陳聰 商雪妮 朱立華 張煒 孟凡斌 鄭士建
摘要 目前,影響鈣鈦礦太陽(yáng)能電池發(fā)展的主要因素是弱穩(wěn)定性和低光電轉(zhuǎn)換效率。Ruddlesden-Popper(RP)相二維(2D)鈣鈦礦材料具有結(jié)晶度高、吸收光譜寬和穩(wěn)定性良好等特性,已經(jīng)成為光伏領(lǐng)域研究的熱點(diǎn)。RP相2D鈣鈦礦中有機(jī)分子層間通過(guò)范德瓦爾斯力可以形成穩(wěn)定的2D結(jié)構(gòu),進(jìn)而克服穩(wěn)定性問(wèn)題。截至目前,研究者已經(jīng)獲得了超過(guò)18%的光電轉(zhuǎn)換效率。文中對(duì)RP相鈣鈦礦的結(jié)構(gòu)特點(diǎn)進(jìn)行闡述,對(duì)RP相鈣鈦礦薄膜的典型制備方法進(jìn)行歸納,總結(jié)了不同A′位有機(jī)陽(yáng)離子在提高RP相鈣鈦礦太陽(yáng)能電池的效率和穩(wěn)定性方面的應(yīng)用現(xiàn)狀,最后對(duì)RP相鈣鈦礦在PSCs中未來(lái)可探究方面進(jìn)行展望。本研究能夠?yàn)樯钊肜斫夂吞嵘齈SCs性能提供理論支持和實(shí)驗(yàn)依據(jù)。
關(guān) 鍵 詞 太陽(yáng)能電池;鈣鈦礦;二維;穩(wěn)定性;Ruddlesden-Popper
中圖分類號(hào) TM914.4 ? ? 文獻(xiàn)標(biāo)志碼 A
Abstract At present, the main factors affecting the development of perovskite solar cells (PSCs) are weak stability and low photoelectric conversion efficiency. The Ruddlesden-Popper (RP) phase two-dimensional (2D) perovskite materials ?are featured with high crystallinity, wide absorption spectrum and good stability, and have become the focus in the field of photovoltaic. The van der Waals force can form a stable 2D structure between organic molecular layers in the RP phase 2D perovskite, thereby overcoming the stability problem. So far, researchers have achieved the power conversion efficiency (PCE) exceeding 18%. The article describes the structural properties of RP phase perovskite, which summarizes the typical preparation methods for RP phase perovskite film, concluding the application status of different A 'position organic cations in improving the efficiency and stability of RP phase PSCs. Finally, the prospective aspects are explored for RP phase perovskite in PSCs. The research can provide theoretical and experimental support for much better understanding and improving the performance of PSCs.
Key words solar cells; perovskites; two-dimensional; stability; Ruddlesden-Popper
0 引言
