国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

農(nóng)業(yè)綠色高質(zhì)量發(fā)展期面源污染治理的思考與實(shí)踐

2020-12-25 07:12展曉瑩張愛(ài)平張晴雯
關(guān)鍵詞:面源資源化污染

展曉瑩,張愛(ài)平,張晴雯

·專(zhuān)題:農(nóng)業(yè)面源污染綜合防治·

農(nóng)業(yè)綠色高質(zhì)量發(fā)展期面源污染治理的思考與實(shí)踐

展曉瑩,張愛(ài)平,張晴雯※

(1. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所農(nóng)業(yè)清潔流域團(tuán)隊(duì),北京 100081;2. 農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,北京 100081)

農(nóng)業(yè)是中國(guó)經(jīng)濟(jì)平穩(wěn)發(fā)展的基石,在保障了糧食安全的同時(shí)也造成了嚴(yán)重的面源污染。過(guò)去10 a,中國(guó)面源污染治理雖取得一定成效,但農(nóng)業(yè)源的貢獻(xiàn)仍居高不下。該研究闡述了新時(shí)期農(nóng)業(yè)面源污染治理面臨的挑戰(zhàn),結(jié)合國(guó)家農(nóng)業(yè)綠色發(fā)展的重大需求,提出了以“生態(tài)循環(huán)、流域統(tǒng)籌”為核心的農(nóng)業(yè)面源污染治理新思路;分析了農(nóng)業(yè)面源污染治理的卡脖子技術(shù),提出了以“種養(yǎng)結(jié)合、產(chǎn)業(yè)鏈循環(huán)”為核心的污染治理實(shí)現(xiàn)路徑;深入探討了農(nóng)業(yè)面源污染治理運(yùn)維機(jī)制不通暢的原因,提出以“農(nóng)民和農(nóng)業(yè)企業(yè)為主力軍”的多元主體治理及運(yùn)維機(jī)制;結(jié)合典型案例,闡述了農(nóng)業(yè)面源污染治理的實(shí)現(xiàn)路徑和應(yīng)用效果,以期為推動(dòng)中國(guó)農(nóng)業(yè)農(nóng)村生態(tài)環(huán)境治理體系的現(xiàn)代化建設(shè)提供支撐。

農(nóng)業(yè);機(jī)制;面源污染;流域統(tǒng)籌;種養(yǎng)結(jié)合;生態(tài)循環(huán);多元治理;長(zhǎng)效運(yùn)維

0 引 言

農(nóng)業(yè)是中國(guó)經(jīng)濟(jì)平穩(wěn)健康發(fā)展的壓艙石,保障糧食的安全供應(yīng)是中國(guó)經(jīng)濟(jì)社會(huì)平穩(wěn)健康發(fā)展的重要基礎(chǔ)[1]。在糧食剛性需求壓力下,過(guò)去相當(dāng)長(zhǎng)的一段時(shí)間農(nóng)產(chǎn)品生產(chǎn)力的提高是農(nóng)業(yè)追求的核心。土地集約化程度的提高與農(nóng)業(yè)生產(chǎn)資料的不斷投入解決了過(guò)去30多年來(lái)的國(guó)家糧食安全問(wèn)題[2]。然而,在獲得高產(chǎn)出的同時(shí),也付出了巨大的資源環(huán)境代價(jià),化肥農(nóng)藥過(guò)度投入、畜禽與農(nóng)村生活糞污大量排放等,對(duì)農(nóng)業(yè)生態(tài)系統(tǒng)和農(nóng)村環(huán)境造成破壞[3],農(nóng)業(yè)面源污染問(wèn)題尤為突出。農(nóng)業(yè)面源污染綜合治理與中國(guó)農(nóng)業(yè)發(fā)展和社會(huì)經(jīng)濟(jì)發(fā)展水平緊密關(guān)聯(lián),進(jìn)入“十一五”,中國(guó)政府加大了對(duì)農(nóng)業(yè)面源污染治理的決心,過(guò)去10多年間,生態(tài)環(huán)境領(lǐng)域的科技投入不斷增加,生態(tài)環(huán)境質(zhì)量明顯改善。2018年以來(lái),以生態(tài)文明建設(shè)引領(lǐng)鄉(xiāng)村振興標(biāo)志著農(nóng)業(yè)面源污染治理邁入新時(shí)期,對(duì)農(nóng)業(yè)面源污染治理提出了更高的要求,農(nóng)業(yè)農(nóng)村環(huán)境污染的治理勢(shì)必倒逼農(nóng)業(yè)轉(zhuǎn)型升級(jí),調(diào)整以達(dá)標(biāo)排放為核心的傳統(tǒng)治理思路,建立起糧食增產(chǎn)穩(wěn)產(chǎn)和水體環(huán)境安全的農(nóng)業(yè)面源污染管理體系和科學(xué)控污減排技術(shù)體系。本研究旨在綜述農(nóng)業(yè)面源污染治理在新時(shí)期面臨的“卡脖子”技術(shù)及運(yùn)維障礙,結(jié)合實(shí)踐經(jīng)驗(yàn),提出更為優(yōu)化的技術(shù)途徑與良性運(yùn)維機(jī)制。

1 新時(shí)期農(nóng)業(yè)面源污染治理中存在的問(wèn)題與挑戰(zhàn)

1.1 農(nóng)業(yè)面源污染源解析及問(wèn)題剖析

集約化農(nóng)業(yè)的發(fā)展打破了生態(tài)系統(tǒng)物質(zhì)和能量循環(huán),導(dǎo)致過(guò)量投入的養(yǎng)分和廢棄物進(jìn)入土壤和水體等環(huán)境介質(zhì),造成水體富營(yíng)養(yǎng)化、土壤退化和大氣污染等環(huán)境問(wèn)題。自20世紀(jì)70年代以來(lái),中國(guó)的重點(diǎn)湖泊與河流水域,如五大湖泊、三峽庫(kù)區(qū)、滇池、白洋淀、南四湖等水體富營(yíng)養(yǎng)化問(wèn)題逐漸凸顯[4]。水體中過(guò)量的氮磷等營(yíng)養(yǎng)物質(zhì)主要來(lái)自于農(nóng)業(yè)源、工業(yè)源與生活源。2007年第一次全國(guó)污染源普查[5]的結(jié)果表明,來(lái)自農(nóng)業(yè)源的化學(xué)需氧量(Chemical Oxygen Demand,COD)、總氮以及總磷的貢獻(xiàn)占到總污染物的一半左右(分別為44%、57%和67%),與工業(yè)源相當(dāng)。時(shí)隔10 a,2020年6月發(fā)布的《第二次全國(guó)污染源普查公報(bào)》[6]的數(shù)據(jù)顯示,中國(guó)農(nóng)業(yè)領(lǐng)域中的污染排放量與第一次污染普查相比呈明顯下降趨勢(shì)(圖1)。COD、總氮、總磷排放量分別下降了19%、48%、26%。但農(nóng)業(yè)源污染物的占比仍然很高,農(nóng)業(yè)面源COD、總氮和總磷排放量分別約占到全國(guó)排放量的50%、47%和67%。種植業(yè)與畜禽養(yǎng)殖的貢獻(xiàn)占到農(nóng)業(yè)源的90%以上,從總氮的排放來(lái)看,種植業(yè)與養(yǎng)殖業(yè)各半;總磷與氨氮的排放量種植業(yè)與養(yǎng)殖業(yè)比值為1∶1.3與1∶1.6。也就是說(shuō),與工業(yè)和城鎮(zhèn)生活污染治理相比,農(nóng)業(yè)面源污染負(fù)荷的削減幅度和速度較為緩慢,與第一次污染普查相比對(duì)水體的污染貢獻(xiàn)率不降反升。農(nóng)業(yè)源占比如此之高,與中國(guó)傳統(tǒng)種養(yǎng)殖業(yè)、農(nóng)村生活“高投入、高消耗、高排放、低效益”的粗放型發(fā)展模式緊密相關(guān)。

