国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

視網(wǎng)膜母細(xì)胞瘤的細(xì)胞起源研究進(jìn)展

2020-12-23 14:05石寒菡王少云賈仁兵
關(guān)鍵詞:視錐母細(xì)胞感光

石寒菡,王少云,賈仁兵

上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院眼科,上海市眼眶病眼腫瘤重點(diǎn)實(shí)驗(yàn)室,上海 200011

視網(wǎng)膜母細(xì)胞瘤是兒童最常見的眼內(nèi)惡性腫瘤,好發(fā)于3 歲以下兒童,平均發(fā)病年齡僅18 個(gè)月[1]。視網(wǎng)膜母細(xì)胞瘤年發(fā)病率為1:14 000 ~1:20 000,每年新發(fā)患者約9 000 例,占兒童惡性腫瘤的3%~4%;以我國(guó)和印度發(fā)病率最高,非洲、南美洲和亞洲的其他地區(qū)也較為常見[2-3]。 鑒于不同地區(qū)腫瘤患者的異質(zhì)性,我國(guó)研究人員建立了一株漢族人視網(wǎng)膜細(xì)胞瘤細(xì)胞系[4],以更好地研究我國(guó)視網(wǎng)膜母細(xì)胞瘤的發(fā)病機(jī)制。此外,各地患者的死亡率因醫(yī)療條件差異也有所不同:歐美等發(fā)達(dá)地區(qū)視網(wǎng)膜母細(xì)胞瘤患者死亡率僅為5%~11%,發(fā)病率較高的亞太地區(qū)患者死亡率約為30%,醫(yī)療條件相對(duì)落后的非洲國(guó)家患者死亡率則高達(dá)73%[5-7]。我國(guó)視網(wǎng)膜母細(xì)胞瘤患者總摘眼率為50.65%,死亡率為18.64%[8]。40%視網(wǎng)膜母細(xì)胞瘤患者為遺傳型發(fā)病,大部分表現(xiàn)為雙眼病變,少數(shù)為單眼病變,極少數(shù)表現(xiàn)為包括顱內(nèi)腫瘤在內(nèi)的3 側(cè)腫瘤;余下60%非遺傳型患者均表現(xiàn)為單眼病變[7,9]。視網(wǎng)膜母細(xì)胞瘤的臨床表現(xiàn)為白瞳癥、斜視、眼瞼紅腫、疼痛、青光眼等,眼底表現(xiàn)為單個(gè)或多個(gè)灰白色隆起病灶,表面視網(wǎng)膜血管擴(kuò)張、出血等[10]。全身化學(xué)治療(簡(jiǎn)稱化療,如靜脈化療等)、局部治療(如激光治療、冷凍治療、玻璃體腔化療、動(dòng)脈介入化療等)、手術(shù)治療(如玻璃體腔切除、眼球摘除、眶內(nèi)容物剜除等)和放射治療等均可應(yīng)用于視網(wǎng)膜母細(xì)胞瘤的治療[11]。

隨著視網(wǎng)膜母細(xì)胞瘤研究的逐漸深入,細(xì)胞起源,即腫瘤細(xì)胞由何種細(xì)胞演化而來(lái),成為視網(wǎng)膜母細(xì)胞瘤研究的重要問題。目前研究人員主要提出了視網(wǎng)膜前體細(xì)胞起源、視錐感光細(xì)胞起源和水平細(xì)胞或Müller 膠質(zhì)細(xì)胞起源3 種視網(wǎng)膜母細(xì)胞瘤細(xì)胞起源學(xué)說(shuō),但學(xué)界對(duì)視網(wǎng)膜母細(xì)胞瘤的細(xì)胞起源尚無(wú)明確定論,因此對(duì)視網(wǎng)膜母細(xì)胞瘤起源細(xì)胞的研究進(jìn)展進(jìn)行歸納總結(jié)尤為重要。

