朱 琳,劉 軍
上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院神經(jīng)內(nèi)科,上海200025
多系統(tǒng)萎縮(multiple system atrophy,MSA)是以自主神經(jīng)、錐體外系、錐體束等多系統(tǒng)受累為主要病理特征,且對左旋多巴治療反應(yīng)不佳的一種帕金森綜合征。目前,MSA 的診斷共識將其分為“確診”“很可能”和“可能”3 個(gè)等級。確診MSA 需依據(jù)病理診斷[1]。MSA 可根據(jù)臨床癥狀分為以帕金森綜合征為主要表現(xiàn)的MSA-P 型和以小腦性共濟(jì)失調(diào)為主要表現(xiàn)的MSA-C 型[1]。少突膠質(zhì)細(xì)胞中的一個(gè)類型——嗜銀性膠質(zhì)細(xì)胞,其細(xì)胞質(zhì)包涵體(glial cytoplasmic inclusion,GCI)是MSA 的病理特征[2]。因此MSA 的神經(jīng)病理確診標(biāo)準(zhǔn)為與大量廣泛分布的GCI 密切相關(guān)的黑質(zhì)-紋狀體或橄欖-腦橋-小腦退行性病變[3]。目前MSA 無有效治療方法,臨床上主要對癥治療,改善患者生活質(zhì)量。
MSA 臨床癥狀異質(zhì)性大,與其他α-突觸核蛋白相關(guān)疾病及tau 蛋白相關(guān)疾病常有類似臨床特征,且缺乏特異度高的生物標(biāo)志物?;颊呱按_診難度大,多依據(jù)臨床表現(xiàn)進(jìn)行診斷。一項(xiàng)研究[4]顯示,臨床診斷為MSA 的134 例 患者中,尸檢結(jié)果確診者僅占62%。因此,高敏感度和特異度的生物標(biāo)志物對MSA 的診斷、預(yù)后以及臨床試驗(yàn)中的療效評估都極為重要。本文總結(jié)近年來MSA 生物標(biāo)志物的研究進(jìn)展。
MSA 體液標(biāo)志物包括血清和腦脊液中的α-突觸核蛋白、DJ-1、tau 蛋白、兒茶酚胺及其代謝產(chǎn)物、細(xì)胞因子、miRNA 等;但研究結(jié)果并不完全一致,對MSA 的臨床診斷意義也并不明確[5]。
對于MSA 患者腦脊液中總α-突觸核蛋白含量是否降低,各研究結(jié)論不一致。僅有1 項(xiàng)研究[6]顯示,MSA 患者與帕金森病(Parkinson's disease,PD)患者腦脊液中總α-突觸核蛋白含量存在差異;因此,將腦脊液中總α-突觸核蛋白含量作為2 種疾病鑒別診斷依據(jù)尚不充分。MSA患者腦脊液及血清中神經(jīng)絲蛋白輕鏈(neurofilament light chain,NF-L)較健康者及PD 患者均有明顯升高[7],腦脊液中神經(jīng)絲蛋白重鏈(neurofilament heavy chain,NF-H)較健康者及PD 患者也有顯著升高[6],有一定的臨床應(yīng)用價(jià)值。
另外,需要指出的是體液單個(gè)生物標(biāo)志物的特異度及敏感度均較低,2 種及以上的標(biāo)志物相結(jié)合可提高疾病診斷和鑒別診斷的特異度或敏感度。如將腦脊液中DJ-1 和總tau 蛋白相結(jié)合,鑒別MSA 和PD 的敏感度(82%)和特異度(81%)均較高[8],但還需要大樣本量的臨床驗(yàn)證。
miRNA 是由20 ~25 個(gè)核苷酸組成的單鏈非編碼RNA,參與調(diào)節(jié)許多生理過程[9]。多種生物樣本中miRNA 都較穩(wěn)定,如血清、血漿、唾液和腦脊液等。因此,近年有許多關(guān)于診斷MSA 及鑒別PD 和MSA 的生物標(biāo)志物的研究聚焦于體液標(biāo)本中的miRNA,證明了組間表達(dá)的差異,且顯示了一些miRNA 在中樞神經(jīng)系統(tǒng)中高表達(dá),參與了細(xì)胞凋亡的調(diào)節(jié)、基因轉(zhuǎn)錄后的修飾、神經(jīng)炎癥過程等[10]。