圖1 第二次全國(guó)污染源普查水體污染物排放占比[6]

1980—2018年間,中國(guó)化肥消費(fèi)量增長(zhǎng)了345%,約占世界化肥總消費(fèi)量的1/3[7-8]?;实耐度霂?lái)了糧食產(chǎn)量的大幅提高,人民生活到改善。然而糧食總產(chǎn)量并未隨著化肥消費(fèi)量的增加而持續(xù)上升,過(guò)去30a間僅增長(zhǎng)了105%[8]。氮磷肥的利用率不足40%,比發(fā)達(dá)國(guó)家低10%~20%[1,9]。通過(guò)徑流與淋溶,多余的氮磷營(yíng)養(yǎng)(<10%)從農(nóng)田流失,通過(guò)溝渠進(jìn)入水體[10-12]。10%~20%的氮素還會(huì)通過(guò)氨揮發(fā)的方式進(jìn)入大氣[13-14],經(jīng)大氣環(huán)流或降雨作用沉降進(jìn)入陸地與水體,同樣對(duì)水體中的藻類(lèi)增殖起著關(guān)鍵作用[15-16]。近些年來(lái)中國(guó)規(guī)?;笄蒺B(yǎng)殖業(yè)也得以快速發(fā)展,成為農(nóng)業(yè)農(nóng)村經(jīng)濟(jì)最具活力的增長(zhǎng)點(diǎn)。以生豬養(yǎng)殖為例,2017年中國(guó)畜禽養(yǎng)殖量為12億頭(豬當(dāng)量),是美國(guó)(5.4億頭)的2倍,畜禽污染物產(chǎn)生量也為美國(guó)的2倍左右[17]。中國(guó)每年產(chǎn)生畜禽糞污38億t,綜合利用率低于60%[18]。此外,中國(guó)鄉(xiāng)村地區(qū)僅有9%的行政村能實(shí)現(xiàn)生活污水處理,一半左右的鄉(xiāng)村水源被污染[19]。以太湖流域?yàn)槔?,農(nóng)村生活污染源排放的COD占所有排放源排放量的23%,總氮占40%,總磷占38%[20]。第三次農(nóng)業(yè)普查結(jié)果表明,僅有48.6%的農(nóng)戶使用衛(wèi)生廁所,仍有2%的農(nóng)戶沒(méi)有廁所[21]。農(nóng)村人居環(huán)境整治三年行動(dòng)方案實(shí)施以來(lái),衛(wèi)生廁所的普及率有所上升達(dá)60%[22]。

為有效防控農(nóng)業(yè)面源污染,自“十一五”以來(lái)生態(tài)環(huán)境部、農(nóng)業(yè)農(nóng)村部相繼出臺(tái)系列文件,并在國(guó)家科技重大專(zhuān)項(xiàng)和國(guó)家重點(diǎn)研發(fā)計(jì)劃中,將“一控兩減三基本”作為治理農(nóng)業(yè)面源污染的重要策略。比如,在“國(guó)家水體污染控制與治理科技重大專(zhuān)項(xiàng)”“農(nóng)業(yè)面源和重金屬污染綜合防控與修復(fù)技術(shù)”國(guó)家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專(zhuān)項(xiàng)等的支持下,明確了典型農(nóng)業(yè)系統(tǒng)污染物遷移轉(zhuǎn)化規(guī)律與源-匯效應(yīng),并針對(duì)污染物環(huán)境行為過(guò)程中關(guān)鍵節(jié)點(diǎn)構(gòu)建了一系列的阻控技術(shù)。在種植業(yè)方面,主要包括新型肥料或修復(fù)劑產(chǎn)品、水-碳-氮/磷綜合調(diào)控技術(shù)、農(nóng)機(jī)農(nóng)藝結(jié)合技術(shù)、田溝塘或隔離帶的阻斷攔截與生態(tài)技術(shù)、養(yǎng)分循環(huán)與高效利用技術(shù)等。此外,以微生物為核心的生態(tài)養(yǎng)殖技術(shù),農(nóng)村生活污水生物及生態(tài)處理技術(shù)等[19,23-28]也有深入探索。其中的部分技術(shù)和產(chǎn)品已達(dá)到國(guó)際先進(jìn)水平,并在中國(guó)重點(diǎn)流域與農(nóng)業(yè)面源污染高發(fā)區(qū)已得到廣泛應(yīng)用,為有效推進(jìn)鄉(xiāng)村振興和農(nóng)業(yè)綠色發(fā)展提供了技術(shù)支撐[1]。

但從污染普查的數(shù)據(jù)來(lái)看,過(guò)去10 a間農(nóng)業(yè)環(huán)境污染的發(fā)展態(tài)勢(shì)依然沒(méi)有有效地遏制,這說(shuō)明中國(guó)農(nóng)業(yè)面源污染治理還存在“卡脖子”的技術(shù),治理思路亟待轉(zhuǎn)變。中國(guó)的農(nóng)林生態(tài)環(huán)境領(lǐng)域在理論體系構(gòu)建、技術(shù)產(chǎn)品和裝備研發(fā)、技術(shù)規(guī)?;瘧?yīng)用等方面與發(fā)達(dá)國(guó)家仍存在15~20 a的差距[1]。因此,在國(guó)家發(fā)展新的時(shí)期,中國(guó)農(nóng)業(yè)面源污染治理需要及時(shí)轉(zhuǎn)變思路,分析新的問(wèn)題,探索新的路子。

1.2 新時(shí)期農(nóng)業(yè)面源污染的機(jī)遇與挑戰(zhàn)