以光伏效應(yīng)為原理的太陽(yáng)能電池是解決能源危機(jī)最有研究?jī)r(jià)值的學(xué)科之一。目前,硅基太陽(yáng)能電池在光伏領(lǐng)域依然占有主導(dǎo)地位,但是由于制備成本高、工藝復(fù)雜等因素,限制了其大規(guī)模商業(yè)化生產(chǎn)及在各領(lǐng)域應(yīng)用。因此,尋找成本低廉、工藝簡(jiǎn)單、便于生產(chǎn)的光吸收材料成為太陽(yáng)能電池可持續(xù)發(fā)展的關(guān)鍵因素。2009年,Kojima等[1]將鈣鈦礦材料CH3NH3PbI3和CH3NH3PbBr3作為敏化劑應(yīng)用到液態(tài)染料敏化太陽(yáng)能電池中,測(cè)得的器件光電轉(zhuǎn)換效率(Power Conversion Efficiency,PCE)為3.8%,自此鈣鈦礦材料在電池領(lǐng)域不斷發(fā)展。隨著研究推進(jìn),目前鈣鈦礦太陽(yáng)能電池(Perovskite Solar Cells, PSCs)的PCE達(dá)到25.2%[2],接近2017年硅基太陽(yáng)能電池26.3%的PCE,顯示了其在太陽(yáng)能電池方面的良好性能。
在過(guò)去的幾年中,PSCs領(lǐng)域更加注重提高電池的長(zhǎng)期穩(wěn)定性,大量研究致力于優(yōu)化鈣鈦礦吸收層,例如,成分組成[3-4]、納米結(jié)構(gòu)[5-6]、容忍因子[7-8]、鈍化缺陷[9-10]、接觸層[11-13]、界面修飾[14]和器件封裝[15-16]。在提高PSCs性能中光吸收層的選取及結(jié)構(gòu)、種類等對(duì)太陽(yáng)能電池的PCE和穩(wěn)定性起決定作用。三維(3D)鈣鈦礦材料是近幾年在太陽(yáng)能電池研究中常見的光活性材料,但是由于其激子束縛能低、穩(wěn)定性差,嚴(yán)重限制了其應(yīng)用[17]。與3D鈣鈦礦材料相比,2D鈣鈦礦薄膜中大體積的封端分子可以有效阻擋外部水氧破壞和材料內(nèi)部離子遷移[18],具有良好的穩(wěn)定性,以及吸收層薄膜質(zhì)量高[19],目前已經(jīng)獲得的PCE超過(guò)18%[20]。因?yàn)?D Ruddlesden-Popper(RP)相鈣鈦礦表面有機(jī)分子具有耐濕疏水性和結(jié)構(gòu)中的范德瓦耳斯力,所以2D RP相鈣鈦礦比3D鈣鈦礦具有更高的結(jié)構(gòu)穩(wěn)定性,在改善鈣鈦礦太陽(yáng)能電池穩(wěn)定性方面2D或準(zhǔn)2D鈣鈦礦也擁有巨大潛力[21-22],更適合大規(guī)模工業(yè)應(yīng)用。2D鈣鈦礦可應(yīng)用于光發(fā)射、自旋電子學(xué)和光電探測(cè)器、場(chǎng)效應(yīng)晶體管(FET)[23]和發(fā)光二極管(LED)器件[24-25]等(如圖1所示)。
RP相是2D鈣鈦礦的主要類別,RP相2D鈣鈦礦是有機(jī)分子層間通過(guò)范德瓦耳斯力形成穩(wěn)定的2D結(jié)構(gòu),同時(shí)有機(jī)陽(yáng)離子組成雙層使每單位晶胞具有偏移的無(wú)機(jī)層。本文簡(jiǎn)要討論2D RP相PSCs的PCE和穩(wěn)定性,為更好地理解2D RP相PSCs性能提供理論支持和實(shí)驗(yàn)依據(jù)。
1 二維Ruddlesden-Popper相鈣鈦礦結(jié)構(gòu)
早在20世紀(jì)90年代,Ishihara等[24]和Mitzi等[27]就提出并研究了2D鈣鈦礦。2D鹵化物鈣是由3D鈣鈦礦材料演變而來(lái)的,RP相鈣鈦礦是3D鈣鈦礦沿晶體方向<100>剪切得到的(如圖2所示)。
取向?yàn)?100>的2D有機(jī)-無(wú)機(jī)雜化RP相鈣鈦礦的通式為A′2Aq-1MqX3q+1(q>1)[27],其中A′為伯脂族或芳族烷基銨陽(yáng)離子,A為短鏈有機(jī)、無(wú)機(jī)陽(yáng)離子,B為二價(jià)金屬,X為鹵化物陰離子,n是[MX4]2-鈣鈦礦層在兩個(gè)有機(jī)絕緣層中的數(shù)目。2D結(jié)構(gòu)中[MX4]2-八面體無(wú)機(jī)層組成2D次級(jí)結(jié)構(gòu)單元,該無(wú)機(jī)層限制在插入的大體積烷基銨陽(yáng)離子雙層之間[29],有機(jī)間隔基的疏水性可以抑制水分子滲透對(duì)無(wú)機(jī)層的侵蝕,以保持結(jié)構(gòu)的穩(wěn)定性,該結(jié)構(gòu)代表了最常研究的2D鹵化物鈣鈦礦。
