徐海冬,寧博林,牟芳,李輝,王寧
選擇性多聚腺苷酸化的生物學(xué)效應(yīng)及其調(diào)控機(jī)制研究進(jìn)展
徐海冬1,2,3,寧博林1,2,3,牟芳1,2,3,李輝1,2,3,王寧1,2,3
1. 農(nóng)業(yè)農(nóng)村部雞遺傳育種重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150030 2. 黑龍江省普通高等學(xué)校動(dòng)物遺傳育種與繁殖重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150030 3. 東北農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,哈爾濱 150030
真核生物基因的前體mRNA (pre-mRNA)及一些lncRNA在成熟過程中其3'端會(huì)發(fā)生剪切和多聚腺苷酸化反應(yīng)(cleavage and polyadenylation, C/P),C/P的發(fā)生需要多聚腺苷酸化信號(polyadenylation signal, PAS)的存在。選擇性多聚腺苷酸化(alternative cleavage and polyadenylation, APA)是指具有多個(gè)PAS的基因,在其mRNA 3?端成熟過程中,由于選擇不同的PAS,導(dǎo)致產(chǎn)生出多個(gè)3'UTR長度和序列組成不同的轉(zhuǎn)錄異構(gòu)體。3?UTR長度和序列的不同會(huì)影響mRNA的穩(wěn)定性、翻譯效率、運(yùn)輸和細(xì)胞定位等,因此APA是真核生物的一個(gè)重要轉(zhuǎn)錄后調(diào)控方式。近年來,對大量動(dòng)物、植物及酵母的基因組測序分析發(fā)現(xiàn),APA在真核生物廣泛存在,針對APA的生物學(xué)效應(yīng)和調(diào)控機(jī)制開展了一系列研究。目前已鑒定出許多APA調(diào)控的順式調(diào)控元件和反式作用因子。本文重點(diǎn)介紹了APA生物學(xué)效應(yīng)和調(diào)控機(jī)制的最新研究進(jìn)展,并探討了未來APA調(diào)控的研究方向。
基因表達(dá)調(diào)控;選擇性多聚腺苷酸化;多聚腺苷酸化信號;順式調(diào)控元件;反式作用因子
真核生物的mRNA前體(pre-RNA)和一些長鏈非編碼RNA前體(pre-lncRNA)在成熟過程中其3?端會(huì)被核酸內(nèi)切酶剪切(cleavage),然后由模板非依賴的RNA聚合酶—poly(A)聚合酶(PAP)在3?端合成一個(gè)多聚腺苷酸尾巴(polyadenylation)。真核生物mRNA前體3?端的剪切和多聚腺苷酸化反應(yīng)(cleavage and polyadenylation, C/P)需要多聚腺苷酸化信號(polyadenylation signal,PAS),PAS通常位于剪切位點(diǎn)上游10~30個(gè)核苷酸處。選擇性多聚腺苷酸化(alternative cleavage and polyadenylation, APA)是指含有多個(gè)PAS的基因,在mRNA 3?端成熟過程中,不同PAS的選擇利用將導(dǎo)致一個(gè)基因產(chǎn)生多個(gè)轉(zhuǎn)錄異構(gòu)體,這些轉(zhuǎn)錄異構(gòu)體具有長短不一的3'末端[1]。近年來,由于高通量測序技術(shù)的發(fā)展和研究的深入,人們發(fā)現(xiàn)APA在真核生物中普遍存在,例如人類超過70%的基因都存在APA現(xiàn)象[2]。APA在不同類型的基因中分布不同,其中,在蛋白編碼基因中分布最為廣泛,其次為lncRNA和假基因,而在小RNA (small RNA)和微小RNA (microRNA)中的分布最少[3]。大多數(shù)APA僅會(huì)導(dǎo)致mRNA含有不同長度的3?UTR,但有少數(shù)APA還會(huì)改變mRNA編碼區(qū)序列,導(dǎo)致編碼不同的蛋白。3?UTR存在大量基因表達(dá)的順式調(diào)控元件,這些順式調(diào)控元件廣泛參與mRNA的穩(wěn)定性、翻譯、運(yùn)輸和細(xì)胞定位[1]。APA使得同一基因的不同轉(zhuǎn)錄本具有不同的順式調(diào)控元件,因而導(dǎo)致不同轉(zhuǎn)錄本的表達(dá)不同。目前已知APA是真核生物基因表達(dá)調(diào)控的重要調(diào)控機(jī)制之一,它在許多生物學(xué)過程中發(fā)揮重要的調(diào)控作用;其調(diào)控異常會(huì)導(dǎo)致癌癥等多種疾病發(fā)生[4~7]。近年來,由于APA功能的多樣性及其調(diào)控的重要性,針對APA的研究引起了人們廣泛關(guān)注。本文綜述了APA調(diào)控研究的最新進(jìn)展,旨在為深入解析APA的調(diào)控機(jī)制和生物學(xué)效應(yīng)提供參考。
C/P反應(yīng)是mRNA前體成熟的一個(gè)重要步驟,關(guān)系到mRNA的核外運(yùn)輸和胞質(zhì)翻譯過程。C/P反應(yīng)需要位于mRNA前體的順式元件及許多反式作用因子的參與。目前已鑒定出許多C/P反應(yīng)的順式調(diào)控元件、反式作用因子以及多種核酸酶(圖1)[1,8~10]。
PAS是mRNA前體進(jìn)行C/P反應(yīng)的信號,它位于mRNA前體的3?端。根據(jù)PAS的序列特征和功能,可將其組合并歸類為核心元件和輔助元件兩部分。其中,核心元件包括距剪切位點(diǎn)上游約20~22個(gè)核苷酸處的A-rich六聚體、剪切位點(diǎn)下游約10~30個(gè)核苷酸處的U/GU-rich元件和臨近剪切位點(diǎn)的CA (或UA)序列[9]。AAUAAA是典型的A-rich六聚體序列,其單堿基突變所形成的非經(jīng)典序列仍具有AAUAAA的部分活性[5]。下游U/GU-rich元件的單個(gè)核苷酸突變體同樣也具有一定的活性。CA (或UA)是臨近剪切位點(diǎn)前常見的兩個(gè)核苷酸,它們控制剪切效率。輔助元件包括剪切位點(diǎn)下游的G-rich元件和剪切位點(diǎn)上游的UGUA元件[9]。其中G-rich元件影響剪切效率;UGUA元件促進(jìn)C/P反應(yīng)[10]。此外,剪切位點(diǎn)上游的U-rich元件也參與剪切調(diào)控。U-rich元件有兩類:一類是位于A-rich六聚體和剪切位點(diǎn)之間的U-rich元件;另一類是位于A-rich六聚體上游的U-rich元件,這兩種U-rich元件都可以與CPSF復(fù)合體互作,促進(jìn)C/P反應(yīng)[10]。
目前已知有4種蛋白復(fù)合物和多個(gè)蛋白質(zhì)單體參與C/P反應(yīng)。參與C/P反應(yīng)的4種蛋白質(zhì)復(fù)合物分別是剪切多聚腺苷酸化特異因子(cleavage and polyadenylation specificity factor, CPSF)復(fù)合物、剪切激活因子(cleavage stimulation factor, CSTF)復(fù)合物、剪切因子復(fù)合物I(cleavage factor I m, CFIm)和剪切因子復(fù)合物II(cleavage factor II m, CFIIm)[1,9,11]。