從基礎(chǔ)理論層面來(lái)講,農(nóng)業(yè)面源污染物的源解析、發(fā)生關(guān)鍵時(shí)期與關(guān)鍵過(guò)程、沿程消納機(jī)制,以及高分辨率精細(xì)化的過(guò)程模擬很大程度上決定了污染治理成效。通過(guò)原位觀測(cè)與模型模擬的手段,目前中國(guó)的農(nóng)業(yè)面源污染物產(chǎn)生排放的時(shí)空格局已初步建立[10-11]。然而,研究手段的局限也限制了對(duì)農(nóng)業(yè)面源污染物排放特征的深入了解。在污染物的發(fā)生階段,還欠缺在界面、微生物、分子尺度上對(duì)環(huán)境污染物的產(chǎn)生機(jī)制進(jìn)行系統(tǒng)的觀測(cè)、分析與理解;在污染物遷移轉(zhuǎn)化、沿程消納階段,則欠缺較為精準(zhǔn)的溯源技術(shù)。而在模型模擬方面,對(duì)于面源污染發(fā)生機(jī)制的參數(shù)化、模型參數(shù)的合理化與管理措施的模塊化方面還有很多工作要做。

從技術(shù)層面來(lái)講,過(guò)去十幾年間,種植業(yè)、養(yǎng)殖業(yè)、農(nóng)村生活源污染物治理方面新技術(shù)的研發(fā)層出不窮。這些技術(shù)在源頭減量、過(guò)程攔截、末端治理等各個(gè)環(huán)節(jié)均取得了較好的效果。然而,目前最好的技術(shù)還是不能達(dá)到農(nóng)業(yè)綠色發(fā)展的指標(biāo)[29]。在實(shí)際生產(chǎn)實(shí)踐中,這些產(chǎn)品技術(shù)零散,集成整裝度不足,導(dǎo)致全過(guò)程污染聯(lián)控乏力。發(fā)展生態(tài)農(nóng)業(yè)的關(guān)鍵是注重技術(shù)之間的優(yōu)化配置,大幅推進(jìn)集成技術(shù)。廢棄物資源化利用技術(shù)是搭建種養(yǎng)橋梁,也是符合國(guó)家綠色發(fā)展背景的接口技術(shù)。但張福鎖團(tuán)隊(duì)的研究結(jié)果表明,盡管現(xiàn)在畜禽糞便利用率已經(jīng)達(dá)到70%,氮在全產(chǎn)業(yè)鏈循環(huán)率仍不足20%[29]。因此,對(duì)于技術(shù)研發(fā)人員而言,設(shè)計(jì)因地制宜的技術(shù)組合或體系,形成長(zhǎng)效的農(nóng)業(yè)清潔生產(chǎn)機(jī)制是一個(gè)亟需解決的問(wèn)題;對(duì)于農(nóng)業(yè)企業(yè)來(lái)說(shuō),則應(yīng)當(dāng)思考如何打通產(chǎn)業(yè)鏈的上下游,加快推進(jìn)以用地養(yǎng)地結(jié)合、種植養(yǎng)殖結(jié)合為核心產(chǎn)業(yè)鏈建設(shè)。

中國(guó)農(nóng)業(yè)面源污染治理在管理層面上的問(wèn)題更為突出。1)中國(guó)耕地與畜牧業(yè)分布范圍廣,農(nóng)村生活源分散,污染治理技術(shù)是否實(shí)用與可操作,其可推廣性是推廣人員面臨的難題。2)技術(shù)的廣泛應(yīng)用需要被農(nóng)民真正地認(rèn)可,對(duì)經(jīng)營(yíng)體制、生態(tài)補(bǔ)償?shù)认嚓P(guān)政策的研究,是從事技術(shù)研究、管理研究者必須要關(guān)注的[30]。3)中國(guó)的水污染重點(diǎn)流域往往存在點(diǎn)源與面源污染交疊,來(lái)源復(fù)雜且分布范圍廣的特點(diǎn)。以往的農(nóng)業(yè)面源污染防治方案多針對(duì)農(nóng)田或養(yǎng)殖場(chǎng)單方面為對(duì)象提出,二者的區(qū)域界限不易打通。這是因?yàn)檎吖芾硎菑男姓^(qū)域角度出發(fā)的,大多數(shù)情況下農(nóng)田與養(yǎng)殖場(chǎng)是不同責(zé)任主體,兩者關(guān)聯(lián)性較差。但依靠單一源頭治理、“治點(diǎn)、治線、不治面”的模式,達(dá)不到整體優(yōu)化的效果,亟需以生態(tài)循環(huán)為基本思路,設(shè)計(jì)可落地的、基于政策支撐的清潔化全域式綜合統(tǒng)籌規(guī)劃和整體實(shí)施方案。

從運(yùn)維機(jī)制上來(lái)講,當(dāng)前廢棄物的資源化利用缺乏經(jīng)濟(jì)可行的產(chǎn)業(yè)化發(fā)展模式與內(nèi)在推手。雖然早已認(rèn)識(shí)到養(yǎng)殖業(yè)、農(nóng)村生活源廢棄物的資源化利用是農(nóng)業(yè)面源污染治理的關(guān)鍵接口技術(shù)。然而,廢棄物的資源化利用在客觀上不容易實(shí)現(xiàn)。國(guó)內(nèi)眾多小型養(yǎng)殖場(chǎng)缺乏高效的污水處理設(shè)備或沒(méi)有足夠規(guī)模的農(nóng)田進(jìn)行污水消納;農(nóng)村廁所位置非常分散,糞污廢棄物收集與清運(yùn)難,無(wú)害化資源化處理措施短缺。在這種條件下,廢棄物的良性循環(huán)想要長(zhǎng)效運(yùn)維需要經(jīng)濟(jì)可行的“內(nèi)動(dòng)力”,而農(nóng)民顯然無(wú)法擔(dān)當(dāng)這一角色。廢棄物資源化到底應(yīng)該走怎樣的路子,由誰(shuí)來(lái)主導(dǎo),誰(shuí)來(lái)推動(dòng),怎么執(zhí)行無(wú)明確方向。

2 新時(shí)期農(nóng)業(yè)面源污染治理的技術(shù)路徑和運(yùn)維機(jī)制

2.1 “全域式”流域管理和治理模式應(yīng)是農(nóng)業(yè)面源污染治理的核心

以流域水質(zhì)提升管理技術(shù)體系及評(píng)價(jià)指標(biāo)系統(tǒng)為導(dǎo)向,按照清潔生產(chǎn)、種養(yǎng)平衡、生態(tài)聯(lián)控、區(qū)域統(tǒng)籌有機(jī)結(jié)合的技術(shù)思路,從農(nóng)田-養(yǎng)殖-農(nóng)村污染控制-退水溝渠與河岸帶結(jié)構(gòu)與功能優(yōu)化等層面進(jìn)行系統(tǒng)控制,通過(guò)農(nóng)業(yè)面源污染控制關(guān)鍵技術(shù)集成和示范應(yīng)用,構(gòu)建主要污染源空間全覆蓋、“源頭消減、過(guò)程控制、末端處理”等關(guān)鍵節(jié)點(diǎn)全過(guò)程的流域農(nóng)業(yè)面源污染控制技術(shù)模式。實(shí)現(xiàn)傳統(tǒng)集約化糧食主產(chǎn)區(qū)“資源-產(chǎn)品-廢物排放”的線性生產(chǎn)模式向流域化、循環(huán)化、效益化和多維度、多梯級(jí)的點(diǎn)、線、面、體相結(jié)合的方向轉(zhuǎn)變(圖2)。