一項(xiàng)研究[11]顯示,與健康對照相比,MSA 患者血漿中miR-30c-5p 表達(dá)明顯上調(diào),且其表達(dá)水平與病程長短相關(guān),用于MSA 患者和健康對照的鑒別準(zhǔn)確度較高(敏感度為80%,特異度為90%),用于鑒別MSA 與PD 的敏感度為82%,特異度則較低(54%)。該研究團(tuán)隊(duì)還發(fā)現(xiàn):與健康對照相比,MSA 患者血漿中miR-24、miR-148b、miR-223*、miR-324-3p 表 達(dá) 上 調(diào),miR-339-5p 表 達(dá) 下降;與PD 患者相比,MSA 患者血漿中miR-148b 表達(dá)上調(diào)[12]。除血漿中miRNA 表達(dá)變化外,2017 年一項(xiàng)研究[13]報(bào)道,腦脊液中miR-34a、miR-34b 和miR-34c 在MSA患者與健康對照間有差異,在MSA 患者中表達(dá)偏低。有些miRNA 還可能與MSA 不同類型相關(guān)。miR-24 和miR-148b 與MSA 中小腦共濟(jì)失調(diào)癥狀具有相關(guān)性,提示這些miRNA 參與MSA 的小腦退行性變[13]。
單個(gè)miRNA 用于鑒別PD 與MSA 或診斷MSA 時(shí),敏感度及特異度均不高,聯(lián)合多種miRNA 可能提高診斷的準(zhǔn)確性。腦脊液中miR-133b 和miR-148b 聯(lián)合應(yīng)用,可較好地區(qū)分PD 和MSA[13]。研究[14]表明:腦脊液中3 種miRNA 聯(lián)合檢測可有效區(qū)分α-突觸核蛋白相關(guān)疾病與健康對照;其中miR-7-5p、miR-34c-3p 和miR-let-7b-5p 可區(qū)分MSA 與健康對照,miR-9-3p 和miR-106b-5p 聯(lián)合檢測可鑒別MSA 與PD。
體液中miRNA 應(yīng)用于MSA 的診斷有一定前景,但目前仍有許多局限性:尚無統(tǒng)一的內(nèi)源性對照miRNA 用于標(biāo)準(zhǔn)量化miRNA;腦脊液miRNA 含量較低,不同樣本處理方法可造成miRNA 定量差異較大;既往研究樣本數(shù)量有限,從而影響結(jié)論的可靠性。因此,還需大樣本隊(duì)列研究探索miRNA 在MSA 診斷和鑒別診斷中的應(yīng)用。
MSA 結(jié)構(gòu)磁共振成像(magnetic resonance imaging,MRI)中灰質(zhì)的萎縮不僅常用于鑒別MSA 和其他神經(jīng)退行性病變,如原發(fā)性PD、路易體癡呆(dementia with Lewy bodies,DLB)、進(jìn)行性核上性麻痹(progressive superanuclear palsy,PSP)、皮質(zhì)基底節(jié)變性等,還可用于鑒別MSA 中P 型及C 型。十字面包征和殼核裂隙征都是經(jīng)典MSA 征象。十字面包征即T2 加權(quán)相中腦橋可見高信號十字交叉,該征提示腦橋及腦橋小腦束退行性病變,但皮質(zhì)脊髓束正常;殼核裂隙征指T2 加權(quán)相中殼核外緣可見高信號。兩者診斷MSA 的特異度較高,但敏感度偏低[15]。此外,MSA-P 中還可見殼核的萎縮和低信號,MSA-C 中可見腦干、小腦萎縮及小腦中腳(middle cerebellar peduncle,MCP)的高信號[16]。多數(shù)MSA 患者在疾病不同階段都可見上述多個(gè)征象[17],將多個(gè)征象相結(jié)合用于鑒別MSA 和PD 的敏感度及特異度明顯升高[18]。
具體量化上述結(jié)構(gòu)變化也可以有效提高診斷的準(zhǔn)確度,如測量MCP 寬度以量化MCP 萎縮程度,當(dāng)矢狀位MCP 寬度<8 mm 可鑒別MSA 和原發(fā)性PD,敏感度及特異度均可達(dá)到100%[19]。有研究采用了更加準(zhǔn)確測量橫斷面灰質(zhì)萎縮的方法,包括人工或半自動感興趣區(qū)域(region of interest,ROI)體積分析及基于體素的形態(tài)學(xué)全腦分析(voxel-based morphometry,VBM)[20]。以上定量方法可準(zhǔn)確反映MSA 患者幕上、幕下部分腦區(qū)的萎縮程度[21-22];但鑒別早期MSA-P 和原發(fā)性PD(病程<3 年)時(shí),VBM 準(zhǔn)確程度不佳[23]。另外,萎縮率是評價(jià)疾病進(jìn)程的重要指標(biāo)[24]。目前,2 項(xiàng)縱向研究分析MSA 患者全腦萎縮率(whole-brain atrophy rate,WBAR)[25-26],發(fā)現(xiàn)早期MSA 患者比原發(fā)性PD 患者WBAR 更高,該指標(biāo)可應(yīng)用于監(jiān)測疾病進(jìn)展程度,較臨床評分更為客觀,但需要更大樣本和更長隨訪時(shí)間驗(yàn)證。