CPSF復(fù)合物主要由CPSF160 (CPSF1)、CPSF100 (CPSF2)、CPSF73 (CPSF3)、CPSF30 (CPSF4)、PAP互作因子(factor interacting with PAP, FIP1)和WD重復(fù)域33 (WD repeat domain 33, WDR33) 6種蛋白構(gòu)成[9,11]。CPSF160通過β螺旋結(jié)構(gòu)域特異性結(jié)合AAUAAA[12];CPSF30的N端含有5個(gè)保守的鋅指結(jié)構(gòu)域,其中第2個(gè)和第3個(gè)鋅指結(jié)構(gòu)域能與PAS上游的U-rich特異性結(jié)合;CPSF73是一種鋅依賴性核酸內(nèi)切酶,其金屬-β-內(nèi)酰胺酶結(jié)構(gòu)域和β-CASP結(jié)構(gòu)域可精準(zhǔn)識別CA(或UA)位點(diǎn)并對其臨近的位點(diǎn)進(jìn)行精準(zhǔn)剪切[9]。FIP1的C端精氨酸富集區(qū)可與PAS下游的U-rich序列結(jié)合,并同時(shí)招募PAP[9,12]。WDR33具有富含β螺旋的WD40保守結(jié)構(gòu)域,能與AAUAAA直接結(jié)合,在蛋白–蛋白和蛋白-RNA互作中發(fā)揮重要功能[12,13]。
CSTF復(fù)合物是由CSTF77 (CSTF1)、CSTF64 (CSTF2)和CSTF50 (CSTF3) 3種蛋白質(zhì)亞基組成的六聚體復(fù)合物[1,11]。CSTF64和CSTF64τ (CSTF64的旁系同源體)的N端具有U-/GU-rich的識別基序(RNA recognition motif, RRM)[9]。CSTF77蛋白C端的脯氨酸富集結(jié)構(gòu)域(monkey-tail, MT)與RRM附近的鉸鏈區(qū)(hinge結(jié)構(gòu)域)相互作用,促進(jìn)CSTF64與RNA的結(jié)合[9];CSTF77的N端具有一個(gè)螺旋HAT結(jié)構(gòu)域,可分別結(jié)合CSTF64和CSTF50,可作為支架蛋白為其他反式作用因子提供結(jié)合平臺。CSTF50的保守性較低,僅存在于少數(shù)高等動(dòng)物中,可通過WD40結(jié)構(gòu)域與CSTF77的MT結(jié)構(gòu)域相互作用,也與RNAP II的羧基末端域(carboxy-terminal domain, CTD)互作,增強(qiáng)其他反式作用因子的活性[1]。
CFIm復(fù)合物主要包括CFIm25、CFIm59(或CFIm68)[9,11]。CFIm25具有RRM結(jié)構(gòu)域,可特異性識別PAS上游的UGUA元件,進(jìn)而招募CFIm59/ CFIm68,形成CFIm復(fù)合物[9]。CFIm59的RRM結(jié)構(gòu)域與CFIm25二聚體結(jié)合,增強(qiáng)CFIm25的RNA結(jié)合活性,同時(shí)也可促進(jìn)RNA環(huán)化[10]。CFIIm復(fù)合物主要包括PCF11 (PCF11 cleavage and polyadeny-lation factor subunit)和CLP1 (CLP1 cleavage factor polyribonucleotide kinase subunit 1)兩種蛋白質(zhì),PCF11結(jié)合在PAS的下游,在RNAP II轉(zhuǎn)錄終止中發(fā)揮作用,CLP1可作為連接CPSF復(fù)合物和CFIm復(fù)合物的銜接蛋白[11]。
圖1 C/P反應(yīng)的順式調(diào)控元件和反式作用因子
CPSF:剪切多聚腺苷酸化特異因子(cleavage and polyadenylation specificity factor);CSTF:剪切激活因子(cleavage stimulation factor);CFIIm:剪切因子復(fù)合物I (cleavage factor I m);RBP:RNA結(jié)合蛋白(RNA binding protein);RNAP II:RNA聚合酶II(RNA polymerase II);PAP:poly(A)聚合酶(poly(A) polymerase);PABPN1:核poly(A)結(jié)合蛋白(nuclear poly(A)-binding protein 1);WDR33:WD重復(fù)域33 (WD repeat domain 33);FIP1:PAP互作因子(factor interacting with PAP);CLP1:C/P因子亞基1 (cleavage factor polyribonucleotide kinase subunit 1);PCF11:C/P因子亞基(cleavage and polyadenylation factor subunit);PAS:多聚腺苷酸化信號(polyadenylation signal)。根據(jù)參考文獻(xiàn)[1, 8~10]總結(jié)繪制。
參與C/P反應(yīng)的蛋白質(zhì)單體包括偶對蛋白(symplekin)、RNA聚合酶II(RNA polymerase II,RNAP II)、poly(A)聚合酶(poly(A) polymerase, PAP)和核poly(A)結(jié)合蛋白(nuclear poly(A)-binding protein 1, PABPN1)等。RNAP II的C端結(jié)構(gòu)域(CTD)能招募多個(gè)蛋白復(fù)合物,為C/P反應(yīng)提供酶促反應(yīng)的平臺。
另外,有些反式作用因子蛋白本身不能直接結(jié)合RNA,但它們可以作為支架蛋白結(jié)合上述各復(fù)合物,從而發(fā)揮調(diào)控C/P的作用,例如,Symplekin作為連接CPSF和CSTF復(fù)合物的連接蛋白。
真核生物基因的轉(zhuǎn)錄延伸、RNA前體的選擇性拼接以及C/P反應(yīng)相偶聯(lián)。RNAP II在轉(zhuǎn)錄延伸、選擇性拼接以及C/P反應(yīng)中都發(fā)揮重要作用。RNAP II的N端控制RNA的合成,RNAP II的CTD結(jié)構(gòu)域可募集C/P反應(yīng)所需的多種反式作用因子,為mRNA前體的C/P反應(yīng)提供平臺。RNAP II的CTD結(jié)構(gòu)域與C/P反應(yīng)的反式作用因子的結(jié)合是一個(gè)動(dòng)態(tài)過程,其中CPSF復(fù)合物中的WDR33和CPSF30在其他蛋白質(zhì)的參與下特異性識別AAUAAA保守基序[9]。同時(shí)CFIm25和CSTF64分別與PAS上游UGUA元件和下游U/GU-rich元件等保守基序特異性結(jié)合,并在CSTF77、Symplekin、CFIm68/CFIm59和FIP1等蛋白的作用下,CSTF、CPSF和CFIm等形成一個(gè)復(fù)合體,隨后CPSF73對PAS下游剪切位點(diǎn)進(jìn)行精準(zhǔn)剪切[9]。CPSF和FIP1互作可招募PAP,招募的PAP會(huì)在剪切后的前體mRNA的3'端緩慢合成10~15個(gè)腺苷酸殘基。此后,PABPN1會(huì)結(jié)合到短的poly(A)序列上,同時(shí)錨定PAP,快速合成poly(A),形成長約200個(gè)腺苷酸的poly(A)尾巴[1]。轉(zhuǎn)錄延伸與C/P反應(yīng)偶聯(lián)保證了RNA的精細(xì)化加工,這是一種快速精確的調(diào)控方式,以最小的耗能方式為RNA轉(zhuǎn)錄加工提供保障。