2.2 構(gòu)建生態(tài)循環(huán)產(chǎn)業(yè)鏈?zhǔn)寝r(nóng)業(yè)面源污染治理的基本技術(shù)路徑

農(nóng)業(yè)集約化發(fā)展的30多年已經(jīng)將中國(guó)幾千年來(lái)建立的種養(yǎng)循環(huán)模式打破,重建種養(yǎng)循環(huán)關(guān)系是解決農(nóng)業(yè)面源污染問(wèn)題的關(guān)鍵[31-36]。通過(guò)模型預(yù)測(cè),從飼料到動(dòng)物養(yǎng)殖、廢棄物循環(huán),再到環(huán)境排放,如果能夠?qū)崿F(xiàn)全過(guò)程的種養(yǎng)結(jié)合,就可減少64%的氮投入,也能夠讓氮的利用率提高將近2倍[29]。這種模式需要以企業(yè)為主體,需要重建產(chǎn)業(yè)上下游關(guān)系,強(qiáng)力整合“種植-飼料-養(yǎng)殖-食品加工-種植”的循環(huán)產(chǎn)業(yè)鏈,將養(yǎng)殖廢棄物無(wú)害化、資源化以后回用于農(nóng)田。在物質(zhì)、能量和產(chǎn)業(yè)鏈的層面建立起3個(gè)閉環(huán),實(shí)現(xiàn)流域生態(tài)系統(tǒng)中物質(zhì)多次、多級(jí)、多梯度的生態(tài)化循環(huán)利用,使農(nóng)業(yè)生產(chǎn)系統(tǒng)對(duì)環(huán)境的廢物釋放最少化,從而解決集約化種植、規(guī)?;B(yǎng)殖、村鎮(zhèn)糞污對(duì)環(huán)境造成的壓力,為長(zhǎng)期有效控制農(nóng)業(yè)面源污染提供保障[37-38]。

圖2 農(nóng)業(yè)清潔流域構(gòu)建思路

2.3 發(fā)揮農(nóng)民與農(nóng)業(yè)企業(yè)主力軍作用是打贏農(nóng)業(yè)面源污染攻堅(jiān)戰(zhàn)的關(guān)鍵環(huán)節(jié)

如何發(fā)揮長(zhǎng)效機(jī)制是農(nóng)業(yè)面源污染治理的突出難題。農(nóng)業(yè)面源污染治理如果不與市場(chǎng)接軌,不靠市場(chǎng)的力量來(lái)推動(dòng),難以長(zhǎng)期持續(xù)發(fā)揮效益。從歷史和當(dāng)下中國(guó)流域面源污染的需求來(lái)看,在未來(lái)一個(gè)較長(zhǎng)的時(shí)期內(nèi),農(nóng)民與農(nóng)業(yè)企業(yè)是解決農(nóng)業(yè)面源污染治理的主力軍。區(qū)域農(nóng)業(yè)面源污染治理應(yīng)與地方產(chǎn)業(yè)發(fā)展緊密結(jié)合,鼓勵(lì)企業(yè)與科研院所聯(lián)合開(kāi)展技術(shù)攻關(guān),發(fā)揮龍頭企業(yè)在面源污染治理中的產(chǎn)業(yè)化工程化優(yōu)勢(shì)和主力軍作用。對(duì)于農(nóng)民來(lái)講,應(yīng)更好地發(fā)揮他們的“主體”作用,通過(guò)不定期對(duì)其提供適當(dāng)?shù)睦碚摷夹g(shù)培訓(xùn),改變其落后的環(huán)保觀念、提高技術(shù)含金量[30]。

2.4 現(xiàn)代化農(nóng)業(yè)農(nóng)村面源污染治理體系是污染治理的重要保障

目前,中國(guó)農(nóng)業(yè)農(nóng)村面源污染治理取得了積極成效和進(jìn)展。但是現(xiàn)階段,中國(guó)相當(dāng)一部分地區(qū)面源污染依然嚴(yán)峻、農(nóng)村環(huán)境依然較差,這與全面建成小康社會(huì)的目標(biāo)要求差距較大。時(shí)隔15 a,習(xí)總書(shū)記2020年到浙江安吉縣余村考察,指出“全面建設(shè)社會(huì)主義現(xiàn)代化國(guó)家,既包括城市現(xiàn)代化,也包括農(nóng)業(yè)農(nóng)村現(xiàn)代化。”大力研發(fā)可工程化的技術(shù),激勵(lì)群眾廣泛參與政策制定,從治理多元主體結(jié)構(gòu)、法律法規(guī)與政策體系、監(jiān)管體系、技術(shù)體系、績(jī)效評(píng)價(jià)體系等多維度加快農(nóng)業(yè)農(nóng)村面源污染治理體系現(xiàn)代化建設(shè)是未來(lái)農(nóng)業(yè)面源污染治理的方向。

3 農(nóng)業(yè)面源污染治理的實(shí)踐

山東省濱州市是全國(guó)的商品糧生產(chǎn)基地和重要優(yōu)質(zhì)生豬供應(yīng)基地之一,2018年農(nóng)作物總產(chǎn)量達(dá)到71.83萬(wàn)噸,畜禽養(yǎng)殖量為449萬(wàn)頭(豬當(dāng)量)。起源于濱州市南海水利風(fēng)景區(qū)的秦臺(tái)河,是海河流域南部水系潮河的主要支流之一,自南向北流經(jīng)濱州市濱城區(qū)匯入潮河,最終注入渤海,流域面積87 km2,流域內(nèi)水系主要為秦臺(tái)河主干道、秦臺(tái)水庫(kù)、引黃灌渠和排水溝渠。秦臺(tái)河流域存在種植、養(yǎng)殖和農(nóng)村生活疊加污染的問(wèn)題,加之種植業(yè)與畜牧業(yè)發(fā)展規(guī)模在空間上存在一定的錯(cuò)位,部分地區(qū)畜禽糞污量超過(guò)了農(nóng)田承載力,外排的畜禽糞污對(duì)環(huán)境污染的風(fēng)險(xiǎn)較大,2006—2013水質(zhì)持續(xù)為劣Ⅴ類(lèi)。近年來(lái),以達(dá)標(biāo)排放為目標(biāo)的單一源頭面源污染治理,達(dá)不到根治糧食主產(chǎn)區(qū)農(nóng)業(yè)面源污染的效果。針對(duì)以上問(wèn)題,在國(guó)家水體污染控制與治理重大專(zhuān)項(xiàng)支持下,中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)清潔流域創(chuàng)新團(tuán)隊(duì)在區(qū)域統(tǒng)籌管理、多元主體共治、長(zhǎng)效運(yùn)維機(jī)制層面進(jìn)行了探索,摸索建立了以政府企業(yè)“雙輪驅(qū)動(dòng)”、科研機(jī)構(gòu)“保駕護(hù)航”的廢棄物資源化良性循環(huán)路徑,形成了以污染治理與產(chǎn)業(yè)發(fā)展緊密結(jié)合的農(nóng)業(yè)面源污染控制模式,為同類(lèi)河流治理提供了“濱州模式”(圖3)。

