国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

MNase-seq與核小體定占位研究

2020-12-18 10:43鄧瑋杭李鑫輝
遺傳 2020年12期
關(guān)鍵詞:染色質(zhì)基因組位點

鄧瑋杭,李鑫輝

MNase-seq與核小體定占位研究

鄧瑋杭,李鑫輝

上海交通大學生物醫(yī)學工程學院,上海 200240

核小體是染色質(zhì)復雜三維結(jié)構(gòu)的基本單位,它在基因組上的定位及占位在DNA轉(zhuǎn)錄、復制和修復等基礎(chǔ)生物過程中發(fā)揮重要功能。在眾多核小體定占位研究技術(shù)中,微球菌核酸酶測序(micrococcal nuclease sequencing, MNase-seq)被認為是目前最為高效的方法,因此應用十分廣泛。研究人員利用該技術(shù)繪制了多種生物的核小體圖譜,并揭示了核小體組織特點的共性和差異。本文介紹了MNase-seq的技術(shù)原理以及在解析核小體組織及其功能中的應用,總結(jié)了在染色質(zhì)構(gòu)象這一快速發(fā)展領(lǐng)域中的研究進展,并展望了染色質(zhì)生物學的未來發(fā)展方向。由MNase-seq揭示的核小體組織結(jié)構(gòu)為基因表達和發(fā)育調(diào)控提供了新的見解,也有助于人們理解疾病的發(fā)生過程。

核小體;染色質(zhì)結(jié)構(gòu);染色質(zhì)重塑;下一代測序技術(shù);微球菌核酸酶

構(gòu)建人類細胞的一個關(guān)鍵步驟是將近2 m的DNA組裝成染色質(zhì)并包裝進直徑10 μm的細胞核內(nèi),而核小體作為染色質(zhì)組裝的基本單位,一般是由長度為145~147 bp的DNA以左螺旋的方式纏繞組蛋白八聚體接近兩圈構(gòu)成的[1,2]。其中組蛋白八聚體由2個拷貝的4種核心組蛋白H2A、H2B、H3和H4組成,H1作為連接組蛋白。在基因組的大部分區(qū)域都有核小體覆蓋,約75%~90%的基因組DNA包裹在核小體中[3]。核小體定位、占位以及組蛋白修飾等影響著啟動子、轉(zhuǎn)錄起始位點的建立以及染色質(zhì)高級結(jié)構(gòu)的組裝,參與基因轉(zhuǎn)錄、DNA復制和修復過程。核小體動態(tài)組織通過改變?nèi)旧|(zhì)結(jié)構(gòu)的方式影響細胞功能,因此與生物體的基因調(diào)控、發(fā)育分化以及細胞應激過程密切相關(guān)。

應用MNase酶切配合下一代測序技術(shù),人們加快了對核小體組織及染色質(zhì)結(jié)構(gòu)的研究,有望更深入了解基因調(diào)控模式以及染色質(zhì)功能。本文主要介紹了微球菌核酸酶測序(micrococcal nuclease seque-ncing, MNase-seq)的技術(shù)原理和相關(guān)衍生技術(shù),總結(jié)了MNase-seq等技術(shù)在揭示基因組上核小體的組織特點中的作用,綜述了近年來多種生物細胞內(nèi)核小體圖譜的研究進展,以期為今后以核小體組織為核心的染色質(zhì)構(gòu)象等研究提供參考。

1 MNase-seq技術(shù)原理及其發(fā)展

1.1 MNase-seq技術(shù)原理

利用微球菌核酸酶切割染色質(zhì)纖維,回收DNA并配合下一代測序技術(shù)來繪制核小體定位圖譜,稱作MNase-seq。盡管MNase-seq在近10年來才得以飛速發(fā)展,但早在20世紀70年代,研究人員就開始利用MNase消化染色質(zhì)并研究其結(jié)構(gòu)[4,5]。MNase來源于金黃色葡萄球菌(),同時具有核酸內(nèi)切酶與外切酶活性。核小體間的連接DNA(linker DNA)對MNase的敏感性要比核小體DNA高25倍[6],根據(jù)酶的這一特性,在對染色質(zhì)DNA進行充分消化后,大部分核小體間的裸露DNA都被消化,由此可以富集到單核小體DNA片段。

MNase-seq的主要步驟包括:(1)提取細胞核;(2)用MNase對染色質(zhì)進行酶切;(3)終止酶切、去除RNA及蛋白雜質(zhì);(4)分離提純DNA片段;(5)文庫構(gòu)建;(6)上機測序。在MNase-seq的實驗設(shè)計中,染色質(zhì)交聯(lián)程度以及MNase的酶切水平很關(guān)鍵。不少實驗利用甲醛做交聯(lián)劑(crosslinking agent),在細胞活體條件下對蛋白質(zhì)-DNA相互作用進行固定,以免在染色質(zhì)制備過程中丟失這些相互作用及破壞核小體組織結(jié)構(gòu)[7]。也有研究者用MNase直接處理未固定的染色質(zhì)[8~10],該方法減少了組蛋白以外的蛋白質(zhì)-DNA相互作用帶來的實驗誤差。盡管該方法可能導致核小體結(jié)構(gòu)的改變,但研究發(fā)現(xiàn)是否使用甲醛固定對核小體的組織改變不大[11]。使用中等或較高水平的酶切使得酶切產(chǎn)物中80%~100%為單核小體片段,有利于減少建庫過程中片段篩選帶來的額外技術(shù)誤差。MNase酶切后進行電泳分析,150 bp左右的條帶則是單個的完整核小體DNA。

MNase-seq的優(yōu)點在于技術(shù)難度較低,具有較高的分辨率,且數(shù)據(jù)處理相對簡單。較高的分辨率得益于MNase的酶切特性,MNase處理染色質(zhì)可以高效去除連接DNA,得到的DNA片段末端正是包裹組蛋白的DNA兩端。相比用超聲打斷DNA的常規(guī)方法,MNase處理DNA可以獲得長度較均一的DNA片段,從而得到核小體更為精確的位置坐標。然而,由于不同DNA片段對MNase酶切的敏感性不同,這一酶切效率的差異使得MNase-seq測序片段的末端不能準確反映核小體邊緣的位置,因此測序數(shù)據(jù)的處理分析尤為關(guān)鍵。MNase-seq數(shù)據(jù)處理過程主要為數(shù)據(jù)預處理及質(zhì)量控制、序列比對、核小體定位與占位分析以及數(shù)據(jù)的可視化[12]。在序列比對后,研究者們先后運用多種算法(如iNPS[13]、DiNuP[14]等)分析MNase-seq測序數(shù)據(jù),解析全基因組核小體定位精確圖譜或?qū)Σ町惢嘉缓诵◇w進行分析。其中,Chen等[13]建立了iNPS算法,該算法在NPS(nucleosome positioning from sequencing)的基礎(chǔ)上增加了“核小體邊界信號調(diào)整”與“相鄰核小體合并或分離”步驟,它比通用的NPS算法識別核小體邊界信號的能力更強,因此可以多檢測到約60%的核小體。該算法具有更高的檢測準確性和穩(wěn)健性,因此有利于下游數(shù)據(jù)分析。核小體定位的理論預測同樣具有較好的研究前景,研究者們利用核小體DNA/連接DNA的序列特性、堿基二聯(lián)體周期信號等建立數(shù)學模型(如Segal模型[3]、N-Score模型[15]等)對核小體定位進行預測。近年來,MNase-seq測序數(shù)據(jù)分析方法的進步使得該技術(shù)日趨成熟,模型的改進與優(yōu)化使得人們對核小體定位預測的準確性不斷提高,MNase-seq技術(shù)目前已廣泛應用于各種研究場景。