除了上述細(xì)胞核內(nèi)多聚腺苷酸化,還存在胞質(zhì)多聚腺苷酸化(cytoplasmic polyadenylation)。與核內(nèi)多聚腺苷酸化不同,胞質(zhì)多聚腺苷酸化發(fā)生于胞質(zhì)內(nèi)成熟的mRNA,它不與轉(zhuǎn)錄相偶聯(lián),也不存在剪切反應(yīng)。這類mRNA沒有翻譯活性,它們的poly(A)尾巴通常都很短,大約有20多個(gè)核苷酸。胞質(zhì)多聚腺苷酸化能延長這類mRNA的poly(A)尾巴,從而激活其翻譯活性。胞質(zhì)多聚腺苷酸化是調(diào)控mRNA翻譯的一個(gè)重要機(jī)制,多見于卵子發(fā)生和早期發(fā)育胚胎。例如,在卵母細(xì)胞受精后,卵母細(xì)胞質(zhì)存留的無翻譯活性的mRNA因發(fā)生胞質(zhì)多聚腺苷酸化而激活其活性,表達(dá)出合子基因組表達(dá)所需的酶和轉(zhuǎn)錄因子[14,15]。在胚胎期晶狀體纖維分化過程中,由于晶狀體蛋白相關(guān)基因的mRNA發(fā)生胞質(zhì)多聚腺苷酸化,從而提高了這些mRNA的翻譯效率[16]。
與核內(nèi)多聚腺苷酸化相同,胞質(zhì)多聚腺苷酸化也同樣受到許多順式調(diào)控元件和反式作用因子的調(diào)控,其中,順式調(diào)控元件包括胞質(zhì)多聚腺苷酸化元件(cytoplasmic polyadenylation element, CPE)、CPE上游的Pumilio結(jié)合元件(pumilio binding element, PBE)以及CPE下游的PAS[17,18];已知的反式作用因子有CPE結(jié)合蛋白(CPE binding proteins, CPEBs)、Pumilio蛋白以及CPSF160/100/30[19]。反式作用因子CPEBs能結(jié)合CPE元件,Pumilio能結(jié)合PBE元件,而CPSF160/100/30能結(jié)合PAS元件。非磷酸化的CPEB1結(jié)合Pumilio,招募脫腺苷化酶和翻譯起始抑制因子,進(jìn)而抑制翻譯;但磷酸化的CPEB1會(huì)與脫腺苷酸化酶和翻譯起始抑制因子解離,轉(zhuǎn)而與CPSF互作,從而招募胞質(zhì)poly(A)聚合酶PAPD4(GLD-2),快速合成80~250個(gè)核苷酸的poly(A)尾巴[17]。胞質(zhì)poly(A)結(jié)合蛋白(cytoplasmic poly(A)-binding protein 1, PABPC1)結(jié)合poly(A)尾巴,它同時(shí)與mRNA 5?端的帽結(jié)構(gòu)復(fù)合物亞基eIF4G互作,形成閉鎖環(huán)復(fù)合體(closed loop complex),從而促進(jìn)翻譯[19]。胞質(zhì)多聚腺苷酸化與核內(nèi)多聚腺苷酸化的調(diào)控有相似之處,也有不同之處。兩者的相似之處,例如,兩者都需要順式調(diào)控元件PAS和反式作用因子CPSF和symplekin的參與。兩者的不同之處,例如,與核內(nèi)多聚腺苷酸化不同,具有多個(gè)PAS的mRNA在胞質(zhì)多聚腺苷酸化中,其近端PAS可遠(yuǎn)程調(diào)控mRNA 3'末端的多聚腺苷酸化[18]。
根據(jù)所在位置不同,PAS可以分為非編碼區(qū)PAS (untranslated region PAS, UTR-PAS)和編碼區(qū)PAS (coding region PAS, CR-PAS)兩大類[1,20],其中以UTR-PAS最為多見。一個(gè)基因如果有多個(gè)PAS,不同PAS的選擇利用會(huì)使同一個(gè)基因產(chǎn)生3?末端序列組成和長度均不同的轉(zhuǎn)錄本。基因如果選擇不同的UTR-PAS,形成的轉(zhuǎn)錄異構(gòu)體之間3?UTR的序列組成和長度均存在差異,但所編碼的蛋白質(zhì)序列不會(huì)改變[20]。如果選擇位于外顯子或內(nèi)含子的CR-PAS,所形成的轉(zhuǎn)錄本會(huì)編碼出截短型蛋白質(zhì)(圖2)[1,20]。
真核生物mRNA的3?UTR存在許多的基因表達(dá)順式調(diào)控元件,例如miRNA、lncRNA和RNA結(jié)合蛋白(RNA binding protein, RBP)的結(jié)合位點(diǎn)(圖2)。這些調(diào)控元件在mRNA穩(wěn)定性、運(yùn)輸、翻譯以及細(xì)胞定位中發(fā)揮重要作用。APA導(dǎo)致同一個(gè)基因產(chǎn)生多個(gè)具有不同3?UTR的轉(zhuǎn)錄本,由于3?UTR的差異,使得這些轉(zhuǎn)錄本具有不同的mRNA穩(wěn)定性、翻譯效率、運(yùn)輸以及細(xì)胞定位,并最終導(dǎo)致它們具有不同的生物學(xué)功能。
基因利用CR-PAS會(huì)編碼出C端不同的蛋白異構(gòu)體,有些蛋白異構(gòu)體可能會(huì)缺失跨膜區(qū)或DNA結(jié)合區(qū)等重要功能結(jié)構(gòu)域(圖2),不同蛋白異構(gòu)體的功能可能相近也可能相反[1]。有研究發(fā)現(xiàn),雞生長激素受體(growth hormone receptor,)基因存在CR-PAS和UTR-PAS。基因利用UTR-PAS會(huì)產(chǎn)生完整的GHR蛋白,完整的GHR定位于細(xì)胞膜,作為GH-GHR-IGF1信號通路的重要分子;而利用CR-PAS則會(huì)形成疏水跨膜域缺失的分泌蛋白—生長激素結(jié)合蛋白(growth hormone binding protein, GHBP)[21,22],主要參與維持體內(nèi)GH水平的穩(wěn)定[23]。在B細(xì)胞和T細(xì)胞激活過程中,多數(shù)基因選擇利用CR-PAS,使得編碼的蛋白質(zhì)由膜錨定型轉(zhuǎn)向分泌型[24]。視網(wǎng)膜母細(xì)胞瘤結(jié)合蛋白(retinoblastoma- binding protein 6, RBBP6)利用CR-PAS產(chǎn)生截短型蛋白ISO6,它與全長的RBBP6競爭性參與PAS剪切[25]。
圖2 PAS類型及其APA示意圖
PAS:多聚腺苷酸化信號(polyadenylation signal);CR-PAS:編碼區(qū)PAS (coding region PAS);UTR-PAS:非編碼區(qū)PAS (untranslated region PAS);TSS:轉(zhuǎn)錄起始位點(diǎn)(transcriptional start site);CDS:蛋白質(zhì)編碼區(qū)(coding sequence);RBP:RNA結(jié)合蛋白(RNA binding protein);lncRNA:長鏈非編碼RNA (long non-coding RNA)。
絕大多數(shù)APA可導(dǎo)致同一個(gè)基因轉(zhuǎn)錄出多個(gè)不同長度的3?UTR轉(zhuǎn)錄本。因?yàn)??UTR存在調(diào)控穩(wěn)定性的順式調(diào)控元件,如miRNA的結(jié)合位點(diǎn)(圖2),因此,同一個(gè)基因的不同轉(zhuǎn)錄本具有不同的穩(wěn)定性[9]。一般來說,短3?UTR的轉(zhuǎn)錄本具有較高的穩(wěn)定性和翻譯效率,這類轉(zhuǎn)錄本多見于增殖期細(xì)胞;而長的3?UTR轉(zhuǎn)錄本則有利于轉(zhuǎn)錄后的精細(xì)化調(diào)控,這類轉(zhuǎn)錄本多見于細(xì)胞分化和組織發(fā)育等復(fù)雜生物學(xué)過程[26]。