在政策方面,地方政府加強(qiáng)對(duì)農(nóng)業(yè)農(nóng)村環(huán)境污染治理的指導(dǎo)以及政策扶持力度。2018年,濱州市人民政府下發(fā)了《濱州市打好農(nóng)業(yè)農(nóng)村污染治理攻堅(jiān)戰(zhàn)2018—2020年作戰(zhàn)方案(試行)》,實(shí)施化肥減量增效工程、有機(jī)肥增施替代工程、農(nóng)業(yè)生產(chǎn)廢棄物資源化提升工程、規(guī)?;笄蒺B(yǎng)殖污染防治工程、農(nóng)村生活污水治理工程,完善城鄉(xiāng)環(huán)衛(wèi)一體化工程,實(shí)施小流域生態(tài)清潔工程等。在保障措施上,落實(shí)整縣(區(qū))推進(jìn)農(nóng)業(yè)有機(jī)廢棄物資源化利用“以獎(jiǎng)代補(bǔ)”政策、規(guī)?;袡C(jī)肥生產(chǎn)企業(yè)按規(guī)定享受稅收減免優(yōu)惠政策等。同時(shí),推動(dòng)基層政府通過(guò)承包、采購(gòu)等方式向社會(huì)購(gòu)買(mǎi)垃圾收運(yùn)處理、污水處理、河道管護(hù)等公共服務(wù)。

在技術(shù)支撐與成果轉(zhuǎn)化方面,解決小麥加工、畜禽養(yǎng)殖等過(guò)程中產(chǎn)生的廢料是農(nóng)牧企業(yè)推動(dòng)農(nóng)業(yè)面源污染治理的初動(dòng)力??蒲性核鳛橹黧w,結(jié)合地方需求和農(nóng)業(yè)產(chǎn)業(yè)轉(zhuǎn)型升級(jí)需求進(jìn)行技術(shù)難點(diǎn)的攻關(guān),協(xié)同推進(jìn)農(nóng)業(yè)科技創(chuàng)新和成果轉(zhuǎn)化應(yīng)用。在揭示典型農(nóng)田氮磷流失特征和作物需肥規(guī)律的基礎(chǔ)上,研究突破了基于耕層土壤水庫(kù)及養(yǎng)分庫(kù)擴(kuò)蓄增容基礎(chǔ)上的農(nóng)田增效減負(fù)技術(shù)、多水源灌溉條件下的農(nóng)田節(jié)水控肥抑鹽增效減負(fù)一體的調(diào)控技術(shù),并以關(guān)鍵技術(shù)為核心構(gòu)建了“全鏈條”農(nóng)田增效減負(fù)與清潔生產(chǎn)技術(shù)體系,圍繞“全周期”、“全要素”和“全過(guò)程”就整個(gè)農(nóng)業(yè)生產(chǎn)進(jìn)行調(diào)控。針對(duì)濱州當(dāng)?shù)刎i場(chǎng)糞污處理利用中存在的沼氣發(fā)酵冬季產(chǎn)氣效率低、沼液完全利用難、達(dá)標(biāo)處理費(fèi)用高等問(wèn)題,通過(guò)結(jié)合產(chǎn)業(yè)鏈上下游,引入酒糟廢液與豬糞共發(fā)酵,形成了養(yǎng)殖廢棄物“沼氣-生物肥-青飼料”混合多級(jí)綜合利用技術(shù)體系。針對(duì)農(nóng)村廁所位置分散,缺少收集設(shè)施,已收集糞污缺乏配套的資源化處理技術(shù)等面源污染問(wèn)題,研發(fā)了以負(fù)壓收集技術(shù)、污水源分離技術(shù)為支撐的農(nóng)村節(jié)水無(wú)味生態(tài)公共廁所源分離機(jī)資源化關(guān)鍵技術(shù)[39]。

在長(zhǎng)效運(yùn)維機(jī)制方面,探索了農(nóng)民與農(nóng)牧企業(yè)為“內(nèi)動(dòng)力”的模式,推動(dòng)廢棄物資源化的良性循環(huán)路徑,形成了污染治理與產(chǎn)業(yè)發(fā)展緊密結(jié)合的長(zhǎng)效保障機(jī)制。以區(qū)域有機(jī)廢棄物資源化利用為紐帶,一方面,突破了種養(yǎng)一體化增效減負(fù)技術(shù)難關(guān)與產(chǎn)業(yè)鏈上下游,將小麥深加工產(chǎn)生的酒糟作為飼料主體,再配入麩皮、玉米面形成特有的液態(tài)蛋白飼料用于生豬養(yǎng)殖,引入酒糟廢液與豬糞共發(fā)酵,養(yǎng)殖產(chǎn)生的糞便資源化和能源化利用,轉(zhuǎn)化成沼氣和生物質(zhì)天然氣,沼液作為有機(jī)肥回到種植基地。該模式構(gòu)建的高效種植-生態(tài)養(yǎng)殖-廢棄物資源化能源化利用生態(tài)循環(huán)產(chǎn)業(yè)鏈模式,實(shí)現(xiàn)了資源與能源在種植、養(yǎng)殖、農(nóng)村生活3個(gè)部分的高效流動(dòng),完成了三者的零距離對(duì)接。另一方面,地方龍頭企業(yè)發(fā)揮了在面源污染治理中產(chǎn)業(yè)化工程化的優(yōu)勢(shì),通過(guò)政府購(gòu)買(mǎi)服務(wù),承擔(dān)了農(nóng)村廁所的糞便專(zhuān)業(yè)化收運(yùn),連同散養(yǎng)戶的糞污資源,與企業(yè)已有的養(yǎng)殖廢棄物和作物秸稈協(xié)同處理,將農(nóng)業(yè)有機(jī)廢棄物資源化融入到強(qiáng)筋優(yōu)質(zhì)小麥清潔種植、無(wú)抗生豬生態(tài)養(yǎng)殖兩大主導(dǎo)產(chǎn)業(yè),推動(dòng)農(nóng)業(yè)農(nóng)村環(huán)境污染治理和農(nóng)業(yè)現(xiàn)代化轉(zhuǎn)型升級(jí)的緊密結(jié)合。