2 二維Ruddlesden-Popper相鈣鈦礦薄膜制備方法
通常認(rèn)為潮濕的環(huán)境是加速RP相鈣鈦礦降解的關(guān)鍵因素[30],最終導(dǎo)致太陽(yáng)能電池性能降低。此外,鈣鈦礦薄膜質(zhì)量也是影響太陽(yáng)能電池性能的重要因素。若薄膜存在缺陷會(huì)影響吸光度、光電流及與其接觸的電子傳輸層和空穴傳輸層作用,最終降低PSCs的性能。
目前制備表面均勻和性能良好的鈣鈦礦薄膜,主要有以下3種制備方法:
1)一步旋涂法(如圖3a)所示)。通過(guò)將有機(jī)和無(wú)機(jī)鹵化物按照一定的化學(xué)計(jì)量比添加到高沸點(diǎn)極性溶劑中,例如二甲基甲酰胺(DMF)、乙腈、γ-丁內(nèi)酯、氯苯和二甲基亞砜(DMSO)等;采用一步旋涂方法均勻涂在電子傳輸層PEDOT∶PSS上,退火去除殘留溶劑,即可獲得均勻2D鈣鈦礦薄膜。
2)真空極化處理法(如圖3b)所示)。通過(guò)在DMF∶DMSO混合溶劑中加入一定摩爾比的有機(jī)和無(wú)機(jī)鹵化物的混合物制備準(zhǔn)2D鈣鈦礦的前驅(qū)體溶液。通過(guò)在反應(yīng)中引入原位添加劑MACl(MA為甲基胺陽(yáng)離子)等,以實(shí)現(xiàn)更好的結(jié)晶和改善膜質(zhì)量[19-31]。將前驅(qū)體溶液旋涂在預(yù)熱的基板上然后在真空室中極化并退火,即可得到2D鈣鈦礦薄膜,真空極化處理法是在一步旋涂法的基礎(chǔ)上進(jìn)行優(yōu)化的方法。
3)液相沉積法(如圖3c)所示)。2D鈣鈦礦薄膜形成過(guò)程主要包括4個(gè)步驟:a)將前驅(qū)體溶液沉積到預(yù)熱的玻璃基板中央;b)溶液各向同性地?cái)U(kuò)散在基底上;c)溶劑從前驅(qū)溶液盤中蒸發(fā);d)溶劑蒸發(fā)并形成鈣鈦礦結(jié)晶后,形成黑褐色薄膜片。
3 Ruddlesden-Popper相鈣鈦礦在太陽(yáng)能電池中應(yīng)用
3.1 A′位正丁銨陽(yáng)離子(BA+)
RP相鈣鈦礦是2D鈣鈦礦的主要類別,最常見的A′位正一價(jià)有機(jī)間隔基是銨陽(yáng)離子(RNH3+),有機(jī)疏水陽(yáng)離子在兩端中間層為小分子和每單位晶胞具有偏移的無(wú)機(jī)層,有機(jī)分子層間通過(guò)范德瓦爾斯力形成穩(wěn)定的2D結(jié)構(gòu)。在3D鈣鈦礦中使用離子半徑較小的MA+和較大BA+使其鈣鈦礦層中形成空間效應(yīng)轉(zhuǎn)變?yōu)?D鈣鈦礦。Cao等[30]采用旋涂法合成(BA)2(MA)n-1PbnI3n+1 (n = 1,2,3,4)薄膜,獲得了不同n值的能帶值;當(dāng)n = 3時(shí)2D PSCs獲得最高PCE為4.02%。可能是由于有機(jī)陽(yáng)離子抑制平面外電荷傳輸導(dǎo)致較低的PCE,可通過(guò)合成接近單晶質(zhì)量的薄膜來(lái)克服這個(gè)問(wèn)題。隨后,Tsai等[18]利用熱旋涂制備接近單晶的2D鈣鈦礦化合物 (BA)2(MA)3Pb4I13,測(cè)得器件PCE為12.51%,在200 h后保留了其初使PCE的80%,而在2 050 h后緩慢降解為初始性能約70%。
為進(jìn)一步提高PSCs的PCE和穩(wěn)定性,Zhang等[33]添加硫氰酸銨添加劑使用一步旋涂制備垂直取向的高結(jié)晶2D層狀 (BA)2(MA)n-1PbnI3n+1(n = 3,4)薄膜;(BA)2(MA)2Pb3I10器件的平均PCE為6.82%,(BA)2(MA)3Pb4I13器件的PCE達(dá)到了8.79%;暴露于55% ± 5%潮濕環(huán)境40 d后的XRD幾乎無(wú)變化,表明薄膜具有良好的耐濕度穩(wěn)定性。Zuo等[32]改進(jìn)鈣鈦礦薄膜制備方法,采用無(wú)旋涂、可直接擴(kuò)展的滴涂法沉積前驅(qū)體溶液,合成高度定向、均勻的2D鈣鈦礦薄膜,器件產(chǎn)生的PCE可達(dá)14.9%;當(dāng)儲(chǔ)存在氮?dú)馐痔紫渲袝r(shí),該電池的PCE穩(wěn)定時(shí)間超過(guò)5個(gè)月。Wu等[34]提出了一種緩慢的后退火工藝合成(BA)2(MA)3Pb4I13薄膜,將2D PSCs的PCE提高到17.26%,在N2環(huán)境下(無(wú)封裝)2 000 h后器件降解小于4.5%,表現(xiàn)良好的穩(wěn)定性,合成工藝過(guò)程為將2D PSCs推向?qū)嶋H應(yīng)用提供了一種可行性方法。