干擾素調(diào)節(jié)因子5 (interferon regulatory factor 5,)是系統(tǒng)性紅斑狼瘡的候選基因。雙鏈RNA結(jié)合蛋白STAU1能結(jié)合長3?UTR亞型轉(zhuǎn)錄本的Alu元件,導(dǎo)致mRNA快速降解;而短3?UTR亞型的轉(zhuǎn)錄本不存在Alu元件,因此穩(wěn)定性較高[27]。是調(diào)節(jié)肌細(xì)胞和肝細(xì)胞增殖的關(guān)鍵基因,其長3?UTR亞型轉(zhuǎn)錄本含有結(jié)合位點(diǎn),而其短3?UTR亞型轉(zhuǎn)錄本沒有,因此的短3?UTR亞型轉(zhuǎn)錄本可逃避介導(dǎo)的基因沉默,穩(wěn)定性較高[28,29]。
盡管短3?UTR亞型轉(zhuǎn)錄本可顯著提升mRNA的翻譯效率,但是,3?端測序和蛋白定量質(zhì)譜分析發(fā)現(xiàn)小鼠和人的T細(xì)胞中短3'UTR對蛋白質(zhì)表達(dá)豐度的影響有限[30~32],提示并非所有APA引起的短3?UTR亞型都可提高mRNA的翻譯效率。
mRNA的出核轉(zhuǎn)運(yùn)和胞質(zhì)定位受到位于3?UTR的定位順式調(diào)控元件(zip codes)和反式作用因子(zip codes結(jié)合蛋白)的調(diào)控[33]。同一基因3?UTR序列長度和組成不同的轉(zhuǎn)錄本可能具有不同的定位信號,這會(huì)導(dǎo)致同一個(gè)基因的不同轉(zhuǎn)錄本在細(xì)胞中的分布不同和功能差異。
研究表明,出核蛋白(Aly/REF export factor, ALYREF)通過與PABPN1和CSTF64互作,并結(jié)合mRNA的3?UTR促進(jìn)mRNA出核轉(zhuǎn)運(yùn)[34]。另外,研究發(fā)現(xiàn),核RNA輸出因子1 (nuclear RNA export factor1, NXF1)可與CFIm68互作,并結(jié)合于成熟的長3?UTR亞型轉(zhuǎn)錄本的UGUA元件協(xié)助其出核轉(zhuǎn)運(yùn)[35,36]。腦源性神經(jīng)營養(yǎng)因子(brain-derived neuro-trophic factor,)[37]和肌醇單磷酸酶(inositol monophosphatase 1)[38]的長3?UTR亞型轉(zhuǎn)錄本主要定位在神經(jīng)細(xì)胞樹突中,而其短3?UTR亞型轉(zhuǎn)錄本則主要分布在神經(jīng)元胞體內(nèi)[37]。長3?UTR亞型轉(zhuǎn)錄本3?UTR的U-rich元件可結(jié)合Hu antigen R (HuR),HuR會(huì)招募SET蛋白,促進(jìn)SET與新翻譯出的CD47蛋白互作,并同時(shí)激活Rac家族GTP酶1 (Rac family small GTPase 1, RAC1),從而使CD47向質(zhì)膜轉(zhuǎn)移;短3'UTR亞型轉(zhuǎn)錄本的3'UTR則缺少U-rich元件,不能與HuR結(jié)合,無法招募SET蛋白和激活RAC1,故造成CD47蛋白滯留在內(nèi)質(zhì)網(wǎng)中[39]。、整合素α1 (integrin α1,)和腫瘤壞死因子受體超家族成員13C (TNF receptor superfamily member 13C,)的不同蛋白質(zhì)亞型也存在這種細(xì)胞定位機(jī)制[39]。雖然長3'UTR亞型轉(zhuǎn)錄本在細(xì)胞質(zhì)中易降解,但卻具有高效的出核方式,這保證了長3'UTR亞型轉(zhuǎn)錄本在細(xì)胞質(zhì)中發(fā)揮作用,也保證了其轉(zhuǎn)錄后的精細(xì)調(diào)控。
簡單來說,一個(gè)具有多個(gè)PAS的基因,其mRNA前體在成熟過程中PAS的選擇利用取決于各PAS發(fā)生C/P反應(yīng)的時(shí)機(jī)。當(dāng)mRNA前體具有兩個(gè)PAS時(shí),PAS的選擇涉及Tp1、Tp2和Tt三個(gè)關(guān)鍵時(shí)間變量,Tp1和Tp2分別是在近端PAS和遠(yuǎn)端PAS進(jìn)行C/P反應(yīng)的時(shí)間,Tt是轉(zhuǎn)錄復(fù)合體通過兩個(gè)PAS間的時(shí)間[40]。如果Tp1 < Tt + Tp2,近端PAS的利用率增加,會(huì)產(chǎn)生短3?UTR亞型轉(zhuǎn)錄本;如果Tp1 > Tt + Tp2,則遠(yuǎn)端PAS的利用率增加,產(chǎn)生長3?UTR亞型轉(zhuǎn)錄本[40]。這3個(gè)關(guān)鍵時(shí)間參數(shù)受到順式調(diào)控元件信號強(qiáng)弱和反式作用因子作用強(qiáng)度等多個(gè)因素的調(diào)控。目前已知APA的調(diào)控受到PAS序列、PAS序列間的距離、染色質(zhì)的修飾、轉(zhuǎn)錄酶的延伸速度、蛋白質(zhì)-RNA互作強(qiáng)度和核心反式作用因子濃度的影響[1,9]。
PAS是C/P反應(yīng)的順式調(diào)控元件,PAS序列信號的強(qiáng)弱影響其在APA中是否被選擇和利用。遠(yuǎn)端PAS常具有經(jīng)典的AAUAAA、U/GU-rich等元件[26,40],而近端PAS常含有這些元件的非經(jīng)典序列,其剪切活性較遠(yuǎn)端PAS低,故在APA中通常選擇和利用遠(yuǎn)端PAS,這種現(xiàn)象普遍存在于在果蠅、小鼠和人的大多數(shù)基因[2]。
兩個(gè)PAS間的序列也會(huì)影響PAS的選擇。研究發(fā)現(xiàn),在兩個(gè)PAS間插入外源片段可提高近端PAS的利用[41]。兩個(gè)PAS之間的DNA甲基化也會(huì)影響PAS的選擇利用。研究發(fā)現(xiàn),作為甲基化特異絕緣蛋白的CCCTC結(jié)合因子(CCCTC-binding factor, CTCF)會(huì)與DNA甲基化位點(diǎn)結(jié)合,并招募黏連蛋白復(fù)合物(cohesin complex)形成染色質(zhì)環(huán)形結(jié)構(gòu),阻止RNAP II的轉(zhuǎn)錄延伸,從而促進(jìn)近端PAS的選擇利用[42]。
染色質(zhì)空間結(jié)構(gòu)也可影響PAS的選擇,處在染色質(zhì)較為松散區(qū)域的PAS,易被選擇和利用。研究發(fā)現(xiàn),釀酒酵母的組蛋白H3K4和H3K36甲基化酶SET1和SET2可調(diào)控APA,這是由于這兩個(gè)甲基化酶修飾組蛋白H3后,H3K4me1和H3K36me3可增加核小體乙?;?,從而減少了核小體的位阻效應(yīng),使染色質(zhì)處于松散的開放狀態(tài),有利于選擇遠(yuǎn)端PAS[43]。還有研究發(fā)現(xiàn)APA的調(diào)控也與mRNA 3'UTR的腺嘌呤的甲基化(6-methyladenosine, m6A)和RNA二級結(jié)構(gòu)有關(guān)[44,45]。
APA受到前述參與C/P反應(yīng)的4個(gè)蛋白質(zhì)復(fù)合物的核心蛋白因子、RNA拼接因子以及其他一些RNA結(jié)合蛋白等的調(diào)控。