除了常規(guī)的MRI 序列,某些MRI 特殊序列對MSA診斷和鑒別也有重要意義,如彌散加權(quán)成像(diffusion weighted imaging,DWI)中,MSA 患者殼核信號較PD患者增加[27-28]。一項(xiàng)縱向研究[29]顯示,殼核、腦橋、小腦白質(zhì)DWI 信號變化與MSA 病程、疾病嚴(yán)重程度相關(guān)。由于MSA 殼核、紋狀體、黑質(zhì)中鐵沉積增加,磁敏感加權(quán)成像(susceptibility weighted imaging,SWI) 可顯示其與原發(fā)性PD、PSP 相比,MSA-P 在殼核和蒼白球有更多的鐵沉積[30-31]。以磁化傳遞成像(magnetization transfer imaging,MTI)計(jì)算特定ROI 的磁化傳遞率(magnetization transfer ratio,MTR),結(jié)果表明MSA 患者蒼白球、殼核、黑質(zhì)的MTR 較原發(fā)性PD 患者降低[32]。另外,磁敏感定量成像技術(shù)(quantitative susceptibility mapping,QSM)等也可應(yīng)用于MSA 的診斷[33-37];但由于樣本量小,結(jié)論并不一致。
近年來將功能MRI 應(yīng)用于鑒別α-突觸核蛋白相關(guān)疾病成為新的發(fā)展方向。多項(xiàng)研究[38-39]利用彌散張量成像(diffusion tensor imaging,DTI)評估MSA 患者白質(zhì)傳導(dǎo)束變化,結(jié)果發(fā)現(xiàn)與原發(fā)性PD 患者相比,MSA 患者小腦、蒼白球部分各向異性(fractional anisotropy,F(xiàn)A)減小,平均擴(kuò)散率(mean diffusion,MD)增大。有研究[40]顯示MSA 中主要受影響的神經(jīng)網(wǎng)絡(luò)為默認(rèn)模式網(wǎng)絡(luò)及感覺運(yùn)動網(wǎng)絡(luò)。功能影像也可應(yīng)用于MSA 經(jīng)顱磁刺激治療后的療效評價(jià),功能網(wǎng)絡(luò)中的變化可能與患者的運(yùn)動癥狀改善有一定相關(guān)性[41]。
正電子發(fā)射型計(jì)算機(jī)斷層顯像(positron emission tomography,PET)可反映腦區(qū)某些物質(zhì)代謝過程,也可用于MSA 診斷和鑒別[42]。如18F-FDG-PET 顯示MSA患者殼核、腦干、小腦的葡萄糖代謝降低;18F-多巴及11C-DTBZ(dihydrotetrabenazine) 作 配 體 的PET 則顯示MSA 患者尾狀核、殼核等區(qū)域的多巴胺攝取減少;11C-PMP-PET 可見MSA-P 皮層和皮層下乙酰膽堿酯酶活性降低;11C-PK11195-PET 可見MSA 中背外側(cè)前額葉皮質(zhì)、尾狀核、殼核、蒼白球等處小膠質(zhì)細(xì)胞活化。但上述只是現(xiàn)象的觀察,還需要更多的縱向研究結(jié)果驗(yàn)證。Tau-PET 雖可用于鑒別tau 蛋白相關(guān)的PD 綜合征和MSA,但有嚴(yán)重細(xì)胞質(zhì)內(nèi)包涵體病變的MSA 患者可呈現(xiàn)假陽性。有關(guān)于18F- AV-1451 PET[43]和11C-PBB3 PET 的研究[44]顯示,MSA 患者后殼核、皮層及皮層下有tau 蛋白明顯沉積,致使鑒別診斷效能下降。
目前,國際運(yùn)動障礙協(xié)會PD 診斷指南中已將間碘芐胍 (metaiodobenzylguanidine,MIBG) 心肌顯像用于鑒別PD 和其他綜合征[45-47]。PD 與MSA 心肌MIBG 攝取有顯著差異[46,48-49]。與PD 相比,部分MSA 患者心肌MIBG攝取輕度降低,與健康對照差異并不顯著;但該變化與MSA 病程和嚴(yán)重程度并無明確相關(guān)性[50-52],其對MSA 確診作用有限,只可用于與PD 的鑒別。