MNase-seq具有的這些優(yōu)點使其成為檢測核小體分布的優(yōu)越的方法。目前,MNase-seq已被應用于釀酒酵母()、果蠅()、人類()以及多種模式生物體內(nèi)的染色質(zhì)結(jié)構(gòu)研究。另一方面,通過MNase-seq測量染色質(zhì)被核小體及其他調(diào)控因子的占有水平,可以間接揭示染色質(zhì)可及性、發(fā)現(xiàn)潛在基因調(diào)控位點[7,12]。

1.2 MNase-seq衍生技術(shù)及相關(guān)技術(shù)

目前,以MNase-seq技術(shù)為基礎(chǔ),發(fā)展出了一系列衍生技術(shù)(圖1),例如(1) MNase-ChIP-seq[16],被用于對特定調(diào)控因子、組蛋白修飾或變體的檢測;(2) MNase-Exo-seq,在酶切體系中加入核酸外切酶Ⅲ來彌補MNase的外切酶活性,從而更高程度地切割到核小體核心區(qū)域(core particle),以獲得更精準的核小體定位[17];(3) MACC-seq (MNase accessibility sequencing),同時對整個基因組上的核小體位置及

其可及性進行測量,探究核小體占位與染色質(zhì)可及性的關(guān)系[18];(4) MH-seq,識別MNase高敏位點(MNase hypersensitive sites, MHSs),利用MNase可以檢測到DNase I或Tn5無法訪問到的開放染色質(zhì)區(qū)域[19];(5) Array-seq,使用低濃度MNase酶切,用于檢測核小體陣列的規(guī)律性(regularity)及核小體間距(nucleosome spacing)[20];(6) CUT&RUN (cleavage under targets and release using nuclease)技術(shù),MNase被靶向作用于特定的組蛋白修飾位點或轉(zhuǎn)錄因子等蛋白結(jié)合位點[21]。

除MNase-seq及其衍生技術(shù)以外,染色質(zhì)免疫共沉淀測序技術(shù)(chromatin immunoprecipitation se-quencing, ChIP-seq)、染色質(zhì)開放性測序技術(shù)(assay for transposase-accessible chromatin with high throu-ghput sequencing, ATAC-seq)、DNase I超敏感位點測序(DNase I hypersensitive site sequencing, DNase-seq)以及核小體占位及甲基化測序(nucleosome occupancy and methylome sequencing, NOMe-seq)等技術(shù)也在解析核小體定位及染色質(zhì)結(jié)構(gòu)及功能的研究中起到重要作用。表1對這些技術(shù)進行了總結(jié)比較。

1.3 少量細胞及單細胞MNase-seq技術(shù)

多年來,大量細胞MNase-seq技術(shù)研究得較為充分并得到了廣泛應用,但該方法存在兩個明顯的缺陷:首先,在研究臨床樣本等珍貴樣本時,收集足夠多的細胞存在困難;另外,該方法只能得到細胞群體中核小體定位的平均水平,而盡管在同源細胞群體中,細胞間的染色質(zhì)狀態(tài)仍存在明顯的異質(zhì)性,因此不能反映單個細胞內(nèi)真實的核小體定位狀態(tài)。隨著下一代測序技術(shù)的不斷進步以及單細胞測序技術(shù)的發(fā)展,MNase-seq技術(shù)也更新迭代,少量細胞起始的MNase-seq及其衍生技術(shù)、單細胞MNase-seq技術(shù)[35](single-cell MNase-seq, scMNase- seq)日趨成熟,在近年來得到重要突破。少量細胞甚至單細胞起始的MNase-seq技術(shù)有助于研究胚胎發(fā)育或疾病發(fā)展中至關(guān)重要但稀少珍貴的細胞。

圖1 MNase-seq及其衍生技術(shù)

A: MNase-seq; B: Array-seq; C: MNase-ChIP-seq; D: CUT&RUN。

表1 研究核小體、染色質(zhì)結(jié)構(gòu)的常用技術(shù)

Mattia等[36]發(fā)展了少量細胞MACC-seq,最低50個細胞的投入量即可達到和大量細胞MACC相似的可信結(jié)果,擴大了MACC技術(shù)的應用范圍。2018年,Peter等[37]改進了CUT&RUN技術(shù),利用該技術(shù)方法對組蛋白修飾進行測定,最低只需要投入約100個細胞。2019年,Sarah等[38]實現(xiàn)了在單個細胞中利用uliCUT&RUN (Ultra-low input CUT&RUN)技術(shù)對轉(zhuǎn)錄因子結(jié)合位點進行分析,揭示了轉(zhuǎn)錄因子在胚胎干細胞中結(jié)合位點的多樣性。2018年,Lai等[39]開發(fā)了scMNase-seq技術(shù),實驗流程主要包括:(1)流式分選收集單個細胞;(2)裂解細胞、MNase酶切消化染色質(zhì);(3)分離提純DNA;(4)酶切末端補平、連接測序接頭、PCR擴增約25個循環(huán);(6)篩選合適長度的片段(150~320 bp)上機測序。單個細胞含有的DNA量極少,因此scMNase-seq的技術(shù)要點在于最小化DNA損失。為達到這一目標,實驗細節(jié)的優(yōu)化包括在DNA提純過程中加入環(huán)狀質(zhì)粒使得DNA顆粒容易可見,以及在建庫流程中不預先分離單核小體長度的DNA片段。他們利用該技術(shù)同時對NIH3T3細胞、小鼠()胚胎干細胞及小鼠幼稚CD4+幼稚T細胞的全基因組核小體定位及染色質(zhì)可及性進行研究。相比于大量細胞MNase-seq對核小體間距的研究只限于核小體定位精準的區(qū)域(例如TSS附近),scMNase-seq技術(shù)可以對單個細胞全基因組范圍的核小體間距模式進行測量[40]。該研究表明,在異染色質(zhì)區(qū)域,相鄰核小體以約180 bp的間距規(guī)律排列,但在不同細胞中核小體的定位不一致;在活躍染色質(zhì)區(qū)域,相鄰核小體間的間隔存在差異,然而核小體的定位在不同細胞中趨于一致;在TH1增強子處,不同CD4+幼稚T細胞顯示不同的核小體缺失程度,在TH1增強子處缺失程度高的細胞具有更高TH1分化的潛能。