1 視網(wǎng)膜的發(fā)育過(guò)程

人類神經(jīng)視網(wǎng)膜由視網(wǎng)膜多能干/祖細(xì)胞分化而成,而視網(wǎng)膜多能干/祖細(xì)胞主要分化發(fā)育成7 種細(xì)胞,分別是視錐感光細(xì)胞、視桿感光細(xì)胞、水平細(xì)胞、雙極細(xì)胞、無(wú)長(zhǎng)突細(xì)胞、神經(jīng)節(jié)細(xì)胞和Müller 膠質(zhì)細(xì)胞[12-13]。視網(wǎng)膜前體細(xì)胞是從視網(wǎng)膜多能干/祖細(xì)胞到視網(wǎng)膜細(xì)胞的過(guò)渡階段。研究表明,視網(wǎng)膜前體細(xì)胞可以通過(guò)單向分化產(chǎn)生成熟視網(wǎng)膜組織中的不同細(xì)胞類型,但是在視網(wǎng)膜發(fā)育的不同階段,其分化產(chǎn)生的細(xì)胞也不盡相同。視網(wǎng)膜發(fā)育早期,視網(wǎng)膜前體細(xì)胞主要分化產(chǎn)生Müller 膠質(zhì)細(xì)胞和視錐細(xì)胞;而視網(wǎng)膜發(fā)育晚期,視網(wǎng)膜前體細(xì)胞一般會(huì)分化產(chǎn)生Müller 膠質(zhì)細(xì)胞和雙極細(xì)胞[14-15]。除此之外,細(xì)胞外環(huán)境也會(huì)影響分化方向,例如睫狀神經(jīng)營(yíng)養(yǎng)因子可以促進(jìn)大鼠視網(wǎng)膜前體細(xì)胞分化產(chǎn)生雙極細(xì)胞;而細(xì)胞周期蛋白依賴性激酶抑制劑p27kip1 和p57kip2 在視網(wǎng)膜前體細(xì)胞中呈現(xiàn)差異性表達(dá),調(diào)節(jié)視網(wǎng)膜前體細(xì)胞的增殖分化功能[16-18]。視網(wǎng)膜發(fā)育過(guò)程研究的成果,為探索視網(wǎng)膜母細(xì)胞瘤細(xì)胞起源奠定了理論基礎(chǔ)。

2 視網(wǎng)膜母細(xì)胞瘤的細(xì)胞學(xué)起源

2.1 視網(wǎng)膜前體細(xì)胞起源學(xué)說(shuō)

一種觀點(diǎn)認(rèn)為,視網(wǎng)膜前體細(xì)胞是視網(wǎng)膜母細(xì)胞瘤的起源細(xì)胞[19];其位于視網(wǎng)膜外核層,具有多種視網(wǎng)膜細(xì)胞分化潛能[20]。與之對(duì)應(yīng),視網(wǎng)膜母細(xì)胞瘤也具有視錐和視桿感光細(xì)胞、水平細(xì)胞和無(wú)長(zhǎng)突細(xì)胞等多種細(xì)胞的生物學(xué)特征,并在超微結(jié)構(gòu)上與視網(wǎng)膜前體細(xì)胞相似[21]。從癌基因的角度來(lái)看,Lim1(Lim class homeobox gene Lim1)是一種潛在的癌基因,且Lim1 在水平細(xì)胞中表達(dá)上調(diào)而在視錐和視桿感光細(xì)胞中表達(dá)下調(diào);這一研究結(jié)果提示Lim1在水平細(xì)胞和感光細(xì)胞的共同直接祖細(xì)胞即視網(wǎng)膜前體細(xì)胞中表達(dá)[22-23]。此外,研究[24]表明視網(wǎng)膜干細(xì)胞、增殖前體細(xì)胞、新生有絲分裂后細(xì)胞和重新進(jìn)入細(xì)胞周期的分化細(xì)胞均可產(chǎn)生視網(wǎng)膜母細(xì)胞瘤,腫瘤起源的異質(zhì)性提示視網(wǎng)膜母細(xì)胞瘤可能來(lái)源于上述細(xì)胞的共同祖細(xì)胞,即視網(wǎng)膜前體細(xì)胞,這一研究結(jié)果再次支持了視網(wǎng)膜前體細(xì)胞起源學(xué)說(shuō)。動(dòng)物實(shí)驗(yàn)研究[25]也顯示,視網(wǎng)膜母細(xì)胞瘤不是來(lái)源于分化成熟細(xì)胞,因?yàn)樵谟薪z分裂后的細(xì)胞或分化的小鼠視網(wǎng)膜細(xì)胞的基礎(chǔ)上,難以建立視網(wǎng)膜母細(xì)胞瘤模型。研究[26-27]發(fā)現(xiàn),抑癌基因RB1(retinoblastoma gene 1)的突變和原癌基因MYCN(MYCN proto-oncogene)的擴(kuò)增是視網(wǎng)膜母細(xì)胞瘤常見的基因突變類型,而且兩者有很強(qiáng)的協(xié)同作用。然而,在成年的3 周齡小鼠中,當(dāng)Mycn在Rb1 雙等位基因失活的視網(wǎng)膜中過(guò)度表達(dá)時(shí),小鼠幾乎不會(huì)出現(xiàn)視網(wǎng)膜母細(xì)胞瘤[28];這一現(xiàn)象也說(shuō)明了視網(wǎng)膜母細(xì)胞瘤并非起源于分化成熟的細(xì)胞,同時(shí)為視網(wǎng)膜前體細(xì)胞起源學(xué)說(shuō)提供了依據(jù)。