圖3 “濱州模式”總體思路

通過(guò)建設(shè)山東省濱州市濱城區(qū)年產(chǎn)720萬(wàn)m3生物天然氣工程建設(shè)項(xiàng)目,項(xiàng)目形成年處理秸稈2.38萬(wàn)t、畜禽糞污30.6萬(wàn)t,年產(chǎn)沼氣720萬(wàn)m3、沼渣液48萬(wàn)t的產(chǎn)業(yè)化生產(chǎn)能力,同時(shí)濱州市濱城區(qū)9個(gè)鄉(xiāng)鎮(zhèn)418個(gè)行政村的廁所糞尿也得到了資源化利用。有機(jī)肥替代節(jié)省了種植環(huán)節(jié)的肥料投入,實(shí)現(xiàn)了地力的提升與糧食增產(chǎn),綜合計(jì)算可實(shí)現(xiàn)增收2 400元/hm2。與2014年相比,示范區(qū)入河水質(zhì)COD、氨氮、總磷污染物的削減率分別為35.9%、33.3%和31.2%。良好的經(jīng)濟(jì)與環(huán)境效應(yīng)使得政府、企業(yè)、農(nóng)民和科研單位均成為了受益主體,確保整個(gè)面源污染治理模式高效、協(xié)同、通暢地運(yùn)行。

4 結(jié)論與建議

中國(guó)的水體富營(yíng)養(yǎng)化自20世紀(jì)70年代開(kāi)始加劇。過(guò)去10 a間,中國(guó)農(nóng)業(yè)面源污染治理雖取得一定成效,但總體上看,農(nóng)業(yè)主要依靠資源消耗的粗放經(jīng)營(yíng)方式?jīng)]有根本改變,農(nóng)業(yè)面源污染和生態(tài)退化的趨勢(shì)尚未得到有效遏制,綠色優(yōu)質(zhì)農(nóng)產(chǎn)品和生態(tài)產(chǎn)品供給還不能滿足人民群眾日益增長(zhǎng)的需求,農(nóng)業(yè)面源污染治理亟待轉(zhuǎn)變治理思路,剖析新的問(wèn)題,探索新的路子。結(jié)合國(guó)家農(nóng)業(yè)綠色發(fā)展的重大需求,本研究提出以“生態(tài)循環(huán)、流域統(tǒng)籌”為核心的農(nóng)業(yè)面源污染治理思路,以“種養(yǎng)結(jié)合、產(chǎn)業(yè)鏈循環(huán)”為核心的污染治理實(shí)現(xiàn)路徑,和以“農(nóng)民和農(nóng)業(yè)企業(yè)為主力軍”的多元主體治理及運(yùn)維機(jī)制。通過(guò)實(shí)例,初步驗(yàn)證了該模式的可行性。

十四五期間,農(nóng)業(yè)面源污染應(yīng)合政產(chǎn)學(xué)研企之力聯(lián)合攻關(guān)。1)深入理解界面尺度污染物遷移轉(zhuǎn)化機(jī)制,創(chuàng)新流域尺度污染物溯源與模擬方法,研究基于不同流域分區(qū)分類(lèi)的特點(diǎn),闡明種植業(yè)、養(yǎng)殖業(yè)和農(nóng)村生活污水污染產(chǎn)生、排放系數(shù)及源強(qiáng),探明農(nóng)業(yè)源污染物在土-水介質(zhì)中的遷移轉(zhuǎn)化規(guī)律和驅(qū)動(dòng)機(jī)制。2)加強(qiáng)農(nóng)田“水土”和“根土”界面環(huán)境污染物遷移、轉(zhuǎn)化分子機(jī)制及其微生物學(xué)過(guò)程的基礎(chǔ)研究,從環(huán)境功能微生物應(yīng)用及作物吸收污染物分子調(diào)控角度開(kāi)展綠色修復(fù)技術(shù)的研發(fā)與理論創(chuàng)新;并針對(duì)典型區(qū)域污染特點(diǎn)與農(nóng)業(yè)生產(chǎn)特色,研發(fā)集成性和成熟度高的組合技術(shù),同時(shí)配合生態(tài)補(bǔ)償手段。3)從流域尺度進(jìn)行全面統(tǒng)籌,確定種植、養(yǎng)殖、水體等子系統(tǒng)的污染排放定額及在區(qū)域空間中的最佳配置,形成種養(yǎng)結(jié)合型區(qū)域氮磷養(yǎng)分優(yōu)化管理與控制模式。4)發(fā)揮農(nóng)民和農(nóng)業(yè)企業(yè)主力軍的作用,靠市場(chǎng)力量推動(dòng)區(qū)域農(nóng)業(yè)面源污染治理,集成兼顧流域生態(tài)和糧食安全的長(zhǎng)效運(yùn)維模式。

[1] 王農(nóng),劉寶存,孫約兵. 我國(guó)農(nóng)業(yè)生態(tài)環(huán)境領(lǐng)域突出問(wèn)題與未來(lái)科技創(chuàng)新的思考[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2020,37(1):1-5. Wang Nong, Liu Baocun, Sun Yuebing. Problems in the agricultural environment of China and innovation of future science and technology[J]. Journal of Agricultural Resources and Environment, 2020, 37(1): 1-5. (in Chinese with English abstract)

[2] Wang Xiaolong, Wu Xia, Yan Peng, et al. Integrated analysis on economic and environmental consequences of livestock husbandry on different scale in China[J]. Journal of Cleaner Production, 2016, 119: 1-12.

[3] Zheng Li, Zhang Qingwen, Zhang Aiping, et al. Spatiotemporal characteristics of the bearing capacity of cropland based on manure nitrogen and phosphorus load in mainland China[J]. Journal of Cleaner Production, 2019, 233(10): 601-610.

[4] 張維理,武淑霞,冀宏杰,等. 中國(guó)農(nóng)業(yè)面源污染形勢(shì)估計(jì)及控制對(duì)策I. 21世紀(jì)初期中國(guó)農(nóng)業(yè)面源污染的形勢(shì)估計(jì)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2004,37(7):1008-1017. Zhang Weili, Wu Shuxia, Ji Hongjie, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies[J]. Scientia Agricultura Sinica, 2004, 37(7): 1008-1017. (in Chinese with English abstract)

[5] 國(guó)家統(tǒng)計(jì)局. 第一次全國(guó)污染源普查公報(bào)[EB/OL]. 2010-02-11 [2020-07-08]. http: //www. stats. gov. cn/tjsj/tjgb/qttjgb/qgqttjgb/201002/t20100211_30641. html

[6] 中華人民共和國(guó)生態(tài)環(huán)境部. 第二次全國(guó)污染源普查公報(bào)[EB/OL]. 2020-06-09 [2020-07-08]. http: //www. mee. gov. cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547. html?from=timeline&isappinstalled=0

[7] Bai Zhaohai, Ma Lin, Ma Wenqi, et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030[J]. Nutrient Cycling in Agroecosystems, 2016, 104: 361-372.

[8] 張俊伶,張江周,申建波,等. 土壤健康與農(nóng)業(yè)綠色發(fā)展:機(jī)遇與對(duì)策[J]. 土壤學(xué)報(bào),2020,57(4):783-796. Zhang Junling, Zhang Jiangzhou, Shen Jianbo, et al. Soil Health and agriculture green development: Opportunities and challenges[J]. Acta Pedologica Sinica, 2020, 57(4): 783-796. (in Chinese with English abstract)

[9] Zhang Xin, Davidson A Eric, Mauzerall L Denise, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59.