2 MNase-seq技術(shù)解析核小體組織特點及內(nèi)在功能

2.1 核小體組織特點及影響因素

核小體覆蓋了可測序基因組的大部分區(qū)域,整體而言,核小體重復地、有規(guī)律地出現(xiàn)在基因組上。釀酒酵母基因組中,核小體以約165 bp的間隔重復出現(xiàn)[41],相鄰核小體由10~50 bp的連接DNA(linker DNA)相連[42~45]。然而,核小體在基因組上的組織具有異質(zhì)性,導致不同的染色質(zhì)折疊方式。核小體在異染色質(zhì)區(qū)域覆蓋率高,形成了緊湊封閉的染色質(zhì)結(jié)構(gòu);然而在增強子、絕緣子等調(diào)控區(qū)域常表現(xiàn)為核小體缺失,形成開放可及的染色質(zhì)[41]。并且,核小體在基因組上的組織不是固定不變的,具有定位和結(jié)構(gòu)上的動態(tài)性[46]。核小體定位的動態(tài)性體現(xiàn)在核小體可以在DNA上滑動,且容易自發(fā)發(fā)生全部或部分解聚的動態(tài)變化。在生理條件下,核小體易受染色質(zhì)重塑復合物(chromatin remodelers)、分子伴侶、聚合酶、轉(zhuǎn)錄因子等調(diào)控因子的影響而發(fā)生重定位;全局轉(zhuǎn)錄水平的變化以及外界環(huán)境刺激也會影響核小體的定位。核小體結(jié)構(gòu)的動態(tài)性體現(xiàn)在組蛋白的翻譯后修飾(post-translational modifications, PTM)[47,48],以及組蛋白變體[49,50]和非標準核小體的形成[51]等。

研究人員使用核小體定位(nucleosome position-ning)及占位(nucleosome occupancy)來描述核小體的組織狀態(tài)。核小體定位指核小體出現(xiàn)在基因組特定位置相對于其周邊的概率,反映核小體對特定DNA序列選擇的特性;核小體占位是指在基因組特定區(qū)域出現(xiàn)的核小體平均數(shù)目,體現(xiàn)了核小體密度。核小體的定位和占位具有堿基偏好性,通常,富含G、C堿基的DNA序列更有利于DNA與核小體的緊密結(jié)合,而高A、T含量DNA序列削弱了DNA與組蛋白的相互作用,連續(xù)出現(xiàn)的A堿基區(qū)域(AAAAA)在體內(nèi)和體外實驗中都表現(xiàn)出最低的核小體占有率[52]。Albert等[53]利用MNase-ChIP-seq研究釀酒酵母核小體組織時發(fā)現(xiàn)并定義了DNA序列影響核小體定位的旋轉(zhuǎn)特性(rotational setting)和平移特性(translational setting)。其中旋轉(zhuǎn)特性與規(guī)律排列的二核苷酸有關(guān),以10 bp為周期連續(xù)出現(xiàn)的AA/AT/ TA/TT二核苷酸以及相位相差5 bp的GG/CC/GC/ CG二核苷酸序列交錯出現(xiàn),塑造了DNA的急劇彎曲特性,有利于DNA對組蛋白八聚體的纏繞,從而具有強烈的核小體定位特性。

目前普遍認為DNA序列對于核小體在基因組上的組織起到主要作用,僅通過核小體對DNA的序列偏好可以解釋體內(nèi)核小體組織形態(tài)的50%~60%[3]。Kaplan等[52]利用MNase-seq對培養(yǎng)于3種不同培養(yǎng)基的釀酒酵母體內(nèi)的核小體進行測定,它們的核小體圖譜顯示出較高的相似性,表明盡管存在環(huán)境差異,DNA序列仍是影響核小體組織的最關(guān)鍵因素。根據(jù)核小體定位的序列偏好性,研究人員根據(jù)DNA序列及體外合成的核小體數(shù)據(jù)建立計算模型,對生理條件下核小體組織形式進行預測[3,54]。在基因組上不同區(qū)域,DNA序列與核小體占位的相關(guān)性不同。在啟動子區(qū)域,DNA序列與體內(nèi)核小體占位的相關(guān)系數(shù)較非啟動子區(qū)域更低。由此說明,除了DNA序列的作用,核小體在生物體內(nèi)的組織形態(tài)受到眾多細胞內(nèi)調(diào)控因子及轉(zhuǎn)錄水平的影響。

以染色質(zhì)重塑復合物為主的眾多染色質(zhì)調(diào)節(jié)因子也影響著核小體在基因組上的定位。染色質(zhì)重塑復合物是一種依賴ATP的酶類,它們可以越過核小體對DNA序列的內(nèi)在偏好性,利用ATP水解的能量移除、移動或并入組蛋白來改變核小體的定位及構(gòu)象。在促進轉(zhuǎn)錄因子與DNA的結(jié)合[55]、順式作用元件構(gòu)象建成及DNA復制、轉(zhuǎn)錄激活等過程中發(fā)揮重要作用[56]。SWI/SNF (switch/sucrose non- fermenting)復合物是研究得較為全面的染色質(zhì)重塑復合物,它們通常富集在轉(zhuǎn)錄起始位點、復制起點中核小體缺失位點(nucleosome-free region, NFR)的–1核小體處[57],主要通過促進核小體在DNA上的移動或移除來發(fā)揮功能,參與釀酒酵母的應激反應[58]。近年來,SWI/SNF的作用機制被研究得更為透徹,研究表明,在黑色素細胞的分化中,SWI/SNF亞基BAF60A促進色素基因及啟動子對SWI/ SNF亞基BRG1的募集,從而促進染色質(zhì)重塑與細胞分化[59]。ISWI(imitation SWI)復合物屬于SWI蛋白家族,它能協(xié)助染色質(zhì)的組裝和組織[60,61],幫助具有規(guī)律間隔的核小體序列的建成[62]。CHD (chro-modomain-helicase-DNA-binding)也屬于SWI蛋白家族,它與ISWI共同決定了基因組上核小體間距(nucleosome spacing)的全局特征[63]。

2.2 核小體缺失位點的結(jié)構(gòu)和功能

在利用下一代測序技術(shù)研究核小體組織之前,研究者們利用MNase切割染色質(zhì)纖維并配合基因芯片技術(shù)(MNase-chip),在釀酒酵母的核小體組織上有了開創(chuàng)性的發(fā)現(xiàn),即核小體在啟動子區(qū)域普遍顯示出缺失特性[64~67],這些區(qū)域被命名為核小體缺失位點。NFR也被發(fā)現(xiàn)存在于活躍增強子區(qū)域、復制起點以及轉(zhuǎn)錄因子結(jié)合位點[67]。核小體的缺失增加了該位點的染色質(zhì)可及性、具有更強的調(diào)控潛力,利于眾多反式作用因子正確發(fā)揮功能,包括染色質(zhì)調(diào)控因子、轉(zhuǎn)錄因子、復制和轉(zhuǎn)錄需要的酶類等[68]。

