安海龍 史賽 龐春麗 陳婭斐 郭帥 紀秋爽 展永
摘要 TMEM16A(也稱ANO1)是鈣激活氯離子電流(CaCCs)的分子基礎(chǔ)。研究表明,TMEM16A參與調(diào)節(jié)卵母細胞的受精、氣道和外分泌腺分泌、嗅覺和感覺信號的傳導(dǎo)、平滑肌的收縮以及心臟細胞的興奮。TMEM16A的功能障礙或表達異常與多種疾病的發(fā)生發(fā)展有關(guān),包括胃腸道功能障礙、神經(jīng)性疼痛和多種癌癥。本文綜述了本課題組和其他課題組對TMEM16A通道的研究進展,主要聚焦于TMEM16A通道的結(jié)構(gòu)和功能,TMEM16A通道的生理、病理功能及以該通道作為靶點的藥物發(fā)現(xiàn)。最終討論了TMEM16A藥理調(diào)節(jié)劑可能的藥理作用方案。TMEM16A的結(jié)構(gòu)和相關(guān)疾病的知識將對TMEM16A調(diào)節(jié)劑藥物的發(fā)現(xiàn)和應(yīng)用產(chǎn)生積極影響。
關(guān) 鍵 詞 離子通道;TMEM16A/CaCCs;結(jié)構(gòu); 功能;藥物靶標
中圖分類號 Q6-3 ? ? 文獻標志碼 A
Abstract TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels (CaCCs). Studies have shown that TMEM16A is involved in regulating fertilization of oocytes, transport of matter across cell membranes, transduction of olfactory and sensory signals, contraction of smooth muscle, and excitement of heart cells. The dysfunction or aberrant expression of TMEM16A is associated with the development of various diseases including gastrointestinal motility disorders neuropathic pain and various cancers. The article reviews the research progress of the TMEM16A channel of our research group and other groups, focusing on the structure and function of the TMEM16A channel, (patho)physiological function and drug discovery using this channel as target. Finally, the scheme of possible pharmacological effects of TMEM16A pharmacological modulators were discussed. Understanding well the structure and related diseases of TMEM16A will have a positive impact on the discovery and application of TMEM16A modulator drugs.
Key words ion channel; TMEM16A/CaCCs; structure; function; drug target
0 引言
鈣激活的氯離子通道(Calcium-activated Chloride Channels, CaCCs)是陰離子選擇性通道[1-2]。該通道存在于大多數(shù)生理組織中,其可以由胞內(nèi)鈣庫釋放的Ca2+或者由胞外流入的Ca2+激活[3-4]。30多年來,人們一直沒能鑒定CaCCs的分子基礎(chǔ),這阻礙了對該通道的進一步研究。2008年,世界上3個獨立的研究小組發(fā)現(xiàn),在體外和體內(nèi)實驗中沉默TMEM16A基因可導(dǎo)致內(nèi)源性CaCCs活性抑制。另一方面,外源表達的TMEM16A通道蛋白具有CaCCs的電生理特性。因此,他們得出一致的結(jié)論:TMEM16A是CaCCs的分子基礎(chǔ)[5-7],后來人們發(fā)現(xiàn)TMEM16B也具有CaCCs的特性[8]。