其中,RNAP II是APA的重要反式調(diào)控因子。黑腹果蠅中有一種突變型RNAP II,它的轉(zhuǎn)錄延伸效率較低,導(dǎo)致基因短3?UTR亞型轉(zhuǎn)錄本的表達(dá)量增加[46]。在紫外線誘導(dǎo)的酵母DNA損傷修復(fù)模型中,紫外線引起的RNAP II的C端高度磷酸化,在降低轉(zhuǎn)錄延伸效率的同時(shí)還會(huì)影響剪接體蛋白復(fù)合物的結(jié)合[47],結(jié)果導(dǎo)致基因利用近端PAS,產(chǎn)生短3?UTR亞型轉(zhuǎn)錄本[48]。
反式作用因子濃度的改變是調(diào)控APA的一個(gè)重要因素。有研究發(fā)現(xiàn)CSTF64/CSTF64τ或FIP1的缺失可增加多數(shù)基因遠(yuǎn)端高活性PAS的選擇利用[49~51],敲低CFIm25和CFIm68會(huì)增加多數(shù)基因近端低活性PAS的選擇利用[52]。在紫外線誘導(dǎo)DNA損傷修復(fù)的模型中,BRCA1/BARD1結(jié)合并隔絕CSTF50,使得CSTF50的濃度顯著降低,造成較多基因選擇利用遠(yuǎn)端PAS[53]。胚胎干細(xì)胞(ESCs)分化過程中,F(xiàn)IP1和CSTF各亞基的蛋白水平呈逐漸下降的趨勢,同時(shí)較多的基因選擇利用遠(yuǎn)端PAS。與此相一致,F(xiàn)IP1缺失會(huì)導(dǎo)致ESC細(xì)胞較多基因選擇利用遠(yuǎn)端PAS[50]。降低RNA結(jié)合蛋白Nudt21會(huì)促進(jìn)細(xì)胞重編程相關(guān)基因選擇利用近端PAS,形成短3'UTR亞型轉(zhuǎn)錄本,提高其穩(wěn)定性和編碼能力,促進(jìn)已分化細(xì)胞發(fā)生去分化,形成具有多能性的祖細(xì)胞[54]。
反式作用因子和順式調(diào)控元件的互作強(qiáng)度減弱或喪失也是影響APA的重要因素。Robert等[27]發(fā)現(xiàn)基因近端PAS的經(jīng)典序列AAUAAA突變?yōu)榉墙?jīng)典AAGAAA后,CPSF160與其互作的能力下降,導(dǎo)致由選擇近端PAS轉(zhuǎn)而選擇遠(yuǎn)端PAS,從而產(chǎn)生長3?UTR亞型的mRNA。異質(zhì)性核糖核蛋白F(hete-rogeneous nuclear ribonucleoproteins F, hnRNP)和H/H[49]、多聚嘧啶序列結(jié)合蛋白(PTB)[55]和性別致死因子(sex lethal)[56]可結(jié)合CR-PAS下游的GU-rich元件,競爭性抑制CSTF64與GU-rich元件結(jié)合,導(dǎo)致UTR-PAS型選擇利用增加。有報(bào)道發(fā)現(xiàn)PABPN1與近端PAS結(jié)合并抑制CPSF160與其互作,導(dǎo)致遠(yuǎn)端PAS的選擇利用增加[57,58]。異質(zhì)性核糖核蛋白K (heterogeneous nuclear ribonucleoptotein K, hnRNP K)可阻止CFIm68與CFIm25結(jié)合,抑制CFIm復(fù)合物與的近端PAS上游的UGUA結(jié)合,導(dǎo)致遠(yuǎn)端PAS的選擇利用增加,從而促進(jìn)長3?UTR亞型lncRNA_2的表達(dá)[59,60]。αCP胞嘧啶結(jié)合蛋白(αCP poly(C) binding protein, αCP PCBP)能結(jié)合C-rich元件,促進(jìn)C-rich元件臨近的PAS的選擇利用[61]。
許多APA的調(diào)控因子自身也受到APA的調(diào)控。例如人和果蠅基因利用CR-PAS產(chǎn)生沒有編碼能力的mRNA[62],導(dǎo)致CSTF77的表達(dá)降低,CSTF77表達(dá)下降使其對CR-PAS的選擇利用減少,UTR-PAS選擇利用增加,產(chǎn)生具有編碼能力的長亞型轉(zhuǎn)錄本,提高細(xì)胞內(nèi)CSTF77蛋白水平[63],而高水平的CSTF77會(huì)促進(jìn)CR-PAS的選擇利用,產(chǎn)生沒有編碼能力的mRNA。有報(bào)導(dǎo)表明CSTF64和CSTF64τ也存在這種表達(dá)互抑現(xiàn)象[64,65]。這種通過APA調(diào)節(jié)mRNA長度的機(jī)制可以維持C/P反應(yīng)所需蛋白的生理濃度,并為其他基因的APA調(diào)控提供了保障。
目前已知絕大多數(shù)的真核生物基因都存在APA。作為基因表達(dá)的一個(gè)重要調(diào)控機(jī)制,APA的異常與人類疾病密切相關(guān)。目前發(fā)現(xiàn),血液、免疫、神經(jīng)、癌癥等多種疾病與APA的異常相關(guān)[4~7]。研究發(fā)現(xiàn),在地中海貧血患者中,和基因近端PAS的突變和缺失造成了遠(yuǎn)端PAS選擇利用的增加[4];同樣發(fā)現(xiàn),在靜脈血栓患者中,近端PAS突變引起的凝血酶原(prothrombin)基因遠(yuǎn)端PAS的利用增加[66]。在急性粒細(xì)胞白血病患者中,CPSF160的表達(dá)顯著高于健康人群,造成白血病相關(guān)的融合基因產(chǎn)生高穩(wěn)定性的短3'UTR亞型轉(zhuǎn)錄本,促進(jìn)白血病細(xì)胞生長[67]。在動(dòng)脈粥樣硬化、II型糖尿病、結(jié)腸炎和關(guān)節(jié)炎等慢性炎癥疾病患者中,炎癥反應(yīng)因子NLRP3的短3?UTR亞型轉(zhuǎn)錄本的表達(dá)水平較高,NLRP3的短3?UTR亞型轉(zhuǎn)錄本可逃避Tristet-raprolin(TTP)和的負(fù)調(diào)控,導(dǎo)致NLRP3蛋白表達(dá)升高,誘導(dǎo)機(jī)體發(fā)生炎癥反應(yīng)[68]。膠質(zhì)母細(xì)胞瘤的CFIm25的表達(dá)增加,導(dǎo)致致癌基因產(chǎn)生高穩(wěn)定性的短3?UTR亞型轉(zhuǎn)錄本,增強(qiáng)了惡性膠質(zhì)瘤細(xì)胞的增殖和侵襲能力[69]。在肌萎縮性脊髓側(cè)索硬化癥(amyotrophic lateral sclerosis, ALS)和額顳葉癡呆(frontotemporal dementia, FTD)患者中,抑微管裝配蛋白()基因利用CR-PAS所產(chǎn)生的轉(zhuǎn)錄本不能翻譯出具有功能的蛋白,導(dǎo)致運(yùn)動(dòng)神經(jīng)元軸突的再生被抑制[70]。在阿爾茲海默癥(Alzheimer's disease,AD)患者中,微管相關(guān)蛋白的基因選擇利用近端PAS,避免了的抑制作用,導(dǎo)致TAU蛋白的表達(dá)增加,加劇神經(jīng)元內(nèi)TAU蛋白凝聚,造成神經(jīng)纖維纏結(jié)[71]。在帕金森疾病(Parkinson's disease, PD)患者中,細(xì)胞內(nèi)多巴胺會(huì)促進(jìn)α-突觸蛋白(α-synuclein)基因產(chǎn)生長3'UTR亞型轉(zhuǎn)錄本,增強(qiáng)了α-突觸蛋白轉(zhuǎn)錄本的穩(wěn)定性和蛋白表達(dá)水平,造成α-突觸蛋白由突觸末端向線粒體和細(xì)胞體轉(zhuǎn)移,蓄積的α-突觸蛋白形成路易小體(lewy body)[72]。慢性淋巴細(xì)胞白血病和多發(fā)性骨髓瘤細(xì)胞的3?端轉(zhuǎn)錄組測序分析發(fā)現(xiàn),腫瘤細(xì)胞的抑癌基因較多地選擇利用CR-PAS,產(chǎn)生缺失DNA結(jié)合結(jié)構(gòu)域或跨膜結(jié)構(gòu)域的蛋白,這些蛋白往往喪失抑癌作用[73,74]。