2.2 視錐感光細(xì)胞起源學(xué)說(shuō)

20 世紀(jì)80 年代,視網(wǎng)膜母細(xì)胞瘤起源于視錐感光細(xì)胞和視桿感光細(xì)胞2 種學(xué)派各執(zhí)一詞,然而后續(xù)研究更加傾向于視錐感光細(xì)胞起源學(xué)說(shuō)[29]。研究[30]發(fā)現(xiàn),在視網(wǎng)膜母細(xì)胞瘤中存在視錐感光細(xì)胞特異性標(biāo)志物,包括視黃酸相關(guān)受體γ、視錐細(xì)胞特異性甲狀腺激素受體β、同源域蛋白(cone-rod homeobox,CRX)和2 種視錐蛋白;該研究突破性地提出了視錐感光細(xì)胞是該腫瘤起源細(xì)胞的觀點(diǎn)。此外,成熟視網(wǎng)膜的特異性標(biāo)志物也提示了視網(wǎng)膜母細(xì)胞瘤的起源細(xì)胞。研究[31]表明,視網(wǎng)膜的特異性標(biāo)志物CRX 和正小齒同源物2(orthodenticle homolog 2,OTX2)在視網(wǎng)膜母細(xì)胞瘤組織和細(xì)胞系中廣泛表達(dá),然而視網(wǎng)膜正常生理研究表明CRX 和OTX2 均在視錐感光細(xì)胞中特異性表達(dá),這一研究結(jié)果再次支持了視網(wǎng)膜母細(xì)胞瘤的視錐感光細(xì)胞學(xué)說(shuō)。

然而有研究發(fā)現(xiàn),視網(wǎng)膜母細(xì)胞瘤存在異質(zhì)性,不同患者的腫瘤或者同一患者的不同腫瘤,細(xì)胞起源不盡相同。低分化視網(wǎng)膜母細(xì)胞瘤患者腫瘤組織表達(dá)視網(wǎng)膜前體細(xì)胞基因,支持視網(wǎng)膜前體細(xì)胞起源學(xué)說(shuō);而高分化視網(wǎng)膜母細(xì)胞瘤患者腫瘤組織病理學(xué)表現(xiàn)呈特征性玫瑰花結(jié)或花斑,同時(shí)表達(dá)視錐感光細(xì)胞相關(guān)基因,支持視錐感光細(xì)胞起源學(xué)說(shuō)[32-33]。

此外,視錐感光細(xì)胞起源學(xué)說(shuō)也存在矛盾之處:視錐感光細(xì)胞在視網(wǎng)膜中心凹區(qū)富集,如果該細(xì)胞是腫瘤起源細(xì)胞,那么腫瘤理應(yīng)多存在于中心凹區(qū),但85%的腫瘤出現(xiàn)在視網(wǎng)膜后極而不是中心凹區(qū)[34]。因此視錐感光細(xì)胞起源學(xué)說(shuō)亟待后續(xù)研究解釋視網(wǎng)膜母細(xì)胞瘤的疾病臨床特征。