TMEM16A屬于TMEM16家族的一員,在脊椎動物中,該家族共有10個成員,它們具有較高的序列保守性[9]。其中,TMEM16A和TMEM16B屬于鈣激活氯離子通道。TMEM16C,TMEM16D,TMEM16E,TMEM16F,TMEM16G和TMEM16J為Ca2+依賴性脂質(zhì)爬行酶。TMEM16H,TMEM16J和TMEM16K在細胞膜上表達很少,大部分保留在細胞質(zhì)中。TMEM16F可同時作為脂質(zhì)爬行酶和非特異性離子通道[10]。除此之外,在血球菌和煙曲霉中也分別發(fā)現(xiàn)了脂質(zhì)爬行酶nhTMEM16和afTMEM16[11-12]。
TMEM16A具有典型的CaCCs特性,包括Ca2+和電壓依賴性激活以及陰離子選擇性。值得注意的是,TMEM16A的序列具有至少4個可變剪接的外顯子(分別命名為a, b, c和d),產(chǎn)生的蛋白質(zhì)具有712至1 006個氨基酸[5]。最近的研究發(fā)現(xiàn),除鈣離子,電壓和陰離子調(diào)節(jié)外,TMEM16A還受磷脂酰肌醇4,5-二磷酸[PI(4,5)P2]調(diào)節(jié)[13-15]。
目前,在上皮細胞,神經(jīng)元細胞,平滑肌細胞,血管內(nèi)皮細胞和心肌細胞中均鑒定出TMEM16A的存在[3,16-21]。它在各種組織中的廣泛分布表明其具備生理功能的多樣性[22]。研究表明,TMEM16A參與調(diào)節(jié)卵母細胞的受精,氣道和外分泌腺分泌,嗅覺和感覺信號的轉(zhuǎn)導(dǎo),平滑肌的收縮以及心臟細胞的興奮等生理過程[19,23-30]。除了在正常的生理功能中發(fā)揮作用外,TMEM16A通道的突變或功能異常與眾多疾病的發(fā)生和發(fā)展有關(guān),例如:胃腸功能障礙,神經(jīng)性疼痛以及諸多癌癥[31]。鑒于TMEM16A通道與眾多疾病之間的關(guān)系,它正日益成為治療上述疾病的藥物的潛在靶點。
為了發(fā)現(xiàn)TMEM16A特異性調(diào)節(jié)劑并開發(fā)有效的靶向藥物,當前迫切需要了解TMEM16A與眾多疾病的關(guān)系,以及TMEM16A與藥物的相互作用關(guān)系。作為眾多疾病潛在藥物靶標,TMEM16A結(jié)構(gòu)的發(fā)現(xiàn)為基于結(jié)構(gòu)的藥物設(shè)計和篩選提供了關(guān)鍵的靶點結(jié)構(gòu)信息。在這里首先介紹TMEM16A通道的結(jié)構(gòu)與門控機制,以及TMEM16A與眾多疾病的關(guān)系,最終總結(jié)TMEM16A調(diào)節(jié)劑的藥理功能以及部分調(diào)節(jié)劑的分子機制。本文試圖為TMEM16A的靶向調(diào)節(jié)劑的研發(fā)提供思路,并希望在基于結(jié)構(gòu)的藥物發(fā)現(xiàn)方面為讀者提供全面的了解。
1 TMEM16A的結(jié)構(gòu)
1.1 TMEM16A通道的結(jié)構(gòu)特征
2017年5月,分辨率為6.6 ×10-10m的小鼠的mTMEM16A結(jié)構(gòu)(PDB ID:5NL2)[32]獲得解析。人們首次認識了TMEM16A通道的分子架構(gòu)。該蛋白是一個同源二聚體,每個亞基包含2個Ca2+結(jié)合位點和10個跨膜螺旋(如圖1)。在細胞外,連接α螺旋的α1-α2,α5-α6和α9-α10的氨基酸形成環(huán)狀的折疊結(jié)構(gòu)域。N-末端與C-末端均位于膜的細胞質(zhì)側(cè)。該結(jié)構(gòu)與2014年獲得的真菌的nhTMEM16[12]最大的區(qū)別在于“亞單位腔”跨膜螺旋的排布方式。在mTMEM16A中,跨膜區(qū)的亞單位腔是密封的,可防止脂質(zhì)進入并僅允許離子滲透。在nhTMEM16的結(jié)構(gòu)中,亞基腔是一個親水的跨膜凹槽。這體現(xiàn)了TMEM16家族中脂質(zhì)爬行酶和離子通道之間的結(jié)構(gòu)性差異。