近來大量的研究表明,APA是真核生物中廣泛存在的一個(gè)重要基因表達(dá)調(diào)控機(jī)制,但目前人們對于許多基因APA的生物學(xué)效應(yīng)和調(diào)控機(jī)制了解還不夠,特別是對特定組織和細(xì)胞在特定發(fā)育階段的APA及其APA的生物學(xué)效應(yīng)和調(diào)控尚不清楚。未來有必要開展以下4個(gè)方面的工作:(1)建立高通量、高準(zhǔn)確率的APA測序分析平臺。雖然目前已建立了多種3?端富集測序分析技術(shù),但是這些方法仍存在不足之處,分析結(jié)果不夠準(zhǔn)確。未來,有必要采用第三代測序和單細(xì)胞測序技術(shù)開展特定組織或細(xì)胞在特定發(fā)育階段的APA研究。(2)開展APA的調(diào)控機(jī)制研究。盡管目前人們已鑒定出了許多APA的順式調(diào)控元件和反式作用因子,但還需進(jìn)一步開展不同組織和細(xì)胞的特異性APA順式調(diào)控元件和反式作用因子(包括非編碼RNA)的鑒定和功能分析。(3)開展表觀遺傳修飾對APA的調(diào)控研究。目前已有研究發(fā)現(xiàn),DNA、RNA和組蛋白的表觀修飾影響基因的APA,但其作用機(jī)制尚不清楚,未來有必要開展DNA甲基化、組蛋白修飾以及RNA前體甲基化等表觀修飾對APA的影響和作用機(jī)制的研究。(4)開展APA的生物學(xué)效應(yīng)和調(diào)控機(jī)制的體內(nèi)研究。目前,APA研究主要局限于體外試驗(yàn),APA在體內(nèi)真正的生物學(xué)效應(yīng)和調(diào)控機(jī)制還有待闡明,未來需要利用基因敲除和基因編輯等技術(shù),開展體內(nèi)APA的生物學(xué)效應(yīng)和調(diào)控機(jī)制研究。隨著APA研究的不斷深入,相信許多生物學(xué)過程的分子作用機(jī)制和一些人類疾病的發(fā)生機(jī)制終將會(huì)被闡明。
[1] Tian B, Manley JL. Alternative polyadenylation of mRNA precursors., 2017, 18(1): 18–30.
[2] Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen RH, Rohl CA, Johnson JM, Babak T. A quantitative atlas of polyadenylation in five mammals., 2012, 22(6): 1173–1183.
[3] Brutman JN, Zhou X, Zhang YZ, Michal J, Stark B, Jiang ZH, Davis JF. Mapping diet-induced alternative polya-denylation of hypothalamic transcripts in the obese rat., 2018, 188: 173–180.
[4] Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A. Implications of polyadenylation in health and disease., 2014, 5(6): 508–519.
[5] Gruber AJ, Zavolan M. Alternative cleavage and polya-denylation in health and disease., 2019, 20(10): 599–614.
[6] Patel R, Brophy C, Hickling M, Neve J, Furger A. Alternative cleavage and polyadenylation of genes asso-ciated with protein turnover and mitochondrial function are deregulated in Parkinson's, Alzheimer's and ALS disease., 2019, 12(1): 60.
[7] Nourse J, Spada S, Danckwardt S. Emerging roles of RNA 3'-end cleavage and polyadenylation in pathogenesis, diagnosis and therapy of human disorders., 2020, 10(6): 915.
[8] Jafari Najaf Abadi MH, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR. CFIm25 and alternative polyadenylation: conflicting roles in cancer., 2019, 459: 112–121.
[9] Neve J, Patel R, Wang ZQ, Louey A, Furger AM. Cleavage and polyadenylation: ending the message expands gene regulation., 2017, 14(7): 865–890.
[10] Zheng DH, Tian B. RNA-binding proteins in regulation of alternative cleavage and polyadenylation., 2014, 825: 97–127.
[11] Knipe DM, Howley PM. Fields virology. 6th ed. 2013: Lippincott Williams & Wilkins Publishing.
[12] Chan SL, Huppertz I, Yao CG, Weng LJ, Moresco JJ, Yates JR 3rd, Ule J, Manley JL, Shi YS. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing., 2014, 28(21): 2370–2380.
[13] Hamilton K, Sun YD, Tong L. Biophysical characteriza-tions of the recognition of the AAUAAA polyadenylation signal., 2019, 25(12): 1673–1680.
[14] Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal- to-zygotic transition in mammals., 2019, 101(3): 579–590.
[15] Winata CL, ?apiński M, Pryszcz L, Vaz C, Bin Ismail MH, Nama S, Hajan HS, Lee SGP, Korzh V, Sampath P, Tanavde V, Mathavan S. Cytoplasmic polyadenylation- mediated translational control of maternal mRNAs directs maternal-to-zygotic transition., 2018, 145(1): dev159566.