根據(jù)染色質(zhì)的可及性可將啟動子分為兩種類型:開放啟動子(open promoter)和封閉啟動子(covered promoter)[62]。開放啟動子具有開放的染色質(zhì)狀態(tài),在起始密碼子上游200 bp左右具有一段NFR,NFR內(nèi)具有暴露的轉(zhuǎn)錄激活因子結(jié)合位點;而封閉啟動子具有較高的核小體占位,轉(zhuǎn)錄激活因子需要在染色質(zhì)重塑復合物的幫助下與核小體競爭結(jié)合位點才能開始轉(zhuǎn)錄。NFR區(qū)域上下游出現(xiàn)的第一個核小體被命名為–1/+1核小體,分別標定了NFR的上游/下游邊界[46]。+1核小體定位在轉(zhuǎn)錄起始位點(trans-cription start site, TSS)下游的固定距離,它所結(jié)合的DNA序列具有很強的核小體定位特性。利用MNase- seq對不同物種啟動子的核小體結(jié)構(gòu)進行測量時發(fā)現(xiàn),+1核小體的位置具有物種特異性。在酵母中,+1核小體與TSS在位置上存在重疊[69],而在果蠅的基因啟動子處,+1核小體通常位于TSS下游約135 bp處,因此具有比酵母更長的NFR[42](圖2)。在表達基因TSS的+1核小體下游方向,形成了規(guī)律間隔、定位精準且相位統(tǒng)一的核小體陣列(nucleosome phasing),這一陣列大約向基因內(nèi)部延伸1000 bp左右,規(guī)律排列的特性隨著與TSS間距離的增大而減弱[46]。Dustin等[44]在人類CD4+T淋巴細胞中發(fā)現(xiàn),+1核小體下游相位統(tǒng)一的核小體陣列在不表達的基因中不存在。并且,將啟動子區(qū)域核小體排列與RNA聚合酶Ⅱ的ChIP-seq數(shù)據(jù)比對發(fā)現(xiàn),啟動子區(qū)域RNA聚合酶II水平越高,+1核小體及其下游的核小體定相現(xiàn)象越明顯;不同種類的RNA聚合酶II影響著+1核小體的位置。

圖2 酵母和果蠅+1/?1核小體的位置

A:釀酒酵母+1/?1核小體位置;B:果蠅+1/?1核小體位置。

啟動子區(qū)域NFR的功能主要體現(xiàn)在兩個方面:首先,轉(zhuǎn)錄起始位點的NFR有助于轉(zhuǎn)錄起始前復合物的組裝從而開始轉(zhuǎn)錄,而轉(zhuǎn)錄終止位點附近的NFR有助于轉(zhuǎn)錄復合物的解聚;另外,NFR下游+1核小體與DNA的解聚或結(jié)構(gòu)變化促進了RNA聚合酶Ⅱ與DNA的結(jié)合,促進了轉(zhuǎn)錄的進行。+1核小體的位置在轉(zhuǎn)錄活動中發(fā)揮重要作用,其位置向NFR上游偏移將會影響轉(zhuǎn)錄元件的組裝,降低轉(zhuǎn)錄效率[70,71]。在啟動子區(qū)域以外,也發(fā)現(xiàn)有NFR及相位統(tǒng)一的核小體陣列的存在,例如絕緣子復合物及轉(zhuǎn)錄因子的結(jié)合位點。絕緣子CTCF(CCCTC-binding factor) 蛋白結(jié)合位點處核小體占位很低,表現(xiàn)出核小體缺失,并且在CTCF結(jié)合位點上下游發(fā)現(xiàn)具有對稱且規(guī)律的相位統(tǒng)一的核小體陣列[72]。與+1核小體類似,這些蛋白質(zhì)與DNA結(jié)合很緊密,具有強定位特性,但基因組上核小體定相排布的機制還未完全破解[41]。

2.3 核小體組織與基因表達調(diào)控

核小體對DNA的包裝,一方面壓縮了DNA,阻礙了眾多DNA結(jié)合蛋白與DNA的相互作用;另一方面,在這一過程中核小體能調(diào)整染色質(zhì)的包裝方式,促進了細胞內(nèi)基因的正確表達[62]。核小體的定位與轉(zhuǎn)錄因子的結(jié)合以及基因的轉(zhuǎn)錄水平密切相關(guān),且相互影響。

轉(zhuǎn)錄因子與核小體競爭DNA結(jié)合位點會導致核小體組織的變化,進而重塑該位點的染色質(zhì)可及性狀態(tài)從而調(diào)控基因表達。對于大多數(shù)轉(zhuǎn)錄因子而言,其對應的結(jié)合位點上有核小體存在時,由于空間位阻、電荷相斥等影響,轉(zhuǎn)錄因子與DNA的親和性通常比裸露DNA低10倍以上。然而結(jié)構(gòu)蛋白(architectural proteins, AP)和染色質(zhì)重塑復合物能幫助轉(zhuǎn)錄因子與DNA的結(jié)合,這一過程通常促進核小體從DNA上分離。Daniel等[10]利用ChIP-seq結(jié)合MNase-seq等技術(shù)對35種轉(zhuǎn)錄因子結(jié)合位點附近的核小體組織形態(tài)進行分析,他們發(fā)現(xiàn)在轉(zhuǎn)錄因子結(jié)合位點峰值處通常形成NFR,且轉(zhuǎn)錄因子占位水平與其結(jié)合位點上下游核小體定位強度負相關(guān)。轉(zhuǎn)錄因子結(jié)合使得核小體解聚,進一步促進開放染色質(zhì)的形成從而激活轉(zhuǎn)錄。釀酒酵母基因啟動子是研究染色質(zhì)結(jié)構(gòu)對基因表達影響的重要模型。研究發(fā)現(xiàn),在轉(zhuǎn)錄抑制狀態(tài)的啟動子處,核小體呈規(guī)律排列形式,而轉(zhuǎn)錄因子Pho4p與UASp2位點的結(jié)合能導致核小體組織重構(gòu),表現(xiàn)為–2和–3核小體解聚,核小體占位水平很低。這一核小體重構(gòu)導致了染色質(zhì)開放位點的形成,進而激活了PHO5的表達[73,74]。轉(zhuǎn)錄因子還可以通過改變局部染色質(zhì)的空間結(jié)構(gòu)來影響轉(zhuǎn)錄?;蚓哂袃蓚€重要的調(diào)控元件boxA與boxB,轉(zhuǎn)錄因子TFⅢC與這兩個調(diào)控元件的結(jié)合使boxA與boxB間的核小體向上游平移約40 bp。而后,轉(zhuǎn)錄因子TFⅢB的結(jié)合導致–1核小體重定位從而改變TATA上游染色質(zhì)空間結(jié)構(gòu),即在TATA框處形成一段對核酸酶高敏的活躍染色質(zhì),從而為轉(zhuǎn)錄起始前復合物(pre-initiation complex, PIC)的組裝和轉(zhuǎn)錄做好了準備[75]。

轉(zhuǎn)錄水平同樣也會對核小體在基因組上的定位和占位水平產(chǎn)生影響。Sushma等[76]利用MNase-seq對熱激(heat shock)前后釀酒酵母全基因組核小體定位及占位進行測量,發(fā)現(xiàn)細胞在經(jīng)歷轉(zhuǎn)錄干擾(transcriptional perturbation)前后,不發(fā)生全局范圍的核小體定位變化,大部分核小體的位置保持穩(wěn)定,染色質(zhì)重塑活動通常只與基因啟動子區(qū)域單個或兩個核小體的缺失或變換相關(guān)。在人CD4+T細胞中,Anton等[72]發(fā)現(xiàn)在不同轉(zhuǎn)錄頻率的基因啟動子處,其NFR的缺失程度不同,高表達基因(>8 RPKM)較低表達基因(<1 RPKM)的核小體缺失程度更高,因此轉(zhuǎn)錄活性可能與NFR區(qū)域核小體移除相關(guān)。轉(zhuǎn)錄活動還會影響核小體間隔,Lai等[35]利用單細胞MNase-seq技術(shù),對小鼠CD4+T淋巴細胞和胚胎干細胞的核小體組織及染色質(zhì)可及性進行研究,發(fā)現(xiàn)活躍轉(zhuǎn)錄基因內(nèi)部核小體間的間隔不均勻;而在沉默基因或異染色質(zhì)區(qū)域,由于沒有轉(zhuǎn)錄活動的影響,核小體間隔高度均勻,連接DNA長度變化不大。