2017年12月,研究人員得到了4個處于不同狀態(tài)的高分辨率mTMEM16A結(jié)構(gòu),包括雙Ca2+結(jié)合態(tài)(PDB ID:5OYB, 6BGI),單Ca2+結(jié)合態(tài)(PDB ID:6BGJ)和Ca2+游離態(tài)(PDB ID:5OYG)[33-34]。其中,5OYB是迄今為止解析最全,分辨率最高的TMEM16A結(jié)構(gòu)。Cyro-EM結(jié)構(gòu)顯示,帶負電荷的5個殘基E654,E702,E705,E734和D738共同形成了TMEM16A的Ca2+結(jié)合位點,該位點可以結(jié)合2個鈣離子(如圖1)。這些殘基分布在跨膜螺旋α6-α8中。除上述5個關(guān)鍵酸性殘基外,研究還發(fā)現(xiàn)N650,N651和N730突變?yōu)楸彼釙档虲a2+的親和力,這表明這3個殘基對鈣離子的結(jié)合也是有幫助的。肖慶桓教授課題組和我們課題組在第1個細胞內(nèi)環(huán)中鑒定了一段對Ca2+和電壓敏感性都很重要的區(qū)域(EEEEEAVK)[35-37]。但是尚不清楚該區(qū)域如何調(diào)控通道的鈣依賴性門控,其詳細的分子機制值得進一步研究。
TMEM16A結(jié)構(gòu)中的亞基腔部位是介導(dǎo)離子滲透的離子傳導(dǎo)孔??缒ぢ菪?-α7在周圍排布,形成如沙漏一樣的封閉通道。通過誘變和電生理實驗發(fā)現(xiàn),孔道中的殘基有的與離子滲透性有關(guān),有的影響陰離子的選擇性,有些則與孔收縮區(qū)域的門控功能相互關(guān)聯(lián)[33]。其中, R515(位于α3)和K603(位于α5-α6)對陰離子選擇性起著關(guān)鍵作用。K588(位于α5)可以部分影響陰離子對陽離子的選擇性。除了N546,D554,N591和V599之外, Q709和F716以及S639也影響陰離子的選擇性。誘變研究還發(fā)現(xiàn),孔中的7個殘基可能與TMEM16A的鈣依賴性門控有關(guān)。N546A,I550A,Y593A,I596A和F712A這5個突變增加了Ca2+的表觀親和力。然而,V599A和L643A則降低了Ca2+的表觀親和力[33]。雖然通道內(nèi)殘基的相關(guān)功能性鑒定已經(jīng)較為全面,但是關(guān)于通道的離子通透過程缺乏系統(tǒng)性的認識和見解。因此,有關(guān)通道的分子機制的研究將是亟待解決的課題。
1.2 鈣依賴性的門控機制
TMEM16A屬于鈣激活的氯離子通道,其可以被低濃度(<600 nmol/L)的Ca2+激活,因此明晰Ca2+依賴性的門控過程對了解通道的分子機制尤為重要。2017年12月,有研究基于Ca2+游離態(tài)(5OYG)和雙Ca2+結(jié)合態(tài)(5OYB)的TMEM16A結(jié)構(gòu),提供了對mTMEM16A激活機制的理解[34]。結(jié)合位點的Ca2+離子吸引α6末端的E654,這導(dǎo)致α6的下半部分重新定向。在此過程中,G644充當門軸。為了進一步確定α6在門控過程中的作用,Peters等[38]通過分子動力學(xué)模擬和實驗誘變,在第6個跨膜片段中鑒定出幾個關(guān)鍵的位點。其中,α6中間的K645是調(diào)節(jié)通道門控的關(guān)鍵殘基。同年,Lam等[39]發(fā)現(xiàn)Ca2+與α5上的K588和α6上的K645之間存在長程庫侖相互作用,并且這些庫倫相互作用可以影響孔道頸部的靜電特征,從而影響離子的滲透。總之,α6是TMEM16A通道門控的關(guān)鍵元素,特別是α6中的E654和K645分別在Ca2+的結(jié)合和離子滲透過程中起著關(guān)鍵作用。
除了α6之外,α3和α4也被認為是與門控過程相關(guān)的元素。楊黃河教授[14]課題組發(fā)現(xiàn)PI(4,5)P2可以調(diào)節(jié)TMEM16A通道的激活和脫敏,并通過模擬和誘變實驗確定了PI(4,5)P2的結(jié)合位點(R455, K465, R486, K571, R579和K583)。他們提出TMEM16A的離子滲透孔由2個模塊組成。α3-α5的“PI(4,5)P2結(jié)合模塊”控制通道脫敏,而α6-α8的“Ca2+結(jié)合模塊”控制Ca2+依賴性激活。盡管α3和α4在TMEM16A的2種狀態(tài)下幾乎沒有差異,但α4在同源蛋白(nhTMEM16和afTMEM16)的門控過程中顯示出明顯的構(gòu)象變化[40-41]。Falzone等[40]和Kalienkoa等[41]發(fā)現(xiàn)nhTMEM16處于打開狀態(tài)時,α4和α6在其整個長度上彼此分離,從而形成了暴露于脂質(zhì)雙層的半圓形凹槽。并提出脂質(zhì)途徑的開放主要由2個結(jié)構(gòu)元素α4和α6控制。值得關(guān)注的是,在hTMEM16k中發(fā)生了相同的現(xiàn)象[42]。因此,在下一步的研究中有必要明確mTMEM16A在滲透離子過程中α4和α6是否會產(chǎn)生同源蛋白類似的構(gòu)象重排。需要指出的是,目前還沒有在TMEM16A通道內(nèi)發(fā)現(xiàn)諸如鉀離子通道、鈉離子通道類似的門控位置和機制。