[16] Shao M, Lu T, Zhang C, Zhang YZ, Kong SH, Shi DL. Rbm24 controls poly(A) tail length and translation efficiency ofmRNAs in the lenscytoplasmic polyadenylation., 2020, 117(13): 7245–7254.
[17] Villalba A, Coll O, Gebauer F. Cytoplasmic polyadeny-lation and translational control., 2011, 21(4): 452–457.
[18] Dai XX, Jiang JC, Sha QQ, Jiang Y, Ou XH, Fan HY. A combinatorial code for mRNA 3'-UTR-mediated transla-tional control in the mouse oocyte., 2019, 47(1): 328–340.
[19] Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation., 2013, 4(4): 437–461.
[20] Chen W, Jia Q, Song YF, Fu HH, Wei G, Ni T. Alternative polyadenylation: methods, findings, and impacts., 2017, 15(5): 287–300.
[21] Lau SL. Molecular characterization of the chicken growth hormone receptor gene. Hong Kong: Hong Kong University, 2005.
[22] Lau JS, Yip CW, Law KM, Leung FC. Cloning and characterization of chicken growth hormone binding protein (cGHBP)., 2007, 33(1): 107–121.
[23] Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects., 2018, 9: 35.
[24] Cheng LC, Zheng DH, Baljinnyam E, Sun FZ, Ogami K, Yeung PL, Hoque M, Lu CW, Manley JL, Tian B. Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation., 2020, 11(1): 3182.
[25] Di Giammartino DC, Li WC, Ogami K, Yashinskie JJ, Hoque M, Tian B, Manley JL. RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3' UTRs., 2014, 28(20): 2248–2260.
[26] Turner RE, Pattison AD, Beilharz TH. Alternative polyadenylation in the regulation and dysregulation of gene expression., 2018, 75: 61–69.
[27] Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, Baechler EC, Plenge RM, Koeuth T, Ortmann WA, Hom G, Bauer JW, Gillett C, Burtt N, Cunninghame Graham DS, Onofrio R, Petri M, Gunnarsson I, Svenungsson E, R?nnblom L, Nordmark G, Gregersen PK, Moser K, Gaffney PM, Criswell LA, Vyse TJ, Syv?nen AC, Bohjanen PR, Daly MJ, Behrens TW, Altshuler D. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus., 2007, 104(16): 6758–6763.
[28] Boutet SC, Cheung TH, Quach NL, Liu L, Prescott SL, Edalati A, Iori K, Rando TA. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function., 2012, 10(3): 327–336.
[29] de Morree A, Klein JDD, Gan Q, Farup J, Urtasun A, Kanugovi A, Bilen B, van Velthoven CTJ, Quarta M, Rando TA. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function., 2019, 366(6466): 734–738.
[30] Gruber AR, Martin G, Müller P, Schmidt A, Gruber AJ, Gumienny R, Mittal N, Jayachandran R, Pieters J, Keller W, van Nimwegen E, Zavolan M. Global 3' UTR shortening has a limited effect on protein abundance in proliferating T cells., 2014, 5: 5465.
[31] Spies N, Burge CB, Bartel DP. 3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts., 2013, 23(12): 2078–2090.
[32] Spangenberg L, Shigunov P, Abud APR, Cofré AR, Stimamiglio MA, Kuligovski C, Zych J, Schittini AV, Costa ADT, Rebelatto CK, Brofman PRS, Goldenberg S, Correa A, Naya H, Dallagiovanna B. Polysome profiling shows extensive posttranscriptional regulation during human adipocyte stem cell differentiation into adipocytes., 2013, 11(2): 902–912.
[33] Jambhekar A, Derisi JL. Cis-acting determinants of asymmetric, cytoplasmic RNA transport., 2007, 13(5): 625–642.
[34] Shi M, Zhang H, Wu XD, He ZS, Wang LT, Yin SY, Tian B, Li GH, Cheng H. ALYREF mainly binds to the 5' and the 3' regions of the mRNA., 2017, 45(16): 9640–9653.
[35] Ruepp MD, Aringhieri C, Vivarelli S, Cardinale S, Paro S, Schümperli D, Barabino SML. Mammalian pre-mRNA 3' end processing factor CF I m 68 functions in mRNA export., 2009, 20(24): 5211–5223.
[36] Chen SL, Wang RJ, Zheng DH, Zhang H, Chang XY, Wang K, Li WC, Fan J, Tian B, Cheng H. The mRNA export receptor NXF1 coordinates transcriptional dynamics, alternative polyadenylation, and mRNA export., 2019, 74(1): 118–131. e7.
[37] An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B, Xu BJ. Distinct role of long 3' UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons., 2008, 134(1): 175–187.
[38] Andreassi C, Riccio A. To localize or not to localize: mRNA fate is in 3'UTR ends., 2009, 19(9): 465–474.
[39] Berkovits BD, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization., 2015, 522(7556): 363–367.
[40] Davis R, Shi YS. The polyadenylation code: a unified model for the regulation of mRNA alternative polya-denylation., 2014, 15(5): 429–437.
[41] Marsollier AC, Joubert R, Mariot V, Dumonceaux J. Targeting the polyadenylation signal of pre-mRNA: a new gene silencing approach for facioscapulohumeral dystrophy., 2018, 19(5): 1347.
[42] Nanavaty V, Abrash EW, Hong CJ, Park S, Fink EE, Li ZY, Sweet TJ, Bhasin JM, Singuri S, Lee BH, Hwang TH, Ting AH. DNA methylation regulates alternative polyadenylationCTCF and the cohesin complex., 2020, 78(4): 752–764. e6.
[43] Michaels KK, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases., 2020, 48(10): 5407–5425.
[44] Yue YN, Liu J, Cui XL, Cao J, Luo GZ, Zhang ZZ, Cheng T, Gao MS, Shu X, Ma HH, Wang FQ, Wang XX, Shen B, Wang YZ, Feng XH, He C, Liu JZ. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation., 2018, 4: 10.
[45] Patraquim P, Warnefors M, Alonso CR. Evolution of Hox post-transcriptional regulation by alternative polyadeny-lation and microRNA modulation within 12 Drosophila genomes., 2011, 28(9): 2453–2460.
[46] Pinto PAB, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska PS, Coelho PA, Carmo AM, Sunkel CE, Proudfoot NJ, Moreira A. RNA polymerase II kinetics in polo polyadenylation signal selection., 2011, 30(12): 2431–2444.
[47] Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C-terminal domain phosphorylation, phase separation and beyond., 2020, 11(1): e1574.
[48] Yu LJ, Volkert MR. UV damage regulates alternative polyadenylation of the RPB2 gene in yeast., 2013, 41(5): 3104–3114.
[49] Nazim M, Masuda A, Rahman MA, Nasrin F, Takeda JI, Ohe K, Ohkawara B, Ito M, Ohno K. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms., 2017, 45(3): 1455–1468.
[50] Lackford B, Yao CG, Charles GM, Weng LJ, Zheng XF, Choi EA, Xie XH, Wan J, Xing Y, Freudenberg JM, Yang PY, Jothi R, Hu G, Shi YS. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self- renewal., 2014, 33(8): 878–889.
[51] Hwang HW, Park CY, Goodarzi H, Fak JJ, Mele A, Moore MJ, Saito Y, Darnell RB. PAPERCLIP identifies microRNA targets and a role of CstF64/64tau in promoting non- canonical poly(A) site usage., 2016, 15(2): 423– 435.
