliji T, Crawford AM. Mapping the Horns (Ho) locus in sheep: a further locus controlling horn development in domestic animals., 1996, 87(5): 358–363.
[41] Pickering N, Johnson T, Auvray B, Dodds KG, McEwan JC. Mapping the horns locus in sheep. In: Proceedings of the Association for the Advancement of Animal Breeding and Genetics. Barossa Valley, South Australia, 2009, 18: 88–91.
[42] Dominik S, Henshall JM, Hayes BJ. A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep., 2012, 43(4): 468–470.
[43] Duijvesteijn N, Bolormaa S, Daetwyler HD, van der Werf JHJ. Genomic prediction of the polled and horned phenotypes in Merino sheep., 2018, 50(1): 28.
[44] Beraldi D, Mcrae AF, Gratten J, Slate J, Visscher PM, Pemberton JM. Development of a linkage map and mapping of phenotypic polymorphisms in a free-living population of Soay sheep (Ovis aries)., 2006, 173(3): 1521–1537.
[45] Poissant J, Davis CS, Malenfant RM, Hogg JT, Coltman DW. QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep., 2011, 108(3): 256–263.
[46] Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, Mcwilliam S, Stephenson J, Allendorf FW, Hogg JT, Kijas J. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep., 2015, 24(22): 5616–5632.
[47] Martin AM, Festa-Bianchet M, Coltman DW, Pelletier F. Demographic drivers of age-dependent sexual selection., 2016, 29(7): 1437–1446.
[48] Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J. Horn type and horn length genes map to the same chromosomal region in Soay sheep., 2010, 104(2): 196–205.
[49] Johnston SE, Mcewan JC, Pickering NK, Kijas JW, Beraldi D, Pilkington JG, Pemberton JM, Slate J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population., 2011, 20(12): 2555–2566.
[50] Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH, Pemberton JM, Slate J. Life history trade-offs at a single locus maintain sexually selected genetic variation., 2013, 502(7469): 93–95.
[51] Wiedemar N, Dr?gemüller C. A 1.8-kb insertion in the 3'-UTR of RXFP2 is associated with polledness in sheep., 2015, 46(4): 457–461.
[52] Wang XL, Zhou GX, Li Q, Zhao DF, Chen YL. Discovery of SNPs in RXFP2 related to horn types in sheep., 2014, 116(2–3): 133–136.
[53] Lühken G, Krebs S, Rothammer S, Küpper J, Mio? B, Russ I, Medugorac I. The 1.78-kb insertion in the 3'-untranslated region of RXFP2 does not segregate with horn status in sheep breeds with variable horn status., 2016, 48(1): 78.
[54] Miller JM, Festa-Bianchet M, Coltman DW. Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium?HD SNP BeadChip., 2018, 6(5): e4364.
[55] Pan ZY, Li SD, Liu QY, Wang Z, Zhou ZK, Di R, Miao BP, Hu WP, Wang XY, Hu XX, Xu Z, Wei DK, He XY, Yuan LY, Guo XF, Liang BM, Wang RC, Li XY, Cao XH, Dong XL, Xia Q, Shi HC, Hao G, Yang J, Luosang CC, Zhao YQ, Jin M, Zhang YJ, Lv SJ, Li FK, Ding GH, Chu MX, Li YX. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization., 2018, 7(4): giy019.
[56] Ibsen HL. Horn and scur inheritance in certain breeds of sheep., 1944, 78(779): 506–516.
[57] Kysely R. Breed character or pathology? Cattle with loose horns from the Eneolithic site of Hostivice–Litovice (Czech Republic)., 2010, 37(6): 1241– 1246.
[58] Asai M, Berryere TG, Schmutz SM. The scurs locus in cattle maps to bovine chromosome 19., 2004, 35(1): 34–39.
[59] Capitan A, Grohs C, Weiss B, Rossignol MN, Reversé P, Eggen A. A newly described Bovine type 2 scurs syndrome segregates with a frame-shift mutation in TWIST1., 2011, 6(7): e22242.
[60] White WT, Ibsen HL. Horn inheritance in Galloway- Holstein cattle crosses., 1936, 32(1): 33–49.
[61] Capitan A, Grohs C, Gautier M, Eggen A. The scurs inheritance: new insights from the French Charolais breed., 2009, 10: 33.