核小體在基因組上的排列多起到抑制轉(zhuǎn)錄的作用,通常與影響RNA聚合酶II的延伸及PIC的組裝有關(guān)。轉(zhuǎn)錄過程中,核小體的存在成為了RNA聚合酶Ⅱ的延伸的物理屏障,在體內(nèi)和體外的實驗中都發(fā)現(xiàn)了核小體參與RNA聚合酶II延伸暫停(pausing process),從而影響轉(zhuǎn)錄效率[42,77];基因啟動子區(qū)域的核小體組織特別是+1核小體的定位直接決定了PIC是否可以成功組裝。Reja等[78]利用ChIP-exo技術(shù)研究酵母核糖體蛋白啟動子時發(fā)現(xiàn),經(jīng)熱激處理后,+1核小體向上游啟動子區(qū)域移動導致了轉(zhuǎn)錄抑制,因為+1核小體對上游DNA序列的占領(lǐng)阻礙了PIC與足夠DNA底物的結(jié)合。然而,核小體對轉(zhuǎn)錄的抑制作用可以被細胞內(nèi)多種調(diào)控因子逆轉(zhuǎn),在人IFN-β基因啟動子處,+1核小體對TATA框(TATA box)及TSS的占位阻礙了PIC的組裝,抑制基因轉(zhuǎn)錄。當機體受到病毒感染,在增強體(enhanceosome)及其招募的SWI/SNF、GCN5乙酰轉(zhuǎn)移酶等多種復合物的共同作用下,+1核小體向下游移動約36 bp,使得轉(zhuǎn)錄因子TFⅡD與核心啟動子區(qū)域結(jié)合,從而起始轉(zhuǎn)錄過程[79~81]。

2.4 組蛋白修飾圖譜與表觀遺傳學

核小體不僅是染色質(zhì)組裝的基本單位,也是生物體表觀遺傳學修飾的主要載體。核小體的定位及組蛋白翻譯后修飾是表觀遺傳學在各領(lǐng)域研究中的重要內(nèi)容。其中,MNase-ChIP-seq技術(shù)發(fā)揮了重要功能,該技術(shù)目前已經(jīng)可以對全基因組范圍內(nèi)的組蛋白PTM進行捕獲并測量。

組蛋白PTM被研究者們稱作“組蛋白密碼”(histone code),因為PTM可以直接改變?nèi)旧|(zhì)的物理結(jié)構(gòu),或被細胞內(nèi)特定的蛋白質(zhì)識別,進而激活或抑制下游染色質(zhì)功能[82]。組蛋白翻譯后修飾中較普遍的有賴氨酸的乙?;⒓谆胺核鼗?,精氨酸的甲基化以及絲氨酸的磷酸化[83,84],這些修飾多出現(xiàn)在轉(zhuǎn)錄調(diào)控元件如啟動子、增強子處。作為一種常見的修飾形式,組蛋白乙?;魅趿私M蛋白-DNA的相互作用、提高核小體周轉(zhuǎn)率和染色質(zhì)可及性,利于轉(zhuǎn)錄因子的結(jié)合從而促進基因表達,在高轉(zhuǎn)錄活性的基因啟動子區(qū)域豐度較高[85~87]。研究表明,啟動子區(qū)域H3K9ac修飾水平與基因表達水平正相關(guān),且H3K9ac被證實在促進人胚胎干細胞分化[88]、胰島β細胞增殖[89]等過程中起關(guān)鍵作用。相比于乙?;揎?,組蛋白甲基化修飾形式更加穩(wěn)定。一些甲基化形式能促進轉(zhuǎn)錄,如H3K4me1/3、H3K36me3等,其中H3K4me3主要分布于活躍轉(zhuǎn)錄基因啟動子處,它有助于啟動子對轉(zhuǎn)錄因子TFⅡD、RNA聚合酶Ⅱ的招募;在增強子處,多出現(xiàn)明顯的H3K4me1修飾,而不出現(xiàn)H3K4me3修飾[90]。另一些組蛋白甲基化與基因沉默相關(guān),H3K9me3、H3K27me3在哺乳動物細胞中促進染色質(zhì)凝集[91]。

早期的研究方向多集中于H2A.Z核小體變體定位[53]與組蛋白甲基化分布形式[92]。H2A.Z作為常見的核小體變體,H2A.Z參與轉(zhuǎn)錄調(diào)控、DNA修復等眾多生物過程[93]。H2A.Z通常出現(xiàn)在基因啟動子處+1/?1核小體處,專一定位在+1核小體處的H2A.Z與轉(zhuǎn)錄起始相關(guān)[94]。H2A.Z的占位水平由它的并入水平與解離水平共同決定。其中,SWR1促進了H2A.Z的并入,而RNA聚合酶II以及Kin28/Cdk7 激酶參與H2A.Z的解離,目前,已經(jīng)可以在活細胞中以單分子的分辨率追蹤核小體的變化過程[95]。另一方面,H2A.Z占位水平通常與DNA甲基化水平負相關(guān),Murphy等[96]發(fā)現(xiàn)在斑馬魚()的配子和胚胎發(fā)育時期,H2A.Z促使DNA甲基化模式“重編程”。其中,定位在編碼胚胎早期轉(zhuǎn)錄因子基因啟動子區(qū)的H2A.Z使得啟動子處于低甲基化水平從而促進基因表達,這一過程在斑馬魚胚胎發(fā)育中發(fā)揮重要作用。

組蛋白修飾狀態(tài)的改變通常與基因功能改變、細胞惡性轉(zhuǎn)化相關(guān)。目前,研究人員可以利用下一代測序技術(shù)探究染色質(zhì)表觀遺傳改變,從而分析細胞健康狀態(tài)。癌細胞通常具有全局范圍的表觀遺傳異常,其中,特定的組蛋白修飾與癌癥的起始和增殖緊密相關(guān)[97]。Wang等[98]發(fā)現(xiàn)了H3乙酰化與腫瘤細胞耐藥性的關(guān)系。他們通過抑制組蛋白去乙?;窰DAC3的表達,促進了癌細胞基因啟動子區(qū)域的H3乙酰化,從而增強基因的表達。而PD-L1有抑制T細胞活性的作用,使得癌細胞具有更強的耐藥性。這一表觀遺傳學機制的發(fā)現(xiàn)有利于發(fā)現(xiàn)治療腫瘤抗藥能力的潛在靶點。Aman等[99]發(fā)現(xiàn)在腎細胞癌中,低水平的H3K4甲基化通常與晚期癌癥和腫瘤轉(zhuǎn)移相關(guān),其中H3K4me3 可能是一個較好的腫瘤轉(zhuǎn)移預測標志物。Liana等[100]發(fā)現(xiàn)H3K9ac促進了口腔粘膜癌細胞增殖的上皮間質(zhì)轉(zhuǎn)化(epithelial–mesenchymal transition, EMT),因此H3K9ac可以作為口腔粘膜癌預后評估的關(guān)鍵標志物。表觀遺傳通常是動態(tài)可逆的,因此根據(jù)組蛋白表觀遺傳相關(guān)酶類設(shè)計藥物,可以恢復“正常的表觀狀態(tài)”從而起到治療效果,以組蛋白甲基轉(zhuǎn)移酶抑制劑、組蛋白去乙?;敢种苿橹鞯谋碛^遺傳學藥物發(fā)展前景較為樂觀[97]。