[52] Zhou ZJ, Qu J, He L, Zhu Y, Yang SZ, Zhang F, Guo T, Peng H, Chen P, Zhou Y. Stiff matrix instigates type I collagen biogenesis by mammalian cleavage factor I complex-mediated alternative polyadenylation., 2020, 5(3): e133972.
[53] Fontana GA, Rigamonti A, Lenzken SC, Filosa G, Alvarez R, Calogero R, Bianchi ME, Barabino SML. Oxidative stress controls the choice of alternative last exonsa Brahma-BRCA1-CstF pathway., 2017, 45(2): 902–914.
[54] Brumbaugh J, Di Stefano B, Wang XY, Borkent M, Forouzmand E, Clowers KJ, Ji F, Schwarz BA, Kalocsay M, Elledge SJ, Chen Y, Sadreyev RI, Gygi SP, Hu G, Shi YS, Hochedlinger K. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling., 2018, 172(1–2): 106–120. e21.
[55] Roy D, Bhanja Chowdhury J, Ghosh S. Polypyrimidine tract binding protein (PTB) associates with intronic and exonic domains to squelch nuclear export of unspliced RNA., 2013, 587(23): 3802–3807.
[56] Gawande B, Robida MD, Rahn A, Singh R.Sex-lethal protein mediates polyadenylation switching in the female germline., 2006, 25(6): 1263–1272.
[57] Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kühn U, Menzies FM, Oude Vrielink JAF, Bos AJ, Drost J, Rooijers K, Rubinsztein DC, Agami R. The poly(A)- binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites., 2012, 149(3): 538–553.
[58] Mohibi S, Zhang J, Chen XB. PABPN1, a target of p63, modulates keratinocyte differentiation through regulation of p63α mRNA translation., 2020, 11(140): 2166–2177.
[59] Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T. Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles., 2012, 31(20): 4020–4034.
[60] Naganuma T, Hirose T. Paraspeckle formation during the biogenesis of long non-coding RNAs., 2013, 10(3): 456–461.
[61] Ji XJ, Wan J, Vishnu M, Xing Y, Liebhaber SA. αCP Poly(C) binding proteins act as global regulators of alternative polyadenylation., 2013, 33(13): 2560–2573.
[62] Juge F, Audibert A, Benoit B, Simonelig M. Tissue- specific autoregulation of Drosophila suppressor of forked by alternative poly(A) site utilization leads to accumulation of the suppressor of forked protein in mitotically active cells., 2000, 6(11): 1529–1538.
[63] Luo WT, Ji Z, Pan ZH, You B, Hoque M, Li WC, Gunderson SI, Tian B. The conserved intronic cleavage and polyadenylation site of CstF-77 gene imparts control of 3' end processing activity through feedback auto-regulation and by U1 snRNP., 2013, 9(7): e1003613.
[64] Yao CG, Biesinger J, Wan J, Weng LJ, Xing Y, Xie XH, Shi YS. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation., 2012, 109(46): 18773–18778.
[65] Yao CG, Choi EA, Weng LJ, Xie XH, Wan J, Xing Y, Moresco JJ, Tu PG, Yates JR, Shi YS. Overlapping and distinct functions of CstF64 and CstF64τ in mammalian mRNA 3' processing., 2013, 19(12): 1781–1790.
[66] Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL. G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3'-end formation., 2004, 2(1): 119–127.
[67] Shima T, Davis AG, Miyauchi S, Kochi Y, Johnson DT, Stoner SA, Junichiro Y, Miyamoto T, Zhou JH, Ball ED, Akashi K, Zhang DE. CPSF1 regulates AML1-ETO fusion gene polyadenylation and stability in t(8; 21) acute myelogenous leukemia., 2017, 130(Suppl.1): 2498.
[68] Haneklaus M, O'neil JD, Clark AR, Masters SL, O'neill LAJ. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome., 2017, 292(17): 6869–6881.
[69] Masamha CP, Xia Z, Yang JX, Albrecht TR, Li M, Shyu AB, Li W, Wagner EJ. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression., 2014, 510(7505): 412–416.
[70] Melamed Z, López-Erauskin J, Baughn MW, Zhang OY, Drenner K, Sun Y, Freyermuth F, Mcmahon MA, Beccari MS, Artates JW, Ohkubo T, Rodriguez M, Lin NW, Wu DM, Bennett CF, Rigo F, Da Cruz S, Ravits J, Lagier- Tourenne C, Cleveland DW. Premature polyadenylation- mediated loss of stathmin-2 is a hallmark of TDP-43- dependent neurodegeneration., 2019, 22(2): 180–190.
[71] Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS. Alternative polyadenylation and miR-34 family members regulate tau expression., 2013, 127(6): 739–749.
[72] Rhinn H, Qiang L, Yamashita T, Rhee D, Zolin A, Vanti W, Abeliovich A. Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology., 2012, 3: 1084.
[73] Lee SH, Singh I, Tisdale S, Abdel-Wahab O, Leslie CS, Mayr C. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia., 2018, 561(7721): 127–131.
[74] Singh I, Lee SH, Sperling AS, Samur MK, Tai YT, Fulciniti M, Munshi NC, Mayr C, Leslie CS. Widespread intronic polyadenylation diversifies immune cell trans-criptomes., 2018, 9(1): 1716.
Advances of functional consequences and regulation mechanisms of alternative cleavage and polyadenylation
Haidong Xu1,2,3, Bolin Ning1,2,3, Fang Mu1,2,3, Hui Li1,2,3, Ning Wang1,2,3
During the maturation of pre-mRNAs and some lncRNAs, their 3'ends are cleaved and polyadenylated. The cleavage and polyadenylation (C/P) require the presence of a polyadenylation signal (PAS) at the RNA 3?end. Most eukaryotic genes have multiple PASs, resulting in alternative cleavage and polyadenylation (APA). APA leads to transcript isoforms with different coding potentials and/or variable 3?UTRs. The 3'UTR affects mRNA stability, translation, transportation, and cellular localization. Therefore, APA is an important mechanism of posttranscriptional gene regulation in eukaryotes. In recent years, whole genome sequencing of animals, plants and yeast has revealed that APA is pervasive in eukaryotes, and the functional consequences and regulation of APA have been studied. To date, many-acting regulatory elements and-acting factors for APA regulation have been identified. In this review, we summarize the recent advances in the functional consequences and regulation of APA and discuss the future directions, aiming to provide clues and references for future APA study.
gene expression regulation; alternative cleavage and polyadenylation; polyadenylation signal;- acting regulatory element;acting factor
2020-07-07;
2020-10-19
國家自然科學(xué)基金項(xiàng)目(編號:31572392,3187131154)和農(nóng)業(yè)部產(chǎn)業(yè)體系項(xiàng)目(編號:CARS-41)資助[Supported by the National Natural Science Foundation of China (Nos. 31572392, 3187131154), and the China Agriculture Research System (No. CARS-41)]
徐海冬,在讀博士研究生,專業(yè)方向:動(dòng)物遺傳育種與繁殖。E-mail: 1689512382@qq.com
王寧,博士,教授,博士生導(dǎo)師,研究方向:動(dòng)物遺傳育種與繁殖。E-mail: wangning@neau.edu.cn
10.16288/j.yczz.20-200
2020/12/14 14:04:37
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20201211.1654.003.html
(責(zé)任編委: 楊昭慶)