2.3 水平細(xì)胞或Müller 膠質(zhì)細(xì)胞起源學(xué)說(shuō)

為了更加深入地研究視網(wǎng)膜母細(xì)胞瘤這一兒童時(shí)期最常見的眼內(nèi)惡性腫瘤,研究人員構(gòu)建了多種視網(wǎng)膜母細(xì)胞瘤動(dòng)物模型。然而研究[35]發(fā)現(xiàn),小鼠和人類視網(wǎng)膜母細(xì)胞瘤的細(xì)胞學(xué)起源不同。視錐感光細(xì)胞無(wú)法在Rb1 雙等位基因失活的小鼠中正常增殖,即便補(bǔ)充人類視錐感光細(xì)胞特異性癌蛋白后該細(xì)胞依舊無(wú)法正常增殖;這一研究說(shuō)明了小鼠和人類視網(wǎng)膜母細(xì)胞瘤細(xì)胞學(xué)起源的異質(zhì)性。此外,小鼠腫瘤模型顯著表達(dá)視網(wǎng)膜神經(jīng)元特異性蛋白,而人類視網(wǎng)膜母細(xì)胞瘤主要表達(dá)的是視錐感光蛋白,小鼠腫瘤模型缺乏人類視網(wǎng)膜母細(xì)胞瘤特征[36-38]。研究[39]發(fā)現(xiàn),小鼠視網(wǎng)膜母細(xì)胞瘤組織特異性表達(dá)神經(jīng)膠質(zhì)細(xì)胞標(biāo)志物視黃醛結(jié)合蛋白(cellular rentinaldehyde binding protein,CRALBP),故小鼠視網(wǎng)膜母細(xì)胞瘤模型的腫瘤細(xì)胞更可能起源于水平細(xì)胞或Müller 膠質(zhì)細(xì)胞??梢?,細(xì)胞、物種以及發(fā)育階段的特異性均可影響RB1/Rb1 雙等位基因失活的結(jié)果,這也再一次證明了識(shí)別視網(wǎng)膜母細(xì)胞瘤起源細(xì)胞的重要性。

3 視網(wǎng)膜母細(xì)胞瘤的遺傳學(xué)和表觀遺傳學(xué)特征

3.1 視網(wǎng)膜母細(xì)胞瘤的遺傳學(xué)特征

RB1 基因是最早被發(fā)現(xiàn)的抑癌基因之一,全長(zhǎng)196 000 bp,包括27 個(gè)外顯子,其編碼翻譯的蛋白在細(xì)胞的生長(zhǎng)分化中發(fā)揮了重要的作用[40-43]。研究[40,44-45]發(fā)現(xiàn),RB1 雙等位基因突變后,原為視網(wǎng)膜核層的前體細(xì)胞向腫瘤細(xì)胞樣分化改變,其增殖、遷移和侵襲能力均顯著增高。經(jīng)典理論認(rèn)為,13 號(hào)常染色體q14 基因組區(qū)的RB1 雙等位基因失活是引起視網(wǎng)膜母細(xì)胞瘤的重要原因[46]。檢索視網(wǎng)膜母細(xì)胞瘤突變數(shù)據(jù)庫(kù)(Retinoblastoma Gene Mutation Database,RBGMdb)發(fā)現(xiàn),視網(wǎng)膜母細(xì)胞瘤特異性突變占已發(fā)現(xiàn)的3 393 個(gè)RB1 基因突變的50%以上,其中最常見的突變類型為片段插入或缺失(占48.2%)[47]。此外,RB1 雙等位基因突變還可導(dǎo)致視網(wǎng)膜外其他部位腫瘤,這有助于解釋約22%的視網(wǎng)膜母細(xì)胞瘤存活者可繼發(fā)第二腫瘤,發(fā)病率較高的第二腫瘤為骨肉瘤(占37.0%)、其他肉瘤(占16.8%)、黑色素瘤(占7.4%)和腦部腫瘤(占4.5%)等[48-50]。除了經(jīng)典的RB1 雙等位基因突變,視網(wǎng)膜母細(xì)胞瘤可能還可由其他因素介導(dǎo)[51],如部分視網(wǎng)膜母細(xì)胞瘤患者體內(nèi)沒有RB1 雙等位基因突變,但存在MYCN 基因異常激活[52]。