[15] ?YU K,JIANG T,CUI Y Y,et al. A network of phosphatidylinositol 4,5-bisphosphate binding sites regulate gating of the Ca2+-activated Cl- channel ANO1 (TMEM16A) [J]. Proc Natl Acad Sci U S A,2019,116(40):19952-19962.
[16] ?BADER C R,BERTRAND D,SCHLICHTER R. Calcium-activated chloride current in cultured sensory and parasympathetic quail neurones[J]. The Journal of Physiology,1987,394(1):125-148.
[17] ?ZYGMUNT A C. Intracellular calcium activates a chloride current in canine ventricular myocytes[J]. American Journal of Physiology-Heart and Circulatory Physiology,1994,267(5):H1984-H1995.
[18] ?CURRIE K P,WOOTTON J F,SCOTT R H. Activation of Ca2+-dependent Cl- currents in cultured rat sensory neurones by flash photolysis of DM-nitrophen[J]. The Journal of Physiology,1995,482(2):291-307.
[19] ?LARGE W A,WANG Q. Characteristics and physiological role of the Ca2+-activated Cl- conductance in smooth muscle[J]. American Journal of Physiology-Cell Physiology,1996,271(2):C435-C454.
[20] ?NILIUS B,PRENEN J,SZ?CS G,et al. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells[J]. The Journal of Physiology,1997,498(2):381-396.
[21] ?DURAN C,THOMPSON C H,XIAO Q H,et al. Chloride channels:often enigmatic,rarely predictable[J]. Annual Review of Physiology,2010,72(1):95-121.
[22] ?FERRERA L,CAPUTO A,UBBY I,et al. Regulation of TMEM16A chloride channel properties by alternative splicing[J]. Journal of Biological Chemistry,2009,284(48):33360-33368.
[23] ?LOWE G,GOLD G H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells[J]. Nature,1993,366(6452):283-286.
[24] ?KLEENE S J. High-gain,low-noise amplification in olfactory transduction[J]. Biophysical Journal,1997,73(2):1110-1117.
[25] ?BEGENISICH T,MELVIN J E. Regulation of chloride channels in secretory epithelia[J]. Journal of Membrane Biology,1998,163(2):77-85.
[26] ?FRINGS S,REUTER D,KLEENE S J. Neuronal Ca2+-activated Cl- channels:homing in on an elusive channel species[J]. Progress in Neurobiology,2000,60(3):247-289.