Zhou等[35]使用一步旋涂法在A位摻雜適當(dāng)?shù)腇A+(FA+為甲脒陽(yáng)離子)通過(guò)控制鈣鈦礦的結(jié)晶動(dòng)力學(xué),獲得有限非取向的高質(zhì)量三元陽(yáng)離子鹵化物鈣鈦礦(BA)2(MA,F(xiàn)A)3Pb4I13薄膜,A位離子的取代開始不斷被研究。Liu等[36]用Cs+取代了層內(nèi)A位部分MA+,得到(BA)2(MA0.95Cs0.05)3Pb4I13組成器件的PCE高達(dá)13.68%;在黑暗環(huán)境80 ℃恒溫條件,在約20 h內(nèi)器件仍維持初始PCE的85%。與此同時(shí),Cs+摻雜有助于在缺陷態(tài)密度、電荷載流子遷移率和電荷轉(zhuǎn)移動(dòng)力學(xué)方面改善光電性能。為進(jìn)一步提高鈣鈦礦太陽(yáng)能電池的PCE,Gao等[37]使用MA+、FA+和Cs+混合陽(yáng)離子合成(BA)2(Cs0.02MA0.64FA0.34)4Pb5I16薄膜,這種三陽(yáng)離子2D鈣鈦礦太陽(yáng)能電池具有更長(zhǎng)的載流子壽命和更高的電導(dǎo)率,PCE提高到14.23%。Jiang等[38]將3種陽(yáng)離子作為A位的陽(yáng)離子,經(jīng)過(guò)熱旋涂形成(BA)2(MA0.76FA0.19Cs0.05)3Pb4I13薄膜,其器件的平均PCE為13.72%,最高PCE達(dá)到15.58%;在黑暗中恒溫85 ℃處理1 400 h以上,器件仍保持初始PCE的80%,得到了高效且穩(wěn)定的鈣鈦礦太陽(yáng)能電池。
2019年,Lian等[39]將苯乙胺陽(yáng)離子(PEA+)和胍鹽陽(yáng)離子(GA+)的鹽分別溶解在DMF溶劑中,通過(guò)旋涂法分別得到2D (PEA-BA)2MA4Pb5I16和(GA-BA)2MA4Pb5I16薄膜;由于PEA+不對(duì)稱結(jié)構(gòu)傾向于在鈣鈦礦薄膜的上層過(guò)度富集,導(dǎo)致在膜的頂部形成小晶粒,從而得到結(jié)晶性良好的鈣鈦礦晶體,基于(PEA-BA)2MA4Pb5I16器件的平均PCE為13.30%,最大PCE為13.83%;(GA-BA)2MA4Pb5I16中的定向晶粒構(gòu)成最優(yōu)化薄膜,可改善載流子的傳輸特性,器件的平均PCE為14.50%,最大PCE為13.95%;在空氣中55% ± 5%的濕度存儲(chǔ)800 h后,未封裝的器件保留了其初始PCE的90%。PEA+濃度較高時(shí)在薄膜表面富集而形成小晶粒,使薄膜的晶體質(zhì)量下降,不利于電荷輸運(yùn),以至于短路電流和光伏性能下降;而GA+在鈣鈦礦薄膜上分布相對(duì)均勻,在膜頂部有輕微集中,因此具有較高的PCE。
由于鉛元素有毒而且對(duì)環(huán)境污染嚴(yán)重,因此研究人員開始尋找無(wú)毒、無(wú)污染的替代元素,與鉛同主族的錫元素最先受到關(guān)注。Cao等[40]使用一步旋涂方法采用三乙基膦作為有效的抗氧化劑生出長(zhǎng)高純度的單相2D (BA)2(MA)n-1SnnI3n+1薄膜,所測(cè)器件PCE為2.5%。隨后,Chen等[41]研究了Pb-Sn合金2D RP鈣鈦礦(BA)2(MA)3Pb4-xSnxI13性能,錫改善結(jié)晶度和晶體取向的同時(shí),在縮小2D Pb-Sn鈣鈦礦帶隙的過(guò)程中起著重要作用;光物理研究表明,基于最佳錫比的鈣鈦礦具有最小的缺陷態(tài)密度和弱的量子限域效應(yīng),實(shí)現(xiàn)了電荷有效分離。測(cè)得器件最佳PCE為6%,封裝的器件在保存1個(gè)月后仍保持其PCE的93.2%。雖然無(wú)鉛鈣鈦礦無(wú)毒、無(wú)污染,但是無(wú)鉛和鉛少的鈣鈦礦PCE明顯低于全鉛的材料,鉛對(duì)PSCs的PCE仍起重要作用。對(duì)以上含有BA+的2D RP相PSCs的較高的PCE進(jìn)行總結(jié),如圖4所示。
3.2 A′位PEA+