3.2 視網(wǎng)膜母細(xì)胞瘤的表觀遺傳學(xué)特征

表觀遺傳學(xué)因素可單獨(dú)或可與遺傳因素相互作用,促進(jìn)視網(wǎng)膜母細(xì)胞瘤發(fā)生和發(fā)展,包括長(zhǎng)鏈非編碼RNA 和miRNA 調(diào)控、甲基化異常等。研究發(fā)現(xiàn),12號(hào)染色體上13.32 區(qū)域的致病長(zhǎng)鏈非編碼RNA GAU1(GALNT8 antisense upstream 1)構(gòu)象由閉合向開放轉(zhuǎn)變時(shí),招募轉(zhuǎn)錄延長(zhǎng)因子A1(transcription elongation factor A1,TCEA1)形成GAU1-TCEA1 復(fù)合物,激活癌基因GALNT8(polypeptide N-acetylgalactosaminyltransfe- rase 8)的表達(dá),促進(jìn)腫瘤細(xì)胞惡性生長(zhǎng)[53];位于6 號(hào)染色體的抑癌長(zhǎng)鏈非編碼RNA CANT1(calcium activated nucleotidase 1)通過(guò)抑制PI3K/AKT 信號(hào)通路抑制視網(wǎng)膜母細(xì)胞瘤的惡性生長(zhǎng)[54];長(zhǎng)鏈非編碼RNA 轉(zhuǎn)錄本RBAT1(retinoblastoma associated transcript-1)在視網(wǎng)膜母細(xì)胞瘤中表達(dá)顯著增高,RBAT1 通過(guò)把HNRNPL(heterogeneous nuclear ribonucleoprotein L)蛋白招募到已知癌基因E2F3(E2F transcription factor 3)啟動(dòng)子區(qū)域以激活E2F3 轉(zhuǎn)錄,從而促進(jìn)視網(wǎng)膜母細(xì)胞瘤的發(fā)生和發(fā)展[55]。miRNA在視網(wǎng)膜母細(xì)胞瘤的發(fā)生中也起到了重要作用。研究[56-59]表明,在視網(wǎng)膜母細(xì)胞瘤中,Let-7、miR-34a、miR-24、miR-125b 等 抑 癌miRNA 異 常 下 調(diào),而miR-17、miR-181b 等促癌miRNA 卻異常上調(diào)。此外,通過(guò)對(duì)4 例視網(wǎng)膜母細(xì)胞瘤患者進(jìn)行全基因組測(cè)序發(fā)現(xiàn),SYK(spleen associated tyrosine kinase)基因啟動(dòng)子區(qū)去甲基化水平的增高可導(dǎo)致該基因表達(dá)的異常上調(diào),這一表觀遺傳學(xué)的改變是導(dǎo)致視網(wǎng)膜母細(xì)胞瘤發(fā)生的重要因素[60]。

4 總結(jié)與展望

不同的起源細(xì)胞代表著腫瘤的不同基因表達(dá),決定著細(xì)胞形態(tài)和臨床結(jié)局,對(duì)疾病的診斷分型以及治療預(yù)后都有著決定性的作用。基于患者腫瘤和動(dòng)物模型的研究,形成了視網(wǎng)膜母細(xì)胞瘤細(xì)胞起源的若干學(xué)說(shuō)。這些學(xué)說(shuō)既有支持依據(jù),也存在難以解釋的問題。視網(wǎng)膜母細(xì)胞瘤的異質(zhì)性、臨床表現(xiàn)多樣性、患者預(yù)后結(jié)局的復(fù)雜性,提示該腫瘤很可能不僅僅起源于某個(gè)細(xì)胞或某個(gè)階段的細(xì)胞,而是多種類型細(xì)胞在不同時(shí)空階段以及遺傳和表觀遺傳的共同作用下,形成不同表型的腫瘤。未來(lái)的研究應(yīng)著眼于整體和全局的思維,結(jié)合轉(zhuǎn)基因動(dòng)物模型、人源腫瘤異種移植模型(patient-derived tumor xenograft,PDX)、類器官模型,對(duì)視網(wǎng)膜母細(xì)胞瘤的細(xì)胞起源進(jìn)行深入研究。

參·考·文·獻(xiàn)

[1] Shields CL, Shields JA, Shah P. Retinoblastoma in older children[J]. Ophthalmology, 1991, 98(3): 395-399.