3 結(jié)語與展望

21世紀以來,下一代測序技術(shù)的高速發(fā)展加快了研究人員對染色質(zhì)結(jié)構(gòu)的研究,使人們在時間和空間上對核小體組織有了更清晰的認知。MNase-seq及其衍生技術(shù)揭示了全基因組范圍核小體的組織方式,即核小體在基因組上的分布是動態(tài)且不均勻的,在特定區(qū)域會出現(xiàn)NFR。人們已經(jīng)認識到核小體定位主要受到DNA序列的影響,染色質(zhì)重塑因子、轉(zhuǎn)錄因子、聚合酶等同樣參與了核小體組織及染色質(zhì)結(jié)構(gòu)的形成。染色質(zhì)構(gòu)象的建立及動態(tài)平衡使得調(diào)控元件高效地對轉(zhuǎn)錄因子進行招募、調(diào)控遠端序列與靶基因的互作,因此與染色質(zhì)功能特別是基因表達調(diào)控密切相關(guān)。

近年來,對MNase-seq技術(shù)改良的重點在于減少必要的細胞投入量及降低背景信號,目前該技術(shù)已經(jīng)可以在單個細胞上實現(xiàn)[35],有助于人們從單個細胞的核小體組織結(jié)構(gòu)層面理解細胞間的染色質(zhì)異質(zhì)性。在疾病研究中,將scMNase-seq與scDNase-seq、scChIP-seq以及多種表觀遺傳學分析方法相結(jié)合,有助于人們理解腫瘤異質(zhì)性、剖析腫瘤形成過程內(nèi)在的染色質(zhì)結(jié)構(gòu)基礎(chǔ)、分析不同疾病的表觀遺傳標記,從而解決更多疾病機理問題[101]。利用MNase-seq及相關(guān)技術(shù)對全基因組核小體定位和可及性的測量初步解析了染色質(zhì)結(jié)構(gòu)和基因調(diào)控機制,最近發(fā)現(xiàn)MNase-seq還可以預測高階染色質(zhì)結(jié)構(gòu),然而其在染色質(zhì)三維相互作用的分析中存在困難。將MNase- seq技術(shù)與近年來發(fā)展迅速的Hi-C[102,103]等染色質(zhì)捕獲技術(shù)相結(jié)合,有助于人們更好地理解染色質(zhì)結(jié)構(gòu)與其功能的關(guān)系。隨著技術(shù)方法的不斷進步以及多學科的交叉融合,人們將對復雜動態(tài)的染色質(zhì)結(jié)構(gòu)及功能研究得更加深入。

[1] Luger K, M?der AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 ? resolution.,1997, 389(6648): 251–260.

[2] Zhou KD, Gaullier G, Luger K. Nucleosome structure and dynamics are coming of age.,2019, 26(1): 3–13.

[3] Segal E, Fondufe-Mittendorf Y, Chen L, Th?str?m A, Field Y, Moore IK, Wang JZ, Widom J. A genomic code for nucleosome positioning.,2006, 442(7104): 772–778.

[4] Noll M. Subunit structure of chromatin., 1974, 251(5472): 249–251.

[5] Lohr D, Kovacic RT, Van Holde KE. Quantitative analysis of the digestion of yeast chromatin by staphylococcal nuclease., 1977, 16(3): 463–471.

[6] Fan XC, Moqtaderi Z, Jin Y, Zhang Y, Liu XS, Struhl K. Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3’-end formation.,2010, 107(42): 17945–17950.

[7] Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome., 2014, 7(1): 33.

[8] Zhang WL, Jiang JM. Application of MNase-Seq in the global mapping of nucleosome positioning in plants., 2018, 1830: 353–366.

[9] Pajoro A, Mui?o JM, Angenent GC, Kaufmann K. Profiling nucleosome occupancy by MNase-seq: experi-mental protocol and computational analysis., 2018, 1675: 167–181.

[10] Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, Widom J, Gilad Y, Pitchard JKControls of nucleosome positioning in the human genome., 2012, 8(11): e1003036.

[11] Zhang ZH, Pugh BF. High-resolution genome-wide mapping of the primary structure of chromatin., 2011, 144(2): 175–186.

[12] Klein DC, Hainer SJ. Genomic methods in profiling DNA accessibility and factor localization., 2020, 28(1): 69–85.

[13] Chen WZ, Liu Y, Zhu SS, Green CD, Wei G, Han JDJ. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data., 2014, 5: 4909.

[14] Fu K, Tang QZ, Feng JX, Liu XS, Zhang Y. DiNuP: a systematic approach to identify regions of differential nucleosome positioning., 2012, 28(15): 1965–1971.

[15] Yuan GC, Liu JS. Genomic sequence is highly predictive of local nucleosome depletion., 2008, 4(1): e13.

[16] Wal M, Pugh BF. Genome-wide mapping of nucleosomepositions in yeast using high-resolution MNase ChIP-Seq., 2012, 513: 233–250.

[17] Ocampo J, Cui F, Zhurkin VB, Clark DJ. The proto-chromatosome: A fundamental subunit of chro-matin?, 2016, 7(4): 382–387.

[18] Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MYMNase titration reveals differences between nucleosome occupancy and chromatin accessibility., 2016, 7: 11485.

[19] Zhao HN, Zhang WL, Zhang T, Lin Y, Hu YD, Fang C, Jiang JMGenome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in., 2020, 21(1): 24.

[20] Baldi S, Krebs S, Blum H, Becker PB. Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing., 2018, 25(9): 894–901.

[21] Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites., 2017, 6: e21856.

[22] Rizzo JM, Bard JE, Buck MJ. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons., 2012, 13: 15.

[23] Rizzo JM, Sinha S. Analyzing the global chromatin structure of keratinocytes by MNase-seq., 2014, 1195: 49–59.

[24] Cui KR, Zhao KJ. Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq., 2012, 833: 413–419.

[25] Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology., 2014, 15(11): 709–721.

[26] Park PJ. ChIP-seq: advantages and challenges of a maturing technology., 2009, 10(10): 669–680.

[27] Mardis ER. ChIP-seq: welcome to the new frontier., 2007, 4(8): 613–614.

[28] Buenrostro JD, Wu BJ, Chang HY, Greenleaf WJ. ATAC-seq: A method for assaying chromatin accessibility genome-Wide., 2015, 109: 21.29.1–21.29.9.

[29] Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position., 2013, 10(12): 1213–1218.

[30] Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions., 2015, 25(11): 1757–1770.

[31] Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E,Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song LY, Vong S, Weaver M, Yan YQ, Zhang ZC, Zhang ZZ, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyan-nopoulos JA. The accessible chromatin landscape of the human genome., 2012, 489(7414): 75–82.

[32] Zhong JL, Luo KX, Winter PS, Crawford GE, Iversen ES, Hartemink AJ. Mapping nucleosome positions using DNase-seq., 2016, 26(3): 351–364.