[27] ?KIDD J F,THORN P. Intracellular Ca2+ and Cl- channel activation in secretory cells[J]. Annual Review of Physiology,2000,62(1):493-513.
[28] ?HARTZELL C,PUTZIER I,ARREOLA J. Calcium-activated chloride channels[J]. Annual Review of Physiology,2005,67(1):719-758.
[29] ?KUNZELMANN K,TIAN Y M,MARTINS J R,et al. Anoctamins[J]. Pflügers Archiv-European Journal of Physiology,2011,462(2):195-208.
[30] ?ERTONGUR-FAUTH T,HOCHHEIMER A,BUESCHER J M,et al. A novelTMEM16Asplice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells[J]. Experimental Dermatology,2014,23(11):825-831.
[31] ?VERKMAN A S,GALIETTA L J V. Chloride channels as drug targets[J]. Nature Reviews Drug Discovery,2009,8(2):153-171.
[32] ?PAULINO C,NELDNER Y,LAM A K,et al. Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A [J]. eLife,2017,6:e27933
[33] ?DANG S Y,F(xiàn)ENG S J,TIEN J,et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel[J]. Nature,2017,552(7685):426-429.
[34] ?PAULINO C,KALIENKOVA V,LAM A K M,et al. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM[J]. Nature,2017,552(7685):421-425.
[35] ?XIAO Q H,YU K,PEREZ-CORNEJO P,et al. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(21):8891-8896.
[36] ?XIAO Q H,CUI Y Y. Acidic amino acids in the first intracellular loop contribute to voltage- and calcium- dependent gating of Anoctamin1/TMEM16A[J]. PLoS One,2014,9(6):e99376. DOI:10. 1371/journal. pone. 0099376.
[37] ?PANG C L,YUAN H B,CAO T G,et al. Molecular simulation assisted identification of Ca2+ binding residues in TMEM16A[J]. Journal of Computer-Aided Molecular Design,2015,29(11):1035-1043.
[38] ?PETERS C J,GILCHRIST J M,TIEN J,et al. The sixth transmembrane segment is a major gating component of the TMEM16A calcium-activated chloride channel[J]. Neuron,2018,97(5):1063-1077. e4.
[39] ?LAM A,DUTZLER R. Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A[J]. eLife,2018,7:e39122. DOI:10. 7554/eLife. 39122.
[40] ?FALZONE M E,RHEINBERGER J,LEE B C,et al. Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase[J]. eLife,2019,8:e43229.
[41] ?KALIENKOVA V,MOSINA V C,BRYNER L,et al. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM [J]. eLife,2019,8. DOI:10. 7554/eLife. 44364.
[42] ?BUSHELL S R,PIKE A C W,F(xiàn)ALZONE M E,et al. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K[J]. Nature Communications,2019,10:3956.
[43] ?BENEDETTO R,OUSINGSAWAT J,WANITCHAKOOL P,et al. Epithelial chloride transport by CFTR requires TMEM16A[J]. Scientific Reports,2017,7:12397.
[44] ?RIORDAN J R. CFTR function and prospects for therapy[J]. Annual Review of Biochemistry,2008,77(1):701-726.
[45] ?SONDO E,CACI E,GALIETTA L J V. The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis[J]. The International Journal of Biochemistry & Cell Biology,2014,52:73-76.
[46] ?HUANG F,ZHANG H,WU M,et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(40):16354-16359.
[47] ?KUMAR R,HERBERT C,F(xiàn)OSTER P. The “classical” ovalbumin challenge model of asthma in mice[J]. Current Drug Targets,2008,9(6):485-494.
[48] ?KONDO M,NAKATA J,ARAI N,et al. Niflumic acid inhibits goblet cell degranulation in a Guinea pig asthma model[J]. Allergology International,2012,61(1):133-142.