[2] Kivel? T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death[J]. Br J Ophthalmol, 2009, 93(9): 1129-1131.

[3] Eagle RC Jr. The pathology of ocular cancer[J]. Eye (Lond), 2013, 27(2): 128-136.

[4] 袁曉玲, 何曉雨, 李甬蕓, 等. 1 株RB1+/+的中國(guó)漢族人視網(wǎng)膜母細(xì)胞瘤細(xì)胞系的建立與基因組特征研究[J]. 上海交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2018, 38(8): 866-873.

[5] MacCarthy A, Draper GJ, Steliarova-Foucher E, et al. Retinoblastoma incidence and survival in European children (1978–1997). Report from the Automated Childhood Cancer Information System project[J]. Eur J Cancer, 2006, 42(13): 2092-2102.

[6] Kao LY, Su WW, Lin YW. Retinoblastoma in Taiwan: survival and clinical characteristics 1978–2000[J]. Jpn J Ophthalmol, 2002, 46(5): 577-580.

[7] Nyamori JM, Kimani K, Njuguna MW, et al. The incidence and distribution of retinoblastoma in Kenya[J]. Br J Ophthalmol, 2012, 96(1): 141-143.

[8] 郝冰, 李佳, 李秀紅, 等. 118 例視網(wǎng)膜母細(xì)胞瘤臨床治療分析[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2020, 42(9): 942-947.

[9] Rushlow D, Piovesan B, Zhang K, et al. Detection of mosaic RB1 mutations in families with retinoblastoma[J]. Hum Mutat, 2009, 30(5): 842-851.

[10] 周思睿, 閔曉雪, 陶韻涵, 等. 66 例視網(wǎng)膜母細(xì)胞瘤患兒臨床資料分析[J]. 中華眼底病雜志, 2020, 36(1): 42-45.

[11] 中華醫(yī)學(xué)會(huì)眼科學(xué)分會(huì)眼底病學(xué)組, 中華醫(yī)學(xué)會(huì)兒科學(xué)分會(huì)眼科學(xué)組, 中華醫(yī)學(xué)會(huì)眼科學(xué)分會(huì)眼整形眼眶病學(xué)組. 中國(guó)視網(wǎng)膜母細(xì)胞瘤診斷和治療指南(2019 年)[J]. 中華眼科雜志, 2019, 55(10): 726-738.

[12] Young RW. Cell proliferation during postnatal development of the retina in the mouse[J]. Brain Res, 1985, 353(2): 229-239.

[13] Blixt MK, Hallb??k F. A regulatory sequence from the retinoid X receptor γ gene directs expression to horizontal cells and photoreceptors in the embryonic chicken retina[J]. Mol Vis, 2016, 22: 1405-1420.

[14] Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina[J]. Nat Rev Neurosci, 2001, 2(2): 109-118.

[15] Cepko CL, Austin CP, Yang X, et al. Cell fate determination in the vertebrate retina[j]. Proc Natl Acad Sci U S A, 1996, 93(2): 589-595.

[16] Belliveau MJ, Cepko CL. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina[J]. Development, 1999, 126(3): 555-566.

[17] Ezzeddine ZD, Yang X, DeChiara T, et al. Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina[J]. Development, 1997, 124(5): 1055-1067.

[18] Dyer MA, Cepko CL. Regulating proliferation during retinal development[J]. Nat Rev Neurosci, 2001, 2(5): 333-342.

[19] MacPherson D, Dyer MA. Retinoblastoma: from the two-hit hypothesis to targeted chemotherapy[J]. Cancer Res, 2007, 67(16): 7547-7550.