[33] Kelly TK, Liu YP, Lay FD, Liang GN, Berman BP, Jones PA. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules., 2012, 22(12): 2497– 2506.

[34] Krebs AR, Imanci D, Hoerner L, Gaidatzis D, Burger L, Schübeler D. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters., 2017, 67(3): 411–422.e4.

[35] Lai BB, Gao WW, Cui KR, Xie WL, Tang QS, Jin WF, Hu GQ, Ni B, Zhao KJPrinciples of nucleosome organization revealed by single-cell micrococcal nuclease sequencing., 2018, 562(7726): 281–285.

[36] Lion M, Tolstorukov MY, Oettinger MA. Low-Input MNase accessibility of chromatin (low-input MACC)., 2019, 127(1): e91.

[37] Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers., 2018, 13(5): 1006–1019.

[38] Hainer SJ, Bo?kovi? A, McCannell KN, Rando OJ, Fazzio TG. Profiling of pluripotency factors in single cells and early embryos., 2019, 177(5): 1319– 1329.e11.

[39] Gao WW, Lai BB, Ni B, Zhao KJ. Genome-wide profiling of nucleosome position and chromatin accessibility in single cells using scMNase-seq., 2020, 15(1): 68–85.

[40] Baldi S. Nucleosome positioning and spacing: from genome-wide maps to single arrays., 2019, 63(1): 5–14.

[41] Baldi S, Korber P, Becker PB. Beads on a string- nucleosome array arrangements and folding of the chromatin fiber., 2020, 27(2): 109–118.

[42] Mavrich TN, Jiang CZ, Ioshikhes IP, Li XY, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster SC, Gilmour DS, Albert I, Pugh BFNucleosome organization in thegenome., 2008, 453(7193): 358–362.

[43] Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow CA high-resolution atlas of nucleosome occupancy in yeast., 2007, 39(10): 1235– 1244.

[44] Schones DE, Cui KR, Cuddapah S, Roh TY, Barski A, Wang ZB, Wei G, Zhao KJDynamic regulation of nucleosome positioning in the human genome., 2008, 132(5): 887–898.

[45] Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SMA high-resolution, nucleosome position map ofreveals a lack of universal sequence-dictated positioning., 2008, 18(7): 1051–1063.

[46] Lai WKM, Pugh BF. Understanding nucleosome dynamics and their links to gene expression and DNA replication., 2017, 18(9): 548– 562.

[47] Martin C, Zhang Y. Mechanisms of epigenetic inheritance., 2007, 19(3): 266–272.

[48] Ruthenburg AJ, Li HT, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules., 2007, 8(12): 983–994.

[49] Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly., 2002, 9(6): 1191–1200.

[50] Sarma K, Reinberg D. Histone variants meet their match., 2005, 6(2): 139–149.

[51] Ramachandran S, Zentner GE, Henikoff S. Asymmetric nucleosomes flank promoters in the budding yeast genome., 2015, 25(3): 381–390.

[52] Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal EThe DNA-encoded nucleosome organization of a eukaryotic genome., 2009, 458(7236): 362–366.

[53] Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BFTranslational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome., 2007, 446(7135): 572–576.

[54] Cui F, Chen LL, LoVerso PR, Zhurkin VB. Prediction of nucleosome rotational positioning in yeast and human genomes based on sequence-dependent DNA anisotropy., 2014, 15(1): 313.

[55] de Dieuleveult M, Yen KY, Hmitou I, Depaux A, Boussouar F, Bou Dargham D, Jounier S, Humbertclaude H, Ribierre F, Baulard C, Farrell NP, Park B, Keime C, Carrière L, Berlivet S, Gut M, Gut L, Werner M, Deleuze JF, Olaso R, Aude JC, Chantalat S, Pugh BF, Gérard MGenome-wide nucleosome specificity and function of chromatin remodellers in ES cells., 2016, 530(7588): 113–116.

[56] Ho L, Crabtree GR. Chromatin remodelling during development., 2010, 463(7280): 474–484.

[57] Dutta A, Gogol M, Kim JH, Smolle M, Venkatesh S, Gilmore J, Florens L, Washburn MP, Workman JLSwi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions., 2014, 28(20): 2314–2330.

[58] Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer., 2019, 77: 87–95.

[59] Aras S, Saladi SV, Basuroy T, Marathe HG, Lorès P, de la Serna IL. BAF60A mediates interactions between the microphthalmia-associated transcription factor and the BRG1-containing SWI/SNF complex during melanocyte differentiation., 2019, 234(7): 11780–11791.

[60] Oppikofer M, Bai TY, Gan YT, Haley B, Liu P, Sandoval W, Ciferri C, Cochran AGExpansion of the ISWI chromatin remodeler family with new active complexes., 2017, 18(10): 1697–1706.

[61] Levendosky RF, Bowman GD. Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler., 2019, 8: e45472.

[62] Cairns BR. The logic of chromatin architecture and remodelling at promoters., 2009, 461(7261): 193–198.

[63] Ocampo J, Chereji RV, Eriksson PR, Clark DJ. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing., 2016, 44(10): 4625–4635.

[64] Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide., 2004, 36(8): 900–905.

[65] Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast., 2005, 18(6): 735–748.

[66] Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL. Global nucleosome occupancy in yeast., 2004, 5(9): R62.

[67] Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJGenome-scale identification of nucleosome positions in., 2005, 309(5734): 626–630.

[68] Rando OJ, Ahmad K. Rules and regulation in the primary structure of chromatin., 2007, 19(3): 250–256.

[69] Mavrich TN, Ioshikhes IP, Venters BJ, Jiang CZ, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BFA barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome., 2008, 18(7): 1073–1083.

[70] Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S, Bucher P, Libri D, Shore DOpposing chromatin remodelers control transcription initiation frequency and start site selection., 2019, 26(8): 744–754.

[71] Kubik S, O’Duibhir E, de Jonge WJ, Mattarocci S, Albert B, Falcone JL, Bruzzone MJ, Holstege FCP, Shore DSequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription., 2018, 71(1): 89–102.e5.

[72] Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. Determinants of nucleosome organization in primary human cells., 2011, 474(7352): 516– 520.

[73] Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Removal of promoter nucleosomes by disassembly rather than sliding., 2004, 14(5): 667–673.

[74] Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber P. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition., 2010, 30(16): 4060–4076.

[75] Shivaswamy S, Bhargava P. Positioned nucleosomes due to sequential remodeling of the yeast U6 small nuclear RNA chromatin are essential for its transcriptional activation., 2006, 281(15): 10461–10472.

[76] Shivaswamy S, Bhinge A, Zhao YJ, Jones S, Hirst M, Iyer VR. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation., 2008, 6(3): e65.

[77] Kulaeva OI, Hsieh FK, Chang HW, Luse DS, Studitsky VM. Mechanism of transcription through a nucleosome by RNA polymerase II., 2013, 1829(1): 76–83.

[78] Reja R, Vinayachandran V, Ghosh S, Pugh BF. Molecular mechanisms of ribosomal protein gene coregulation., 2015, 29(18): 1942–1954.

[79] Lomvardas S, Thanos D. Modifying gene expression programs by altering core promoter chromatin architecture., 2002, 110(2): 261–271.

[80] Ford E, Thanos D. The transcriptional code of human IFN-beta gene expression., 2010, 1799(3–4): 328–336.