為獲得更高質(zhì)量的鈣鈦礦薄膜,Smith等[42]在無(wú)退火環(huán)境通過(guò)一步旋涂獲得高質(zhì)量 (PEA)2(MA)2Pb3I10薄膜(結(jié)構(gòu)圖如圖5a)所示),測(cè)得器件PCE達(dá)到4.73%,將器件在52%的相對(duì)濕度下暴露長(zhǎng)達(dá)46 d,經(jīng)XRD測(cè)試后沒(méi)有其他雜相衍射峰,并且吸收光譜沒(méi)有顯著變化。為提高RP相PSCs的PCE,Zhang等[43]借助于硫氰酸銨(NH4SCN)并優(yōu)化其添加量通過(guò)一步旋涂方法制備了垂直取向的高度結(jié)晶的2D (PEA)2(MA)4 Pb5I16(n = 3,4,5)薄膜(如圖5b)所示),器件的PCE從最初的0.56%(不含NH4SCN)提高到11.01%,在濕度為55% ± 5%的空氣中存放160 h后,未密封的器件仍保留其初始PCE的78.5%。同時(shí),Qing等[19]選用DMSO和CH3NH3Cl(MACl)添加劑摻入前驅(qū)體溶液中,進(jìn)行一步旋涂和溶劑退火工藝獲得形貌均勻和高結(jié)晶度的 (PEA)2(MA)3Pb4I13薄膜;為增強(qiáng)鈣鈦礦的光吸收強(qiáng)度和穩(wěn)定性[3-44],用甲酰胺陽(yáng)離子(FA+)代替甲胺陽(yáng)離子(MA+),并用Cs+取代部分FA+獲得 (PEA)2(Cs0.15FA0.85)3Pb4I13 薄膜;(PEA)2(MA)3Pb4I13器件的PCE達(dá)到11.3%,平均PCE為10.7%(如圖5c)所示),在相對(duì)濕度為45%的空氣中,未封裝的器件存儲(chǔ)1個(gè)月后仍保持其初始PCE的50%,鈣鈦礦迅速降解;而(PEA)2(Cs0.15FA0.85)3Pb4I13 的PCE為12.1%,在暴露于相對(duì)濕度為45%的空氣中30 d后,器件的PCE仍可保持高達(dá)90%的使用壽命。
Fu等[45]在以往NH4SCN添加劑的基礎(chǔ)上加入NH4Cl添加劑通過(guò)提高2D鈣鈦礦結(jié)晶度以提高其PEC,基于旋涂法制備(PEA)2(MA)4Pb5I16薄膜的器件PCE高達(dá)14.1%(平均值為12.9% ± 0.8%);研究發(fā)現(xiàn)添加劑能夠增加鈣鈦礦的結(jié)晶度和生長(zhǎng)取向,從而改善載流子的傳輸性能,提高器件PCE(如圖5d)所示)。隨后Fu課題組[46]用4-氟苯乙胺(F-PEA)通過(guò)沉積法合成(F-PEA)2(MA)4Pb5I16薄膜,表明更大和更多的疏水性陽(yáng)離子均可改善鈣鈦礦的穩(wěn)定性,基于F-PEAI的準(zhǔn)2D鈣鈦礦器件PCE最高達(dá)到14.5%。在空氣濕度為40% ~ 50%,40 d后器件仍能夠維持初始PCE的90%;這種方法為開發(fā)和設(shè)計(jì)新型有機(jī)間隔基陽(yáng)離子用于合成高PCE和穩(wěn)定性的低維鈣鈦礦提供了基礎(chǔ)。
用氟代替氫原子可以增加材料的疏水性[47],氟化還可以改變分子能級(jí)、優(yōu)化膜的形態(tài),最終提高太陽(yáng)能電池的PCE[48-49]。理論計(jì)算預(yù)測(cè),氟摻雜的有機(jī)間隔基影響有機(jī)和無(wú)機(jī)亞晶格之間的相互作用[50]。實(shí)驗(yàn)研究方面,Shi等[51]通過(guò)一步旋涂合成(4FPEA)2(MA)4Pb5I16薄膜,測(cè)得器件的PCE達(dá)到了17.3%;基于4FPEA未封裝的器件在空氣中放置500 h后仍保持其初始PCE的93%,顯示良好的濕度穩(wěn)定性;在相同條件下,基于PEA器件的PCE下降至70%,PCE和穩(wěn)定性都低于4FPEA器件。Zhang等[20]通過(guò)改變制備工藝采用真空極化處理方法制備了(PEA)2(MA)n?1PbnI3n+1薄膜,通過(guò)這種新設(shè)計(jì),載流子提取得到了進(jìn)一步改善,測(cè)得器件最高PCE為18.04%,在80 ℃下放置180 h器件仍能維持初始PCE的97.7%;在超過(guò)半年的常規(guī)儲(chǔ)存后,仍能展現(xiàn)出初始PCE的96.1%,說(shuō)明其良好的穩(wěn)定性。