[20] Khalili S, Ballios BG, Belair-Hickey J, et al. Induction of rod versus cone photoreceptor-specific progenitors from retinal precursor cells[J]. Stem Cell Res, 2018, 33: 215-227.

[21] Ajioka I, Martins RA, Bayazitov IT, et al. Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice[J]. Cell, 2007, 131(2): 378-390.

[22] Dormoy V, Béraud C, Lindner V, et al. LIM-class homeobox gene Lim1, a novel oncogene in human renal cell carcinoma[J]. Oncogene, 2011, 30(15): 1753-1763.

[23] Suga A, Taira M, Nakagawa S. LIM family transcription factors regulate the subtype-specific morphogenesis of retinal horizontal cells at post-migratory stages[J]. Dev Biol, 2009, 330(2): 318-328.

[24] Kang SJ, Durairaj C, Kompella UB, et al. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma[J]. Arch Ophthalmol, 2009, 127(8): 1043-1047.

[25] Vooijs M, te Riele H, van der Valk M, et al. Tumor formation in mice with somatic inactivation of the retinoblastoma gene in interphotoreceptor retinol binding protein-expressing cells[J]. Oncogene, 2002, 21(30): 4635-4645.

[26] Lee WH, Murphree AL, Benedict WF. Expression and amplification of the N-myc gene in primary retinoblastoma[J]. Nature, 1984, 309(5967): 458-460.

[27] McEvoy J, Nagahawatte P, Finkelstein D, et al. RB1 gene inactivation by chromothripsis in human retinoblastoma[J]. Oncotarget, 2014, 5(2): 438-450.

[28] Wu N, Jia DS, Bates B, et al. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence[J]. J Clin Invest, 2017, 127(3): 888-898.

[29] Vrabec T, Arbizo V, Adamus G, et al. Rod cell-specific antigens in retinoblastoma[J]. Arch Ophthalmol, 1989, 107(7): 1061-1063.

[30] Xu XL, Fang YQ, Lee TC, et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling[J]. Cell, 2009, 137(6): 1018-1031.

[31] Glubrecht DD, Kim JH, Russell L, et al. Differential CRX and OTX2 expression in human retina and retinoblastoma[J]. J Neurochem, 2009, 111(1): 250-263.

[32] Bremner R, Sage J. Cancer: the origin of human retinoblastoma[J]. Nature, 2014, 514(7522): 312-313.

[33] Xu XL, Singh HP, Wang L, et al. Rb suppresses human cone-precursor-derived retinoblastoma tumours[J]. Nature, 2014, 514(7522): 385-388.

[34] Abramson DH, Du TT, Beaverson KL. (Neonatal) retinoblastoma in the first month of life[J]. Arch Ophthalmol, 2002, 120(6): 738-742.

[35] Singh HP, Wang SJ, Stachelek K, et al. Developmental stage-specific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors[J]. Proc Natl Acad Sci U S A, 2018, 115(40): E9391-E9400.

[36] Zhang JK, Schweers B, Dyer MA. The first knockout mouse model of retinoblastoma[J]. Cell Cycle, 2004, 3(7): 952-959.

[37] MacPherson D, Sage J, Kim T, et al. Cell type-specific effects of Rb deletion in the murine retina[J]. Genes Dev, 2004, 18(14): 1681-1694.

[38] Dannenberg JH, Schuijff L, Dekker M, et al. Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130[J]. Genes Dev, 2004, 18(23): 2952-2962.

[39] Pajovic S, Corson TW, Spencer C, et al. The TAg-RB murine retinoblastoma cell of origin has immunohistochemical features of differentiated Müller glia with progenitor properties[J]. Invest Ophthalmol Vis Sci, 2011, 52(10): 7618-7624.

[40] Huang HJ, Yee JK, Shew JY, et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells[J]. Science, 1988, 242(4885): 1563-1566.

[41] Di Fiore R, D'Anneo A, Tesoriere G, et al. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis[J]. J Cell Physiol, 2013, 228(8): 1676-1687.