綜上所述,除一些直觀的MRI 特殊征象外,MSA 患者腦部結(jié)構(gòu)改變的具體量化及反映腦部生物化學(xué)指標(biāo)代謝改變的分子顯像將是未來的發(fā)展趨勢。
α-突觸核蛋白相關(guān)疾病的病理特征為α-突觸核蛋白在神經(jīng)元、神經(jīng)膠質(zhì)細(xì)胞的異常聚集;原發(fā)性PD、DLB以神經(jīng)元累及為主,而MSA 以神經(jīng)膠質(zhì)細(xì)胞受累為主[53]。越來越多的證據(jù)表明α-突觸核蛋白相關(guān)疾病中,多種外周組織中也存在α-突觸核蛋白的異常聚集,包括皮膚、唾液腺、交感神經(jīng)節(jié)、迷走神經(jīng)、胃腸道和心臟等[54-55]。因此,外周組織活檢有助于該類疾病的診斷和鑒別。
早期即有研究[56-59]顯示,MSA 患者的腓腸神經(jīng)、心臟交感神經(jīng)均有退行性病變,提示MSA 作為α-突觸核蛋白相關(guān)疾病,同時(shí)累及中樞及外周神經(jīng)系統(tǒng)。一項(xiàng)研究檢測皮膚活檢組織中的磷酸化α-突觸核蛋白(phosphorylated a-synuclein,p-αSN), 結(jié) 果 發(fā) 現(xiàn)12 例MSA 患者中,8 例(67%)患者皮膚神經(jīng)中p-αSN 陽性,與tau 蛋白相關(guān)疾病和正常組的鑒別特異度為100%。與PD 患者p-αSN 主要沉積于自主神經(jīng)纖維不同,MSA 患者p-αSN 主要沉積于無髓鞘軀體感覺纖維[60]。但另2 項(xiàng)分別納入10 例和13 例MSA 患者的研究[61-62]結(jié)果則顯示:皮神經(jīng)中p-αSN 沉積均為陰性。上述研究結(jié)果不完全一致的原因可能與皮膚活檢部位、活檢組織處理方式和檢測方法差異等有關(guān)。
MSA 患者外周交感神經(jīng)節(jié)的病理改變可能與其自主神經(jīng)功能障礙有關(guān)[58-59];但多數(shù)研究樣本量小,研究結(jié)論不完全一致,陰性結(jié)果居多。如對8 例MSA 患者腦及外周神經(jīng)節(jié)進(jìn)行p-αSN 的免疫組織化學(xué)染色,其中僅2 例患者的交感神經(jīng)節(jié)中發(fā)現(xiàn)神經(jīng)元胞質(zhì)包涵體(neuronal cytoplasmic inclusion,NCI)[63]。另一項(xiàng)研究則顯示42.3%的MSA 患者交感神經(jīng)節(jié)中,神經(jīng)元細(xì)胞質(zhì)和突觸的α-突觸核蛋白免疫組織化學(xué)檢測陽性,施萬細(xì)胞中未見α-突觸核蛋白沉積,且α-突觸核蛋白陽性與MSA 病程有一定關(guān)聯(lián)[64]。一項(xiàng)日本研究[65]則報(bào)道,MSA 患者存在外周神經(jīng)系統(tǒng)的施萬細(xì)胞胞質(zhì)p-αSN 聚集,但僅在33.3%的交感神經(jīng)節(jié)中找到施萬細(xì)胞胞質(zhì)陽性的包涵體(Schwann cell cytoplasmic inclusion,SCCI)。
近年來,隨著PD 患者異常α-突觸核蛋白沉積起源于腸道假說的提出,有研究[56-66]證明大部分PD 患者腸道神經(jīng)系統(tǒng)中都存在α-突觸核蛋白沉積的病理改變,且可在腦黑質(zhì)區(qū)出現(xiàn)病理改變前。但2016 年一項(xiàng)研究[67]發(fā)現(xiàn),PD、MSA 患者及健康對照者均出現(xiàn)胃腸黏膜α-突觸核蛋白免疫染色陽性,且組間無明顯差異。
多項(xiàng)研究[68-70]顯示,對下頜下腺細(xì)針活檢組織進(jìn)行α-突觸核蛋白免疫組織化學(xué)染色,PD 患者陽性率較高,與健康對照存在顯著差異。另有2 項(xiàng)研究分別納入 2 例MSA 患者,則檢測結(jié)果均為陰性[71-72]。由于MSA 患者行下頜下腺組織α-突觸核蛋白免疫組織化學(xué)染色的研究較少,樣本量極有限,結(jié)果還需進(jìn)一步驗(yàn)證。