[49] ?WANG B X,LI C L,HUAI R T,et al. Overexpression of ANO1/TMEM16A,an arterial Ca2+-activated Cl- channel,contributes to spontaneous hypertension[J]. Journal of Molecular and Cellular Cardiology,2015,82:22-32.
[50] ?LI R S,WANG Y,CHEN H S,et al. TMEM16A contributes to angiotensin II-induced cerebral vasoconstriction via the RhoA/ROCK signaling pathway[J]. Molecular Medicine Reports,2016,13(4):3691-3699.
[51] ?WANG Q,LEO M D,NARAYANAN D,et al. Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries[J]. American Journal of Physiology-Cell Physiology,2016,310(11):C1001-C1009.
[52] ?SANDERS K M,KOH S D,WARD S M. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract[J]. Annual Review of Physiology,2006,68(1):307-343.
[53] ?DAM V S,BOEDTKJER D M B,NYVAD J,et al. TMEM16A knockdown abrogates two different Ca2+-activated Cl- currents and contractility of smooth muscle in rat mesenteric small arteries[J]. Pflügers Archiv-European Journal of Physiology,2014,466(7):1391-1409.
[54] ?MALYSZ J,GIBBONS S J,SARAVANAPERUMAL S A,et al. Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca2+ transients and slow waves in adult mouse small intestine[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2017,312(3):G228-G245.
[55] ?SINGH R D,GIBBONS S J,SARAVANAPERUMAL S A,et al. Ano1,a Ca2+-activated Cl-channel,coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal[J]. The Journal of Physiology,2014,592(18):4051-4068.
[56] ?HWANG S J,BASMA N,SANDERS K M,et al. Effects of new-generation inhibitors of the calcium-activated chloride channel anoctamin 1 on slow waves in the gastrointestinal tract[J]. British Journal of Pharmacology,2016,173(8):1339-1349.
[57] ?GOMEZ-PINILLA P J,GIBBONS S J,BARDSLEY M R,et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2009,296(6):G1370-G1381.
[58] ?GUO S,CHEN Y F,PANG C L,et al. Ginsenoside Rb1,a novel activator of the TMEM16A chloride channel,augments the contraction of Guinea pig ileum[J]. Pflügers Archiv-European Journal of Physiology,2017,469(5/6):681-692.
[59] ?CHAI R,CHEN Y F,YUAN H B,et al. Identification of resveratrol,an herbal compound,as an activator of the calcium-activated chloride channel,TMEM16A[J]. The Journal of Membrane Biology,2017,250(5):483-492.
[60] ?GUO S,WANG H,PANG C L,et al. Entering the spotlight:Chitosan oligosaccharides as novel activators of CaCCs/TMEM16A[J]. Pharmacological Research,2019,146:104323.
[61] ?GUO S,CHEN Y F,SHI S,et al. The molecular mechanism of ginsenoside analogs activating TMEM16A[J]. Biophysical Journal,2020,118(1):262-272.
[62] ?CHO H,OH U. Anoctamin 1 mediates thermal pain as a heat sensor[J]. Current Neuropharmacology,2013,11(6):641-651.
[63] ?LEE B,CHO H,JUNG J,et al. Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity[J]. Molecular Pain,2014,10:1744-8069-10-5.
[64] ?PERL E R. Ideas about pain,a historical view[J]. Nature Reviews Neuroscience,2007,8(1):71-80.
[65] ?CHO H,YANG Y D,LEE J,et al. The calcium-activated chloride channel anoctamin 1 Acts as a heat sensor in nociceptive neurons[J]. Nature Neuroscience,2012,15(7):1015-1021.
[66] ?LIU B Y,LINLEY J E,DU X N,et al. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels[J]. Journal of Clinical Investigation,2010,120(4):1240-1252.
[67] ?ZHANG X,ZHANG H R,ZHOU N J,et al. Tannic acid modulates excitability of sensory neurons and nociceptive behavior and the Ionic mechanism[J]. European Journal of Pharmacology,2015,764:633-642.