為探究無(wú)Pb無(wú)毒PSCs的性能,用同主族的Sn替換Pb進(jìn)行研究,Liao等[52]使用一步旋涂法合成了(PEA)2(FA)n?1SnnI3n+1薄膜,含有20% PEA的器件PCE達(dá)到5.94%;基于3D FASnI3未封裝PSCs的PCE在48 h內(nèi)下降到其原始PCE的23%,但含20% PEA的2D PSCs的PCE在100 h內(nèi)仍保持其初始PCE的96%;從3D到2D增強(qiáng)了材料穩(wěn)定性并有效地抑制了鈣鈦礦氧化和分解,從而實(shí)現(xiàn)了器件穩(wěn)定性,拓寬了純錫鈣鈦礦在太陽(yáng)能電池中的應(yīng)用范圍。
3.3 A′位其他銨類陽(yáng)離子
RP相2D PSCs中A′位研究最多的陽(yáng)離子是BA+和PEA+,為了探究PSCs的PCE、穩(wěn)定性和耐濕性開始尋找不同性能的銨陽(yáng)離子。Cheng等[53]調(diào)節(jié)前驅(qū)體與溶劑間相互作用借助熱旋涂法合成了具有受控量子阱取向、相純度高和晶粒尺寸均勻的(PA)2(MA)4Pb5I16薄膜(PA+為正丁銨陽(yáng)離子),器件的PCE最大達(dá)到10.41%(如圖6a)所示),在空氣中存儲(chǔ)500 h后,未封裝器件的PCE仍大于初始PCE的97%。Ma等[54]通過(guò)旋涂法將大有機(jī)陽(yáng)離子替換為小的PDA(PDA+為丙烷1,3-二銨陽(yáng)離子),以減少無(wú)機(jī)鈣鈦礦層之間的距離,從而降低了跨層電導(dǎo)率以提高器件的PCE,其PCE 為13.0%(如圖6b)所示),在存儲(chǔ)1 000 h以上時(shí),封裝的器件仍保持其初始PCE的90%,而未封裝的器件在70 ℃可以將其初始PCE保持100 h以上。Lai等[31]使用ThMA+(ThMA+:2-噻吩甲基銨)作為間隔陽(yáng)離子,添加甲基氯化銨(MACl)輔助通過(guò)旋涂法沉積高取向(ThMA)2(MA)2Pb3I10薄膜,得到具有接近單晶質(zhì)量的納米棒狀致密薄膜,測(cè)得器件的PCE為15%(如圖6 c)所示),在1 000 h的存儲(chǔ)時(shí)間后器件保留了初始PCE的90%。為進(jìn)一步探索新型有機(jī)銨間隔陽(yáng)離子對(duì)高效低維RP PSCs的作用,Chao等[55]使用短程有機(jī)銨間隔基:1-氨基-3-丁烯鹽酸鹽(BEACl)組成低維RP鈣鈦礦,短程有機(jī)銨陽(yáng)離子有助于形成具有光滑表面、高結(jié)晶度和低缺陷態(tài)密度的低維(BEA)2(MA)3Pb4I13薄膜,測(cè)得器件的PCE達(dá)到16.1%(如圖6d)所示),遠(yuǎn)高于同年基于(BA)2(MA)4Pb5I16的太陽(yáng)能電池器件的PCE(8.71%);在濕度為80%的條件下,鈣鈦礦薄膜在1年以上沒(méi)有明顯產(chǎn)生PbI2雜質(zhì),具有高穩(wěn)定性。
4 總結(jié)與展望
2D有機(jī)-無(wú)機(jī)雜化RP相鈣鈦礦比3D鈣鈦礦具有更高的穩(wěn)定性,有機(jī)陽(yáng)離子使其具有結(jié)構(gòu)靈活性,顯示出獨(dú)特的光學(xué)和電學(xué)性能。本文主要討論2D有機(jī)-無(wú)機(jī)雜化RP相鈣鈦礦結(jié)構(gòu)和薄膜制備方法,以及2D RP相鈣鈦礦在太陽(yáng)能電池中的應(yīng)用。
2D有機(jī)-無(wú)機(jī)雜化RP相鈣鈦礦材料還可以在以下幾個(gè)方面進(jìn)行深入探索:1)探索 2D 雜化RP相鈣鈦礦的晶體取向?qū)ζ骷实挠绊?,因?yàn)椴煌w取向引起結(jié)構(gòu)不同,最后使器件的效率產(chǎn)生差異;2)2D雜化RP相鈣鈦礦會(huì)導(dǎo)致光學(xué)帶隙的增加和電荷傳輸?shù)臏p少,進(jìn)而導(dǎo)致器件PCE的降低,應(yīng)探尋提高2D鈣鈦礦效率的材料;3)在提高鈣鈦礦材料光伏器件穩(wěn)定性和光電轉(zhuǎn)換效率時(shí),應(yīng)考慮2D和3D混合鈣鈦礦材料的性能研究;4)在環(huán)境污染方面,考慮無(wú)毒、無(wú)污染和可循環(huán)使用的鈣鈦礦材料。
參考文獻(xiàn):
[1] ? ?KOJIMA A,TESHIMA K,SHIRAI Y,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051.