關(guān)于MSA 生物標(biāo)志物的研究眾多,但可應(yīng)用于臨床診斷的陽性結(jié)果有限,體液中的蛋白質(zhì)、miRNA 及分子影像等方向值得進(jìn)一步探索。許多研究中MSA 患者均為臨床診斷,診斷準(zhǔn)確度差異較大,患者有很大的異質(zhì)性,從而影響了研究結(jié)果的質(zhì)量。許多生物標(biāo)志物的采樣、樣本處理方法、數(shù)據(jù)處理等無統(tǒng)一標(biāo)準(zhǔn),且多數(shù)研究的樣本量較小,可能為各研究間結(jié)論不完全一致的原因。未來需要更多大樣本的臨床研究驗(yàn)證現(xiàn)有生物標(biāo)志物的特異度、敏感度,發(fā)現(xiàn)更多疾病早期生物標(biāo)志物,并聯(lián)合檢測多項(xiàng)生物標(biāo)志物以提高疾病診斷和鑒別診斷的準(zhǔn) 確度。
參·考·文·獻(xiàn)
[1] Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy[J]. Neurology, 2008, 71(9): 670-676.
[2] Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome)[J]. J Neurol Sci, 1989, 94(1-3): 79-100.
[3] Wenning GK, Ben Shlomo Y, Magalhaes M, et al. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases[J]. Brain, 1994, 117 ( Pt 4): 835-845.
[4] Koga S, Aoki N, Uitti RJ, et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients[J]. Neurology, 2015, 85(5): 404-412.
[5] Laurens B, Constantinescu R, Freeman R, et al. Fluid biomarkers in multiple system atrophy: a review of the MSA Biomarker Initiative[J]. Neurobiol Dis, 2015, 80: 29-41.
[6] Chen D, Wei XB, Zou J, et al. Contra-directional expression of serum homocysteine and uric acid as important biomarkers of multiple system atrophy severity: a cross-sectional study[J]. Front Cell Neurosci, 2015, 9: 247.
[7] Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder[J]. Neurology, 2017, 88(10): 930-937.
[8] Herbert MK, Eeftens JM, Aerts MB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls[J]. Parkinsonism Relat Disord, 2014, 20(1): 112-115.
[9] Marz M, Ferracin M, Klein C. MicroRNAs as biomarker of Parkinson disease? Small but mighty[J]. Neurology, 2015, 84(7): 636-638.
[10] Kim T, Valera E, Desplats P. Alterations in striatal microRNA-mRNA networks contribute to neuroinflammation in multiple system atrophy[J]. Mol Neurobiol, 2019, 56(10): 7003-7021.
[11] Vallelunga A, Iannitti T, Dati G, et al. Serum miR-30c-5p is a potential biomarker for multiple system atrophy[J]. Mol Biol Rep, 2019, 46(2): 1661-1666.