[62] He XH, Chen XF, Pu YB, Guan WJ, Song S, Zhao QJ, LI XC, Jiang L, Ma YH. iTRAQ-based quantitative proteomic analysis reveals key pathways responsible for scurs in sheep (Ovis aries)., 2018, 17(8): 1843–1851.
[63] Albelda SM, Buck CA. Integrins and other cell adhesion molecules., 1990, 4(11): 2868–2880.
[64] Myking S, Myhre R, Gjessing HK, Morken NH, Sengpiel V, Williams SM, Ryckman KK, Magnus P, Jacobsson B. Candidate gene analysis of spontaneous preterm delivery: New insights from re-analysis of a case-control study using case-parent triads and control-mother dyads., 2011, 12: 174.
[65] Satoh JI, Kino Y, Niida S. MicroRNA-seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data., 2015, 10: 21–31.
[66] Mariasegaram M, Reverter A, Barris W, Lehnert SA, Dalrymple B, Prayaga K. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle., 2010, 11(1): 370.
[67] Qin D, Zhang GM, Xu X, Wang LY. The PI3K/Akt signaling pathway mediates the high glucose-induced expression of extracellular matrix molecules in human retinal pigment epithelial cells., 2015, 2015: 920280.
[68] Castillo AB, Blundo JT, Chen JC, Lee KL, Yereddi NR, Jang E, Kumar S, Tang WJ, Zarrin S, Kim JB, Jacobs CR. Focal adhesion kinase plays a role in osteoblast mecha-notransduction in vitro but does not affect load-induced bone formation., 2012, 7(9): e43291.
[69] Smith ADB. The inheritance of horns in cattle some further data., 1927, 18(3): 365–374.
[70] Wang Y, Zhang CZ, Wang NN, Li ZP, Heller R, Liu R, Zhao Y, Han JG, Pan XY, Zheng ZQ, Dai XQ, Chen CS, Dou ML, Peng SJ, Chen XQ, Liu J, Li M, Wang K, Liu C, Lin ZS, Chen L, Hao F, Zhu WB, Song CC, Zhao C, Zheng CL, Wang JM, Hu SW, Li CY, Yang H, Jiang L, Li GY, Liu MJ, Sonstegard TS, Zhang GJ, Jiang Y, Wang W, Qiu Q. Genetic basis of ruminant headgear and rapid antler regeneration., 2019, 364(6446): eaav6335.
[71] Betancur P, Bronner-Fraser M, Sauka-Spengler T. Assembling neural crest regulatory circuits into a gene regulatory network.,2010, 26: 581–603
[72] Tetens J, Wiedemar N, Menoud A, Thaller G, Drgemüller C. Association mapping of the scurs locus in polled Simmental cattle-evidence for genetic heterogeneity., 2015, 46(2): 224–225.
[73] Jin SW, Sim KB, Kim SD. Development and growth of the normal cranial vault: an embryologic review., 2016, 59(3): 192–196.
[74] Wu TF, Chen GQ, Tian F, Liu HX. Contribution of cranial neural crest cells to mouse skull development., 2017, 61(8–9): 495–503.
[75] Kalluri R, Weinberg RA. The basics of epithelial- mesenchymal transition., 2009, 119(6): 1420–1428.
[76] Huang YY, Meng T, Wang SZ, Zhang H, Mues G, Qin CL, Feng JQ, D'Souza RN, Lu YB. Twist1- and Twist2- haploinsufficiency results in reduced bone formation., 2014, 9(6): e99331.
[77] Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, Tamai K, Kaneda Y. Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling., 2007, 120(Pt 8): 1350–1357.
[78] Chen T, You YN, Jiang H, Wang ZZ. Epithelial- Mesenchymal Transition (EMT): A biological process in the development, stem cell differentiation, and tumo-rigenesis., 2017, 232(12): 3261–3272.
[79] Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Giannini S, Zaccolo M, Facciolli A, Morello R, Agoulnik AI, Foresta C. Mutations in the insulin-like factor 3 receptor are associated with osteoporosis., 2008, 23(5): 683–693.
[80] Duarte C, Kobayashi Y, Kawamoto T, Moriyama K. RELAXIN enhances differentiation and matrix minera-lization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells., 2014, 65: 92–101.