[2] ? ?SAHLI F,WERNER J,KAMINO B A,et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials,2018,17(9):820-826.
[3] ? ?SALIBA M,MATSUI T,SEO J Y,et al. Cesium-containing triple cation perovskite solar cells:improved stability,reproducibility and high efficiency[J]. Energy & Environmental Science,2016,9(6):1989-1997.
[4] ? ?EPERON G E,LEIJTENS T,BUSH K A,et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science,2016,354(6314):861-865.
[5] ? ?SWARNKAR A,MARSHALL A R,SANEHIRA E M,et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science,2016,354(6308):92-95.
[6] ? ?ZHAO Q,HAZARIKA A,CHEN X H,et al. High efficiency perovskite quantum dot solar cells with charge separating heterostructure[J]. Nature Communications,2019,10:2842.
[7] ? ?LI Z,YANG M J,PARK J S,et al. Stabilizing perovskite structures by tuning tolerance factor:formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials,2016,28(1):284-292.
[8] ? ?TRAVIS W,GLOVER E N K,BRONSTEIN H,et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites:a revised system[J]. Chemical Science,2016,7(7):4548-4556.
[9] ? ?ZHENG X P,CHEN B,DAI J,et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature Energy,2017,2(7):17102.
[10] ?ZHANG F,BI D Q,PELLET N,et al. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science,2018,11(12):3480-3490.
[11] ?ZHANG F,WANG Z Q,ZHU H W,et al. Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials[J]. Nano Energy,2017,41:469-475.
[12] ?GUO J J,BAI Z C,MENG X F,et al. Novel dopant-free metallophthalocyanines based hole transporting materials for perovskite solar cells:The effect of core metal on photovoltaic performance[J]. Solar Energy,2017,155:121-129.
[13] ?LIU X C,ZHANG F,LIU Z,et al. Dopant-free and low-cost molecular “bee” hole-transporting materials for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry C,2017,5(44):11429-11435.
[14] ?BAI Y,DONG Q F,SHAO Y C,et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene[J]. Nature Communications,2016,7:12806.
[15] ?BELLA F,GRIFFINI G,CORREA-BAENA J P,et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers[J]. Science,2016,354(6309):203-206.
[16] ?JIANG Y,QIU L B,JUAREZ-PEREZ E J,et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation[J]. Nature Energy,2019,4(7):585-593.
[17] ?DOLZHENKO Y I,INABE T,MARUYAMA Y. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4[J]. Bulletin of the Chemical Society of Japan,1986,59(2):563-567.
[18] ?TSAI H,NIE W Y,BLANCON J C,et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature,2016,536(7616):312-316.
[19] ?QING J,LIU X K,LI M J,et al. Aligned and graded type-II ruddlesden-popper perovskite films for efficient solar cells[J]. Advanced Energy Materials,2018,8(21):1800185.
[20] ?ZHANG J,QIN J J,WANG M S,et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient,high-fill-factor solar cells[J]. Joule,2019,3(12):3061-3071.
[21] ?THRITHAMARASSERY GANGADHARAN D,MA D L. Searching for stability at lower dimensions:current trends and future prospects of layered perovskite solar cells[J]. Energy & Environmental Science,2019,12(10):2860-2889.
[22] ?ZHANG F,KIM D H,ZHU K. 3D/2D multidimensional perovskites:Balance of high performance and stability for perovskite solar cells[J]. Current Opinion in Electrochemistry,2018,11:105-113.
[23] ?KAGAN C R. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors[J]. Science,1999,286(5441):945-947.
[24] ?ISHIHARA T,TAKAHASHI J,GOTO T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4[J]. Solid State Communications,1989,69(9):933-936.
[25] ?WU X X,TRINH M T,NIESNER D,et al. Trap states in lead iodide perovskites[J]. Journal of the American Chemical Society,2015,137(5):2089-2096.
[26] ?ZHANG F,LU H P,TONG J H,et al. Advances in two-dimensional organic-inorganic hybrid perovskites[J]. Energy & Environmental Science,2020,13(4):1154-1186.
[27] ?MITZI D B,F(xiàn)EILD C A,HARRISON W T A,et al. Conducting tin halides with a layered organic-based perovskite structure[J]. Nature,1994,369(6480):467-469.
[28] ?MITZI D B. Solution-processed inorganic semiconductors[J]. Journal of Materials Chemistry,2004,14(15):2355.
[29] ?CALABRESE J,JONES N L,HARLOW R L,et al. Preparation and characterization of layered lead halide compounds[J]. Journal of the American Chemical Society,1991,113(6):2328-2330.