[12] Vallelunga A, Ragusa M, Di Mauro S, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson's disease and Multiple System Atrophy[J]. Front Cell Neurosci, 2014, 8: 156.
[13] Marques TM, Kuiperij HB, Bruinsma IB, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson's disease and multiple system atrophy[J]. Mol Neurobiol, 2017, 54(10): 7736-7745.
[14] Starhof C, Hejl AM, Heegaard NHH, et al. The biomarker potential of cell-free microRNA from cerebrospinal fluid in Parkinsonian Syndromes[J]. Mov Disord, 2019, 34(2): 246-254.
[15] Lee EA, Cho HI, Kim SS, et al. Comparison of magnetic resonance imaging in subtypes of multiple system atrophy[J]. Parkinsonism Relat Disord, 2004, 10(6): 363-368.
[16] Burk K, Buhring U, Schulz JB, et al. Clinical and magnetic resonance imaging characteristics of sporadic cerebellar ataxia[J]. Arch Neurol, 2005, 62(6): 981-985.
[17] Horimoto Y, Aiba I, Yasuda T, et al. Longitudinal MRI study of multiple system atrophy: when do the findings appear, and what is the course?[J]. J Neurol, 2002, 249(7): 847-854.
[18] Wang N, Yang HG, Li CB, et al. Using 'swallow-tail' sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson's disease: a susceptibility-weighted imaging study[J]. Eur Radiol, 2017, 27(8): 3174-3180.
[19] Quattrone A, Nicoletti G, Messina D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy[J]. Radiology, 2008, 246(1): 214-221.
[20] Ridgway GR, Henley SM, Rohrer JD, et al. Ten simple rules for reporting voxel-based morphometry studies[J]. Neuroimage, 2008, 40(4): 1429-1435.
[21] Ghaemi M, Hilker R, Rudolf J, et al. Differentiating multiple system atrophy from Parkinson's disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging[J]. J Neurol Neurosurg Psychiatry, 2002, 73(5): 517-523.
[22] Brenneis C, Seppi K, Schocke MF, et al. Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy[J]. Mov Disord, 2003, 18(10): 1132-1138.
[23] Shao N, Yang J, Shang HF. Voxelwise meta-analysis of gray matter anomalies in Parkinson variant of multiple system atrophy and Parkinson's disease using anatomic likelihood estimation[J]. Neurosci Lett, 2015, 587: 79-86.
[24] Cash DM, Rohrer JD, Ryan NS, et al. Imaging endpoints for clinical trials in Alzheimer's disease[J]. Alzheimers Res Ther, 2014, 6(9): 87.
[25] Paviour DC, Price SL, Jahanshahi M, et al. Longitudinal MRI in progressive supranuclear palsy and multiple system atrophy: rates and regions of atrophy[J]. Brain, 2006, 129(Pt 4): 1040-1049.
[26] Guevara C, Bulatova K, Barker GJ, et al. Whole-brain atrophy rate in idiopathic Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy[J]. Parkinsons Dis, 2016, 2016: 1-7.
[27] Barbagallo G, Sierra-Pena M, Nemmi F, et al. Multimodal MRI assessment of nigro-striatal pathway in multiple system atrophy and Parkinson disease[J]. Mov Disord, 2016, 31(3): 325-334.
[28] Pellecchia MT, Barone P, Mollica C, et al. Diffusion-weighted imaging in multiple system atrophy: a comparison between clinical subtypes[J]. Mov Disord, 2009, 24(5): 689-696.
[29] Pellecchia MT, Barone P, Vicidomini C, et al. Progression of striatal and extrastriatal degeneration in multiple system atrophy: a longitudinal diffusionweighted MR study[J]. Mov Disord, 2011, 26(7): 1303-1309.
[30] Dexter DT, Jenner P, Schapira AH, et al. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research Group[J]. Ann Neurol, 1992, 32(Suppl): S94-S100.
[31] Yoon RG, Kim SJ, Kim HS, et al. The utility of susceptibility-weighted imaging for differentiating Parkinsonism-predominant multiple system atrophy from Parkinson's disease: correlation with 18F-flurodeoxyglucose positron-emission tomography[J]. Neurosci Lett, 2015, 584: 296-301.