[10] Gao Shuoshuo, Xu Peng, Zhou Feng, et al. Quantifying nitrogen leaching response to fertilizer additions in China's cropland[J]. Environmental Pollution, 2016, 211: 241-251.

[11] Hou Xikang, Zhan Xiaoying, Zhou Feng, et al. Detection and attribution of nitrogen runoff trend for China’s croplands[J]. Environmental Pollution, 2018, 234: 270-278.

[12] Hua Lingling, Liu Jian, Zhai Limei, et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices[J]. Agriculture Ecosystems & Environment, 2017, 245: 112-123.

[13] Vira Julius, Hess Peter, Melkonian Jeff, et al. An improved mechanistic model for ammonia volatilization in earth system models: flow of agricultural nitrogen, version 2 (FANv2)[J]. Geoscientific Model Development Discussions, 2019, 8: 1-49.

[14] Xu Rongting, Tian Hanqing, Pan Shufen, et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty[J]. Global Change Biology, 2019, 25(1): 314-326.

[15] 郝曉地,羅玉琪,曹達(dá)殷,等. 霧霾亦可誘發(fā)水體富營(yíng)養(yǎng)化[J]. 中國(guó)給水排水,2018,34(6):12-21. Hao Xiaodi, Luo Yuqi, Cao Dayin, et al. Induction of haze to eutrophication of surface water[J]. China Water & Wastewater, 2018, 34(6): 12-21. (in Chinese with English abstract)

[16] Zhan Xiaoying, Bo Yan, Zhou Feng, et al. Evidence for the importance of atmospheric nitrogen deposition to eutrophic Lake Dianchi, China[J]. Environmental Science & Technology, 2017, 51: 6699-6708.

[17] FAOSTAT[EB/OL]. 2018-12-20 [2020-07-08]. http: //www. fao. org/faostat/en/#data/QC

[18] 中華人民共和國(guó)農(nóng)業(yè)農(nóng)村部. 關(guān)于推進(jìn)農(nóng)業(yè)廢棄物資源化利用試點(diǎn)的方案[EB/OL]. 2016-08-11 [2020-07-08]. http://jiuban. moa. gov. cn/zwllm/zcfg/nybgz/201609/ t20160919_ 5277846. htm

[19] 王永生,劉彥隨,龍花樓. 我國(guó)農(nóng)村廁所改造的區(qū)域特征及路徑探析[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2019,36(5):553-560. Wang Yongsheng, Liu Yansui, Long Hualou. Regional characteristics and pathway optimization of China’s rural toilet improvement[J]. Journal of Agricultural Resources and Environment, 2019, 36(5): 553-560. (in Chinese with English abstract)

[20] 呂錫武. 可持續(xù)發(fā)展的分散式農(nóng)村生活污水治理技術(shù)[J]. 民主與科學(xué),2018(5):18-20.

[21] 國(guó)家統(tǒng)計(jì)局. 第三次全國(guó)農(nóng)業(yè)普查主要數(shù)據(jù)公報(bào)(第一號(hào))[EB/OL]. 2017-12-14 [2020-07-08]. http: //www. stats. gov. cn/tjsj/tjgb/nypcgb/qgnypcgb/201712/t20171214_ 1562740. html.

[22] 新華網(wǎng):農(nóng)村衛(wèi)生廁所普及率超過(guò)60%[EB/OL]. 2019-12-26 [2020-07-08]. http: //www. xinhuanet. com/ 2019-12/26/c_ 1210412030. htm

[23] 吳永紅,胡正義,楊林章. 農(nóng)業(yè)面源污染控制工程的“減源-攔截-修復(fù)”(3R)理論與實(shí)踐[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):1-6. Wu Yonghong, Hu Zhengyi, Yang Linzhang et al. Strategies for controlling agricultural non-point source pollution: Reduce-retain-restoration (3R) theory and its practice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 1-6. (in Chinese with English abstract)

[24] 湯秋香,劉宏斌,雷寶坤,等. 洱海北部地區(qū)環(huán)境友好型種植模式篩選[J]. 中國(guó)農(nóng)業(yè)科學(xué),2012,45(12):2375-2383. Tang Qiuxiang, Liu Hongbin, Lei Baokun, et al. Screening of environment-friendly cropping mode in the northern region of Erhai Lake[J]. Scientia Agriculture Sinica, 2012, 45(12): 2375-2383. (in Chinese with English abstract)

[25] 耿潤(rùn)哲,王曉燕,龐樹(shù)江,等. 潮河流域非點(diǎn)源污染控制關(guān)鍵因子識(shí)別及分區(qū)[J]. 中國(guó)環(huán)境科學(xué),2016,36(4):1258-1267. Geng Runzhe, Wang Xiaoyan, Pang Shujiang, et al. Identification of key factors and zonation for nonpoint source pollution control in Chaohe river watershed[J]. China Environmental Science, 2016, 36(4): 1258-1267. (in Chinese with English abstract)

[26] Wang Jinliang, Ni Jiupai, Chen Chenglong, et al. Source-sink landscape spatial characteristics and effect on non-point source pollution in a small catchment of the Three Gorge Reservoir Region[J]. Journal of Mountain Science, 2018, 15(2): 327-339.

[27] Chen Linlin, Shao Junjie, Chen Hui, et al. Cathode potential regulation in a coupled bioelectrode-anaerobic sludge system for effective dechlorination of 2, 4-dichloronitrobenzene[J]. Bioresource Technology, 2018, 254: 180-186.

[28] 歐陽(yáng)威,鞠欣妍,高翔,等. 考慮面源污染的農(nóng)業(yè)開(kāi)發(fā)流域生態(tài)安全評(píng)價(jià)研究[J]. 中國(guó)環(huán)境科學(xué),2018,38(3):1194-1200. Ouyang Wei, Ju Xinyan, Gao Xiang, et al. Ecological security assessment of agricultural development watershed considering non-point source pollution[J]. China Environmental Science, 2018, 38(3): 1194-1200. (in Chinese with English abstract)

[29] 張福鎖. 農(nóng)業(yè)越“綠”,小康越近[N]. 中國(guó)科學(xué)報(bào),2020-06-22.

[30] 楊林章. 我國(guó)農(nóng)田面源污染治理的思路與技術(shù)[J]. 民主與科學(xué),2018(5):16-18.

[31] 巨曉棠,谷保靜. 氮素管理的指標(biāo)[J]. 土壤學(xué)報(bào),2017,54(2):281-296. Ju Xiaotang, Gu Baojing. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281-296. (in Chinese with English abstract)

[32] Zhang Chuanzhen, Liu Shen, Wu Shuxia, et al. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China[J]. Resources Conservation and Recycling, 2019, 144: 65-73.

[33] Carrer Marcelo Jose, Maia Alexander Gori, de Mello Brand?o Vinholi M, et al. Assessing the effectiveness of rural credit policy on the adoption of integrated crop-livestock systems in Brazil[J]. Land Use Policy, 2020, 92: 104468.