[30] ?CAO D H,STOUMPOS C C,F(xiàn)ARHA O K,et al. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society,2015,137(24):7843-7850.
[31] ?LAI H T,KAN B,LIU T T,et al. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J]. Journal of the American Chemical Society,2018,140(37):11639-11646.
[32] ?ZUO C T,SCULLY A D,VAK D,et al. Self-assembled 2D perovskite layers for efficient printable solar cells[J]. Advanced Energy Materials,2019,9(4):1803258.
[33] ?MAO L L,KENNARD R M,TRAORE B,et al. Seven-layered 2D hybrid lead iodide perovskites[J]. Chem,2019,5(10):2593-2604.
[34] ?WU G B,LI X,ZHOU J Y,et al. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing[J]. Advanced Materials,2019,31(42):1903889.
[35] ?ZHOU N,SHEN Y H,LI L,et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells[J]. Journal of the American Chemical Society,2018,140(1):459-465.
[36] ?ZHANG X,REN X D,LIU B,et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science,2017,10(10):2095-2102.
[37] ?GAO L G,ZHANG F,CHEN X H,et al. Enhanced charge transport by incorporating formamidinium and cesium cations into two-dimensional perovskite solar cells[J]. Angewandte Chemie,2019,131(34):11863-11867.
[38] ?JIANG Y Y,HE X Y,LIU T F,et al. Intralayer A-site compositional engineering of ruddlesden-popper perovskites for thermostable and efficient solar cells[J]. ACS Energy Letters,2019,4(6):1216-1224.
[39] ?LIAN X M,CHEN J H,ZHANG Y Z,et al. Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells[J]. Journal of Materials Chemistry A,2019,7(33):19423-19429.
[40] ?CAO D H,STOUMPOS C C,YOKOYAMA T,et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites[J]. ACS Energy Letters,2017,2(5):982-990.
[41] ?CHEN Y N,SUN Y,PENG J J,et al. Composition engineering in two-dimensional Pb-Sn-alloyed perovskites for efficient and stable solar cells[J]. ACS Applied Materials & Interfaces,2018,10(25):21343-21348.
[42] ?SMITH I C,HOKE E T,SOLIS-IBARRA D,et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition,2014,53(42):11232-11235.
[43] ?ZHANG X Q,WU G,F(xiàn)U W F,et al. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%[J]. Advanced Energy Materials,2018,8(14):1702498.
[44] ?EPERON G E,STRANKS S D,MENELAOU C,et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science,2014,7(3):982.
[45] ?FU W F,WANG J,ZUO L J,et al. Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency[J]. ACS Energy Letters,2018,3(9):2086-2093.
[46] ?FU W F,LIU H B,SHI X L,et al. Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells[J]. Advanced Functional Materials,2019,29(25):1900221.
[47] ?BI D Q,GAO P,SCOPELLITI R,et al. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3[J]. Advanced Materials,2016,28(15):2910-2915.
[48] ?DAI S X,ZHAO F W,ZHANG Q Q,et al. Fused nonacyclic electron acceptors for efficient polymer solar cells[J]. Journal of the American Chemical Society,2017,139(3):1336-1343.
[49] ?LI X J,YAO J,ANGUNAWELA I,et al. Improvement of photovoltaic performance of polymer solar cells by rational molecular optimization of organic molecule acceptors[J]. Advanced Energy Materials,2018,8(23):1800815.
[50] ?LERMER C,BIRKHOLD S T,MOUDRAKOVSKI I L,et al. Toward fluorinated spacers for MAPI-derived hybrid perovskites:synthesis,characterization,and phase transitions of (FC2H4NH3)2PbCl4[J]. Chemistry of Materials,2016,28(18):6560-6566.
[51] ?SHI J S,GAO Y R,GAO X,et al. Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability[J]. Advanced Materials,2019,31(37):1901673.
[52] ?LIAO Y,LIU H,ZHOU W,et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance [J]. Journal of the American Chemical Society,2017,139(19):6693-6699.
[53] ?CHENG P R,XU Z,LI J B,et al. Highly efficient ruddlesden-popper halide perovskite PA2MA4Pb5I16 solar cells[J]. ACS Energy Letters,2018,3(8):1975-1982.
[54] ?MA C Q,SHEN D,NG T W,et al. 2D perovskites with short interlayer distance for high-performance solar cell application[J]. Advanced Materials,2018,30(22):1800710.
[55] ?CHAO L F,NIU T T,XIA Y D,et al. Efficient and stable low-dimensional ruddlesden-popper perovskite solar cells enabled by reducing tunnel barrier[J]. The Journal of Physical Chemistry Letters,2019,10(6):1173-1179.
[責(zé)任編輯 ? ?田 ? ?豐]