[42] Bosco G. Cell cycle: Retinoblastoma, a trip organizer[J]. Nature, 2010, 466(7310): 1051-1052.

[43] Manning AL, Longworth MS, Dyson NJ. Loss of pRB causes centromere dysfunction and chromosomal instability[J]. Genes Dev, 2010, 24(13): 1364-1376.

[44] Lohmann D. Retinoblastoma[J]. Adv Exp Med Biol, 2010, 685: 220-227.

[45] 孔京慧, 章波, 宋銀森. Rb1 基因變異致視網(wǎng)膜母細(xì)胞瘤一例[J]. 中華眼底病雜志, 2020, 36(2): 150.

[46] Zhao HL, Bauzon F, Fu H, et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors[J]. Cancer Cell, 2013, 24(5): 645-659.

[47] Valverde JR, Alonso J, Palacios I, et al. RB1 gene mutation up-date, a metaanalysis based on 932 reported mutations available in a searchable database[J]. BMC Genet, 2005, 6: 53.

[48] Moll AC, Imhof SM, Schouten-van Meeteren AY, et al. Second primary tumors in hereditary retinoblastoma: a register-based study, 1945-1997. Is there an age effect on radiation-related risk?[J]. Ophthalmology, 2001, 108(6): 1109-1114.

[49] Stevens KR Jr. Second primary tumors in hereditary retinoblastoma[J]. Ophthalmology, 2002, 109(11): 1947.

[50] Meadows AT, Leahey AM. More about second cancers after retinoblastoma[J]. J Natl Cancer Inst, 2008, 100(24): 1743-1745.

[51] Dimaras H, Khetan V, Halliday W, et al. Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma[J]. Hum Mol Genet, 2008, 17(10): 1363-1372.

[52] Rushlow DE, Mol BM, Kennett JY, et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies[J]. Lancet Oncol, 2013, 14(4): 327-334.

[53] Chai PW, Jia RB, Jia RB, et al. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis[J]. Nucleic Acids Res, 2018, 46(12): 6041-6056.

[54] Ni HY, Chai PW, Yu J, et al. LncRNA CANT1 suppresses retinoblastoma progression by repellinghistone methyltransferase in PI3Kγ promoter[J]. Cell Death Dis, 2020, 11(5): 306.

[55] He XY, Chai PW, Li F, et al. A novel lncRNA transcript, RBAT1, accelerates tumorigenesis through interacting with HNRNPL and cis-activating E2F3[J]. Mol Cancer, 2020, 19(1): 115.

[56] Dalgard CL, Gonzalez M, deNiro JE, et al. Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4542-4551.

[57] Martin J, Bryar P, Mets M, et al. Differentially expressed miRNAs in retinoblastoma[J]. Gene, 2013, 512(2): 294-299.

[58] Conkrite K, Sundby M, Mukai S, et al. miR-17-92 cooperates with RB pathway mutations to promote retinoblastoma[J]. Genes Dev, 2011, 25(16): 1734-1745.

[59] Nittner D, Lambertz I, Clermont F, et al. Synthetic lethality between Rb, p53 and Dicer or miR-17-92 in retinal progenitors suppresses retinoblastoma formation[J]. Nat Cell Biol, 2012, 14(9): 958-965.

[60] Zhang JH, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses[J]. Nature, 2012, 481(7381): 329-334.

猜你喜歡
視錐母細(xì)胞感光
軟骨母細(xì)胞瘤樣骨肉瘤穿刺標(biāo)本免疫組化H3F3B、IMP3、Clusterin 聯(lián)合H3F3B 基因突變檢測(cè)的意義
感光食物,吃了會(huì)變黑?
頂骨炎性肌纖維母細(xì)胞瘤一例
這種惡性腫瘤,3歲以下是高發(fā)期
中國(guó)感光學(xué)會(huì)2019年活動(dòng)計(jì)劃表
眼睛是怎么看見各種顏色的?
為什么不直視,反而能看到暗淡的星星?
知否
感光器件尺寸:同樣重要
葉酸受體-α、Legumain在視網(wǎng)膜母細(xì)胞瘤細(xì)胞系的表達(dá)實(shí)驗(yàn)研究