[32] Eckert T, Sailer M, Kaufmann J, et al. Differentiation of idiopathic Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging[J]. Neuroimage, 2004, 21(1): 229-235.
[33] Specht K, Minnerop M, Muller-Hubenthal J, et al. Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry[J]. Neuroimage, 2005, 25(1): 287-293.
[34] Lewis MM, Du GW, Baccon J, et al. Susceptibility MRI captures nigral pathology in patients with parkinsonian syndromes[J]. Mov Disord, 2018, 33(9): 1432-1439.
[35] Adler CH, Beach TG, Hentz JG, et al. Low clinical diagnostic accuracy of earlyvsadvanced Parkinson disease: clinicopathologic study[J]. Neurology, 2014, 83(5): 406-412.
[36] Sjostrom H, Granberg T, Westman E, et al. Quantitative susceptibility mapping differentiates between parkinsonian disorders[J]. Parkinsonism Relat Disord, 2017, 44: 51-57.
[37] Tsuda M, Asano S, Kato Y, et al. Differential diagnosis of multiple system atrophy with predominant Parkinsonism and Parkinson's disease using neural networks[J]. J Neurol Sci, 2019, 401: 19-26.
[38] Tsukamoto K, Matsusue E, Kanasaki Y, et al. Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson's disease: evaluation by 3.0-T MR imaging[J]. Neuroradiology, 2012, 54(9): 947-955.
[39] Nair SR, Tan LK, Mohd Ramli N, et al. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging[J]. Eur Radiol, 2013, 23(6): 1459-1466.
[40] You H, Wang J, Wang H, et al. Altered regional homogeneity in motor cortices in patients with multiple system atrophy[J]. Neurosci Lett, 2011, 502(1): 18-23.
[41] Chou YH, You H, Wang H, et al. Effect of repetitive transcranial magnetic stimulation on fMRI resting-state connectivity in multiple system atrophy[J]. Brain Connect, 2015, 5(7): 451-459.
[42] Niccolini F, Politis M. A systematic review of lessons learned from PET molecular imaging research in atypical Parkinsonism[J]. Eur J Nucl Med Mol Imaging, 2016, 43(12): 2244-2254.
[43] Cho H, Choi JY, Lee SH, et al.18F-AV-1451 binds to putamen in multiple system atrophy[J]. Mov Disord, 2017, 32(1): 171-173.
[44] Perez-Soriano A, Arena JE, Dinelle K, et al. PBB3 imaging in Parkinsonian disorders: Evidence for binding to tau and other proteins[J]. Mov Disord, 2017, 32(7): 1016-1024.
[45] Braune S, Reinhardt M, Schnitzer R, et al. Cardiac uptake of123I-MIBG separates Parkinson's disease from multiple system atrophy[J]. Neurology, 1999, 53(5): 1020-1025.
[46] Treglia G, Stefanelli A, Cason E, et al. Diagnostic performance of iodine-123-metaiodobenzylguanidine scintigraphy in differential diagnosis between Parkinson's disease and multiple-system atrophy: a systematic review and a meta-analysis[J]. Clin Neurol Neurosurg, 2011, 113(10): 823-829.
[47] Orimo S, Suzuki M, Inaba A, et al.123I-MIBG myocardial scintigraphy for differentiating Parkinson's disease from other neurodegenerative Parkinsonism: a systematic review and meta-analysis[J]. Parkinsonism Relat Disord, 2012, 18(5): 494-500.
[48] King AE, Mintz J, Royall DR. Meta-analysis of123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders[J]. Mov Disord, 2011, 26(7): 1218-1224.
[49] Yang TF, Wang L, Li Y, et al.131I-MIBG myocardial scintigraphy for differentiation of Parkinson's disease from multiple system atrophy or essential tremor in Chinese population[J]. J Neurol Sci, 2017, 373: 48-51.
[50] Rascol O, Schelosky L.123I-metaiodobenzylguanidine scintigraphy in Parkinson's disease and related disorders[J]. Mov Disord, 2009, 24(Suppl 2): S732-S741.
[51] Nagayama H, Ueda M, Yamazaki M, et al. Abnormal cardiac123I-metaiodobenzylguanidine uptake in multiple system atrophy[J]. Mov Disord, 2010, 25(11): 1744-1747.