[68] ?ESPINOSA I,LEE C H,KIM M K,et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors[J]. The American Journal of Surgical Pathology,2008,32(2):210-218.
[69] ?LIU F,CAO Q H,LU D J,et al. TMEM16A overexpression contributes to tumor invasion and poor prognosis of human gastric cancer through TGF-β signaling[J]. Oncotarget,2015,6(13):11585-11599.
[70] ?DIXIT R,KEMP C,KULICH S,et al. TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation[J]. Scientific Reports,2015,5:16657.
[71] ?SUI Y J,SUN M Y,WU F,et al. Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells[J]. PLoS One,2014,9(12):e115443. DOI:10. 1371/journal. pone. 0115443.
[72] ?SAUTER D R P,NOVAK I,PEDERSEN S F,et al. ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC)[J]. Pflügers Archiv-European Journal of Physiology,2015,467(7):1495-1508.
[73] ?KASHYAP M K,MARIMUTHU A,KISHORE C J H,et al. Genomewide mRNA profiling of esophageal squamous cell carcinoma for identification of cancer biomarkers[J]. Cancer Biology & Therapy,2009,8(1):36-46.
[74] ?JIA L H,LIU W,GUAN L Z,et al. Inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer[J]. PLoS One,2015,10(8):e0136584. DOI:10. 1371/journal. pone. 0136584.
[75] ?LIU Z T,ZHANG S S,HOU F,et al. Inhibition of Ca2+-activated chloride channel ANO1 suppresses ovarian cancer through inactivating PI3K/Akt signaling[J]. International Journal of Cancer,2019,144(9):2215-2226.
[76] ?DUVVURI U,SHIWARSKI D J,XIAO D,et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression[J]. Cancer Research,2012,72(13):3270-3281.
[77] ?JACOBSEN K S,ZEEBERG K,SAUTER D R P,et al. The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration[J]. Pflügers Archiv-European Journal of Physiology,2013,465(12):1753-1762.
[78] ?AYOUB C,WASYLYK C,LI Y,et al. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines[J]. British Journal of Cancer,2010,103(5):715-726.
[79] ?JI Q S,GUO S,WANG X Z,et al. Recent advances in TMEM16A:Structure,function,and disease[J]. Journal of Cellular Physiology,2019,234(6):7856-7873.
[92] ?YU B,XIE R F,JIN L L,et al. Trans-δ-Viniferin inhibits Ca2+-activated Cl- channels and improves diarrhea symptoms[J]. Fitoterapia,2019,139:104367.
[93] ?OH S J,HWANG S J,JUNG J,et al. MONNA,a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1[J]. Molecular Pharmacology,2013,84(5):726-735.
[94] ?SEO Y,LEE H K,PARK J,et al. Ani9,A novel potent small-molecule ANO1 inhibitor with negligible effect on ANO2[J]. PLoS One,2016,11(5):e0155771. DOI:10. 1371/journal. pone. 0155771.
[95] ?LIU Y N,ZHANG H R,HUANG D Y,et al. Characterization of the effects of Cl- channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl- channels[J]. Pflügers Archiv-European Journal of Physiology,2015,467(7):1417-1430.
[96] ?BURRIS S K,WANG Q,BULLEY S,et al. 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels[J]. British Journal of Pharmacology,2015,172(10):2459-2468.
[97] ?DE LA FUENTE R,NAMKUNG W,MILLS A,et al. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel[J]. Molecular Pharmacology,2008,73(3):758-768.
[98] ?NAMKUNG W,PHUAN P W,VERKMAN A S. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells[J]. Journal of Biological Chemistry,2011,286(3):2365-2374.
[99] ?DAVIS A J,SHI J,PRITCHARD H A,et al. Potent vasorelaxant activity of the TMEM16A inhibitor T16Ainh-A01[J]. British Journal of Pharmacology,2013,168(3):773-784.
[100] ?PETERS C J,YU H B,TIEN J,et al. Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(11):3547-3552.
[責(zé)任編輯 ? ?楊 ? ?屹]