[34] Moraes Anibal, Carvalho Paulo C Faccio, Anghinoni Ibanor, et al. Integrated crop–livestock systems in the Brazilian subtropics[J]. European Journal of Agronomy, 2014, 57: 4-9.

[35] Pérez-Gutiérrez Juan D, Kumar Sandeep. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale[J]. Journal of Environmental Management, 2019, 239: 385-394.

[36] Garrett R D, Niles M T, Gil J D B, et al. Social and ecological analysis of commercial integrated crop livestock systems: Current knowledge and remaining uncertainty[J]. Agricultural Systems, 2017, 155: 136-146.

[37] Oenema Oene. Toward agriculture green development[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 110-111.

[38] 隋斌,董姍姍,孟海波,等. 農(nóng)業(yè)工程科技創(chuàng)新推進(jìn)農(nóng)業(yè)綠色發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):1-6. Sui Bin, Dong Shanshan, Meng Haibo, et al. Innovation in agricultural engineering and technology to accelerate green development of agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 1-6. (in Chinese with English abstract)

[39] 王遠(yuǎn)華. 中裕公司玩轉(zhuǎn)全產(chǎn)業(yè)鏈[J]. 農(nóng)經(jīng),2016,296(1):79-82.

Controlling agricultural non-point source pollution: Thinking and practice in the era of agricultural green high-quality development

Zhan Xiaoying, Zhang Aiping, Zhang Qingwen※

(1,,,100081,; 2.,100081,)

Agriculture is the cornerstone of economic development in China to serve a solid foundation for food security over the last three decades. However, the rapid increases in crop and animal production have caused serious non-point pollution, while farmers have

limited benefits, where the countryside and natural habitats have been insufficiently protected. Since great contributions have been made to mitigate the pollution over past decades, the pollution induced by agriculture are still great challenge. Since 2018, the rural revitalization led by the construction of ecological civilization marks the beginning of a new era in the treatment of agricultural non-point source pollution with higher requirements. In this study, an attempt was made on the shortage, and challenges of agricultural non-point source pollution control in modern agriculture. Currently, a systematical investigation is still lacking, particularly on the occurrence mechanism of environmental pollutants at the interface, microorganism and molecular scale. In the phase of pollutant migration, transformation and absorption, there is a lack of accurate traceability technology. In the aspect of model simulation, the parametrization of non-point source pollution mechanism, rationalization of model parameters and modularization of management measures need to be strengthened. In terms of technology, the traditional mode of relying on single source governance that "fixes the point and the line but not the watershed" cannot achieve the effect of overall optimization. This study focused on the major existing challenges of agro-ecological environment in China, further to propose that ecological cycle of agricultural industries practicing with a watershed orientation. The watershed management can be the core of agricultural non-point source pollution control. The traditional linear production mode of "resources-product-waste discharge" in the main grain production areas can be transformed into the combination of multi-dimensional and multi-levels of watershed, recycling, and benefit-oriented. Excessive nitrogen and phosphorus from manure can contribute to substantial damage and costs to the environment and human health. Meanwhile, animal manure is the major source of additional nutrients and crucial for maintaining soil organic matter and crop yield in traditional farming systems. The integration of cropping and livestock with cycling industrial chain can be considered as a key technology to control agricultural non-point source pollution. A better understanding the non-point pollution is necessary to take the lead in modern agricultural operations. Substantial promotion of agricultural non-point source pollution control depends mainly on a multi-dimensional governance participation, a sound system of laws, regulations and policies, strong regulatory system, scientific and technological system, and effective performance evaluation system. The involvement of farmers and agricultural entrepreneurs in pollution control action is a systematic maintenance to ensure the full control of agricultural non-point source pollution. Two ways can be: 1) Working directly with transferring knowledge to farmers through organized farmer cooperatives; and 2) enterprise-based approaches embodying relevant scientific results into commercial products. The theory has been testified with the typical example of agricultural non-point source pollution control in Qintaihe watershed of Binzhou, Shandong Province. An ecological recycling industrial chain of cropping and breeding has been built in Binzhou. A recycling path of waste recycling was explored with "double wheel drive" of government enterprises and "escort" of scientific research institutions. Local leading enterprises have played an important role with the advantages of industrial techniques for non-point source pollution control, integrating the recycling of agricultural organic waste into the clean planting of high-quality wheat planting and ecological pig breeding, and further to bridge the gap of agricultural pollution control and development of agricultural modernization industry. The finding can provide a valuable guidance for the construction of ecological and environmental system for the agricultural practices in the new era of China.

agriculture; mechanisms; non-point source pollution; watershed-oriented planning; integration of cropping and livestock; ecological cycle; pluralist governance; long-acting operation and maintenance

展曉瑩,張愛(ài)平,張晴雯. 農(nóng)業(yè)綠色高質(zhì)量發(fā)展期面源污染治理的思考與實(shí)踐[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):1-7.doi:10.11975/j.issn.1002-6819.2020.20.001 http://www.tcsae.org

Zhan Xiaoying, Zhang Aiping, Zhang Qingwen. Controlling agricultural non-point source pollution: Thinking and practice in the era of agricultural green high-quality development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 1-7. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.001 http://www.tcsae.org

2020-07-08

2020-10-10

國(guó)家自然科學(xué)基金(41977072、41907087);國(guó)家水體污染控制與治理科技重大專(zhuān)項(xiàng)(2015ZX07203-007);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(BSRF201905)

展曉瑩,博士,副研究員,主要從事農(nóng)田氮磷損失與模擬研究。Email:zhanxiaoying@caas.cn

張晴雯,博士,研究員,博士生導(dǎo)師,主要從事農(nóng)業(yè)流域源匯功能、清潔機(jī)制與關(guān)鍵技術(shù)研究。Email:zhangqingwen@caas.cn

10.11975/j.issn.1002-6819.2020.20.001

S19

A

1002-6819(2020)-20-0001-07

猜你喜歡
面源資源化污染
煤化工廢水資源化回收及深度處理技術(shù)
磷石膏資源化綜合利用任重道遠(yuǎn)
基于國(guó)家糧食安全下的農(nóng)業(yè)面源污染綜合防治體系思考
CO2資源化回收技術(shù)分析
農(nóng)業(yè)面源污染的危害與治理
澄江市農(nóng)業(yè)面源污染成因及對(duì)策
到2025年,重點(diǎn)區(qū)域農(nóng)業(yè)面源污染得到初步控制
退役三元材料資源化利用研究新進(jìn)展
堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)
堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)
拜城县| 济源市| 砚山县| 台东市| 揭阳市| 惠州市| 进贤县| 瑞安市| 庆城县| 乌拉特前旗| 平顺县| 永城市| 古浪县| 克山县| 乐山市| 陵水| 大连市| 灯塔市| 涞水县| 侯马市| 望都县| 河北区| 南投县| 延安市| 洪雅县| 淮滨县| 浑源县| 左贡县| 诸城市| 公主岭市| 航空| 阳谷县| 岳普湖县| 南漳县| 安西县| 余姚市| 清涧县| 扶余县| 房产| 舟曲县| 黑水县|