[52] Soboll L, Leppert D, Dillmann U, et al. MIBG scintigraphy of the major salivary glands in multiple system atrophy[J]. Parkinsonism Relat Disord, 2018, 53: 112-114.
[53] Jellinger KA. Neuropathological spectrum of synucleinopathies[J]. Mov Disord, 2003, 18(Suppl 6): S2-S12.
[54] Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders[J]. Acta Neuropathol, 2010, 119(6): 689-702.
[55] Schneider SA, Boettner M, Alexoudi A, et al. Can we use peripheral tissue biopsies to diagnose Parkinson's disease? A review of the literature[J]. Eur J Neurol, 2016, 23(2): 247-261.
[56] Orimo S, Amino T, Itoh Y, et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic Ganglia in Lewy body disease[J]. Acta Neuropathol, 2005, 109(6): 583-588.
[57] Orimo S, Kanazawa T, Nakamura A, et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy[J]. Acta Neuropathol, 2007, 113(1): 81-86.
[58] Kanda T, Tsukagoshi H, Oda M, et al. Changes of unmyelinated nerve fibers in sural nerve in amyotrophic lateral sclerosis, Parkinson's disease and multiple system atrophy[J]. Acta Neuropathol, 1996, 91(2): 145-154.
[59] Orimo S, Uchihara T, Nakamura A, et al. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson's disease[J]. Brain, 2008, 131(Pt 3): 642-650.
[60] Doppler K, Weis J, Karl K, et al. Distinctive distribution of phospho-αsynuclein in dermal nerves in multiple system atrophy[J]. Mov Disord, 2015, 30(12): 1688-1692.
[61] Zange L, Noack C, Hahn K, et al. Phosphorylated α-synuclein in skin nerve fibres differentiates Parkinson's disease from multiple system atrophy[J]. Brain, 2015, 138(Pt 8): 2310-2321.
[62] Haga R, Sugimoto K, Nishijima H, et al. Clinical utility of skin biopsy in differentiating between Parkinson's disease and multiple system atrophy[J]. Parkinsons Dis, 2015, 2015: 167038.
[63] Nishie M, Mori F, Fujiwara H, et al. Accumulation of phosphorylated alphasynuclein in the brain and peripheral Ganglia of patients with multiple system atrophy[J]. Acta Neuropathol, 2004, 107(4): 292-298.
[64] Sone M, Yoshida M, Hashizume Y, et al. α-synuclein-immunoreactive structure formation is enhanced in sympathetic ganglia of patients with multiple system atrophy[J]. Acta Neuropathol, 2005, 110(1): 19-26.
[65] Nakamura K, Mori F, Kon T, et al. Filamentous aggregations of phosphorylated α-synuclein in Schwann cells (Schwann cell cytoplasmic inclusions) in multiple system atrophy[J]. Acta Neuropathol Commun, 2015, 3: 29.
[66] Lebouvier T, Chaumette T, Paillusson S, et al. The second brain and Parkinson's disease[J]. Eur J Neurosci, 2009, 30(5): 735-741.
[67] Chung SJ, Kim J, Lee HJ, et al. α-synuclein in gastric and colonic mucosa in Parkinson's disease: limited role as a biomarker[J]. Mov Disord, 2016, 31(2): 241-249.
[68] Vilas D, Iranzo A, Tolosa E, et al. Assessment of α-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study[J]. Lancet Neurol, 2016, 15(7): 708-718.
[69] Adler CH, Dugger BN, Hentz JG, et al. Peripheral synucleinopathy in early Parkinson's disease: submandibular gland needle biopsy findings[J]. Mov Disord, 2017, 32(5): 722-723.
[70] Shin J, Park SH, Shin C, et al. Submandibular gland is a suitable site for alpha synuclein pathology in Parkinson disease[J]. Parkinsonism Relat Disord, 2019, 58: 35-39.
[71] Beach TG, Adler CH, Serrano G, et al. Prevalence of submandibular gland synucleinopathy in Parkinson's disease, dementia with Lewy bodies and other Lewy body disorders[J]. J Parkinsons Dis, 2016, 6(1): 153-163.
[72] Del Tredici K, Hawkes CH, Ghebremedhin E, et al. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson's disease[J]. Acta Neuropathol, 2010, 119(6): 703-713.