[81] Au-Yeung N, Horvath CM. Transcriptional and chromatin regulation in interferon and innate antiviral gene expression., 2018, 44: 11–17.

[82] Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications., 2014, 1839(8): 627–643.

[83] Felsenfeld G, Groudine M. Controlling the double helix., 2003, 421(6921): 448–453.

[84] Qi HY, Zhang ZJ, Li YJ, Fang XD. Role of chromatin conformation in eukaryotic gene regulation., 2011, 33(12): 1291–1299.亓合媛, 張昭軍, 李雅娟, 方向東. 染色質(zhì)構(gòu)象調(diào)控真核基因的表達. 遺傳, 2011, 33(12): 1291–1299.

[85] Vogelauer M, Wu J, Suka N, Grunstein M. Global histone acetylation and deacetylation in yeast., 2000, 408(6811): 495–498.

[86] Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SLMethylation of histone H3 Lys 4 in coding regions of active genes., 2002, 99(13): 8695–8700.

[87] Klemm SL, Shipony Z, WJ. Chromatin accessibility and the regulatory epigenome., 2019, 20(4): 207–220.

[88] Du YH, Liu ZP, Cao XK, Chen XL, Chen ZY, Zhang XB, Zhang XQ, Jiang CZNucleosome eviction along with H3K9ac deposition enhances Sox2 binding during human neuroectodermal commitment., 2017, 24(6): 1121–1131.

[89] Daneshpajooh M, Bacos K, Bysani M, Bagge A, Ottosson Laakso E, Vikman P, Eliasson L, Mulder H, Ling CHDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells., 2017, 60(1): 116–125.

[90] Vallianatos CN, Raines B, Porter RS, Bonefas KM, Wu MC, Garay PM, Collette KM, Seo YA, Dou Y, Keegan, CE, Tronson NC, Iwase SMutually suppressive roles of KMT2A and KDM5C in behaviour, neuronal structure, and histone H3K4 methylation., 2020, 3(1): 278.

[91] Sasidharan Nair V, El Salhat H, Taha RZ, John A, Ali BR, Elkord E. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer., 2018, 10: 78.

[92] Barski A, Cuddapah S, Cui KR, Roh TY, Schones DE, Wang ZB, Wei G, Chepelev L, Zhao KJHigh-resolution profiling of histone methylations in the human genome., 2007, 129(4): 823–837.

[93] Giaimo BD, Ferrante F, Herchenr?ther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation., 2019, 12(1): 37.

[94] Bagchi DN, Battenhouse AM, Park D, Iyer VR. The histone variant H2A.Z in yeast is almost exclusively incorporated into the +1 nucleosome in the direction of transcription., 2020, 48(1): 157–170.

[95] Ranjan A, Nguyen VQ, Liu S, Wisniewski J, Kim JM, Tang XN, Mizuguchi G, Elalaoui E, Nickels TJ, Jou V, English BP, Zheng QS, Luk E, Lavis, LD, Lionnet T, Wu CLive-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction., 2020, 9: e55667.

[96] Murphy PJ, Wu SF, James CR, Wike CL, Cairns BR. Placeholder nucleosomes underlie Germline-to-Embryo DNA methylation reprogramming., 2018, 172(5): 993–1006.e13.

[97] Sharma S, Kelly TK, Jones PA. Epigenetics in cancer., 2010, 31(1): 27–36.

[98] Wang HF, Fu C, Du J, Wang HS, He R, Yin XF, Li HX, Li X, Wang HX, Li K, Zheng L, Liu ZC, Qiu YREnhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells., 2020, 39(1): 29.

[99] Kumar A, Kumari N, Sharma U, Ram S, Singh SK, Kakkar N, Kaushal K, Prasad RReduction in H3K4me patterns due to aberrant expression of methyltransferases and demethylases in renal cell carcinoma: prognostic and therapeutic implications., 2019, 9(1): 8189.

[100] Webber LP, Wagner VP, Curra M, Vargas PA, Meurer L, Carrard VC, Squarize CH, Castilho RM, Martins MDHypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer., 2017, 71(2): 278–286.

[101] Torres CM, Biran A, Burney MJ, Patel H, Henser- Brownhill T, Cohen AHS, Li YL, Ben-Hamo R, Nye E, Spencer-Dene B, Chakravarty P, Efroni S, Matthews N, Misteli T, Meshorer E, Scaffidi PThe linker histone H1.0 generates epigenetic and functional intratumor heterogeneity., 2016, 353(6307): aaf1644.

[102] Huang QT, Li Q, Zhang YB. Linking chromatin conformation to gene function., 2020, 42(1): 1–17.黃其通, 李清, 張玉波. 染色質(zhì)構(gòu)象與基因功能. 遺傳, 2020, 42(1): 1–17.

[103] Denker A, de Laat W. The second decade of 3C technologies: detailed insights into nuclear organization., 2016, 30(12): 1357–1382.

Resolving nucleosomal positioning and occupancy with MNase-seq

Weihang Deng, Xinhui Li

Nucleosomes are the basic unit of the three-dimensional structure of chromatin. It is now widely accepted that the positioning and occupancy of nucleosomes play important roles in fundamental genomic processes such as DNA transcription, replication and repair. Among the methods used to provide genome-wide nucleosomal positions and occupancy levels, MNase-seq has proven to be highly effective. Indeed, with this method, the nucleosomal landscapes of a variety of organisms have now been investigated, revealing both commonalities and differences. In this review, we first introduce the technical principles underlying MNase-seq, focusing on details essential to precisely resolve nucleosome positioning and occupancy. We then describe recent advances with this method, as well as future perspectives of its role in chromatin biology, with a particular focus of uncovering mechanistic insights of many disease process.

nucleosome; chromatin structure; chromatin remodeling; next-generation sequencing (NGS); micrococcal nuclease

2020-09-04;

2020-10-18

國家自然科學基金項目(編號:81972909)資助[Supported by the National Natural Science Foundation of China(No. 81972909)]

鄧瑋杭,在讀碩士研究生,專業(yè)方向:系統(tǒng)生物醫(yī)學。E-mail: weihangdeng@sjtu.edu.cn

李鑫輝,博士,助理研究員,研究方向:系統(tǒng)生物學與分子生物學。E-mail: xhli@sjtu.edu.cn

10.16288/j.yczz.20-178

2020/11/9 11:17:28

URI: https://kns.cnki.net/kcms/detail/11.1913.R.20201106.1053.003.html

(責任編委: 李海濤)

猜你喜歡
染色質(zhì)基因組位點
染色質(zhì)開放性與動物胚胎發(fā)育關(guān)系的研究進展
哺乳動物合子基因組激活過程中的染色質(zhì)重塑
鎳基單晶高溫合金多組元置換的第一性原理研究
牛參考基因組中發(fā)現(xiàn)被忽視基因
CLOCK基因rs4580704多態(tài)性位點與2型糖尿病和睡眠質(zhì)量的相關(guān)性
科學家找到母愛改變基因組的證據(jù)
血清HBV前基因組RNA的研究進展
“哺乳動物卵母細胞生發(fā)泡染色質(zhì)構(gòu)型的研究進展”一文附圖
哺乳動物卵母細胞生發(fā)泡染色質(zhì)構(gòu)型的研究進展*
二項式通項公式在遺傳學計算中的運用*