[81] Bordbari MH, Penedo MCT, Aleman M, Valberg SJ, Mickelson J, Finno CJ. Deletion of 2.7 kb near HoxD3 in an Arabian horse with occipitoatlantoaxial malformation., 2017, 48(3): 287–294.
[82] Goodman F, Giovannucci-uzielli ML, Hall C, Reardon W, Winter R, Scambler P. Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families., 1998, 63(4): 992– 1000.
[83] Delpretti S, Zakany J, Duboule D. A function for all posterior Hoxd genes during digit development?, 2012, 241(4): 792–802.
[84] Beccari L, Yakushiji-kaminatsui N, Woltering JM, Necsulea A, Lonfat N, Rodríguez-Carballo E, Mascrez B, Yamamoto S, Kuroiwa A, Duboule D. A role for hox13 proteins in the regulatory switch between tads at the hoxd locus., 2016, 30(10): 1172–1186.
[85] Ros MA. HOX13 proteins: the molecular switcher in Hoxd bimodal regulation., 2016, 30(10): 1135–1137.
[86] Jerkovi? I, Ibrahim DM, Andrey G, Haas S, Hansen P, Janetzki C, Navarrete IG, Robinson PN, Hecht J, Mundlos S. Genome-wide binding of posterior HOXA/D trans-cription factors reveals subgrouping and association with CTCF., 2017, 13(1): e1006567.
[87] Zhu B, Zhang M, Zhao J. Microstructure and mechanical properties of sheep horn., 2016, 79(7): 664–674.
[88] Sheeba CJ, Andrade RP, Palmeirim I. Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development., 2016, 49: 125–134.
[89] Lin ZS, Chen L, Chen XQ, Zhong YB, Yang Y, Xia WH, Liu C, Zhu WB, Wang H, Yan BY, Yang YF, Liu X, Kvie KS, R?ed KH, Wang K, Xiao WH, Wei HJ, Li GY, Heller R, Gilber MTP, Qiu Q, Wang W, Li ZP. Biological adaptations in the Arctic cervid, the reindeer ()., 2019, 364(6446): eaav6312.
Progress on genetic mapping and genetic mechanism of cattle and sheep horns
Xiaohong He, Lin Jiang, Yabin Pu, Qianjun Zhao, Yuehui Ma
Horns are cranial appendages, which are unique in ruminants. Cattle () and sheep () cranial appendages exhibit various forms of morphology, including wild-type two-horn phenotype, polled phenotype and scur phenotype. These animals provide an ideal model for studies on the underlying relationship between quality and quantitative traits of cattle and sheep horn and the molecular mechanisms of horn phenotype as a polygenic regulation for quality traits. In recent years, some research progresses of cattle and sheep horns are successively reported, which helps us better understand the evolutionary origin of new organ, the effects of natural selection, sex selection and artificial selection on horn phenotypes.In this review, we introduce in details the recent advances on the research of horn traits in cattle and sheep, and summarize the genetic mapping of multi-horned phenotypes, the genetic mapping of polled locus, and studies on scur phenotype. Moreover, we discuss potential problems in such research, thereby providing a reference for investigation on the genetic mechanisms of horn traits in ruminants.
sheep; cranial appendages; horn trait; genetic mechanism; polled phenotype; multi-horned phenotype
2020-07-21;
2020-11-19
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31402033,U1603232),中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(編號(hào):2017ywf-zd-11),現(xiàn)代絨毛用羊產(chǎn)業(yè)技術(shù)體系(編號(hào):CARS-40-01)和中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程(編號(hào):ASTIP-IAS01)資助[Supported by the National Natural Science Foundation of China (Nos. 31402033, U1603232), the Special Fund for Basic Scienti?c Research of Institute of Animal Science, Chinese Academy of Agricultural Sciences funding (No. 2017ywf-zd-11), the earmarked fund for Modern Agro-industry Technology Research System (No. CARS-40-01), and the Agricultural Science and Technology Innovation Program of China (No. ASTIP-IAS01)]
何曉紅,博士,副研究員,研究方向:畜禽遺傳資源研究。E-mail: hexiaohong@caas.cn
何曉紅馬月輝,博士,研究員,研究方向:畜禽遺傳資源研究。E-mail: yuehui.ma@263.net
10.16288/j.yczz.20-229
2021/1/8 13:58:58
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210107.1146.004.html
(責(zé)任編委: 姜雨)