国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

葡萄糖超臨界水氣化制氫Ni/Zr(Ce,Y)O2-δ催化劑改性研究

2020-12-14 03:50:33連曉燕朱超黃建兵
當(dāng)代化工 2020年10期
關(guān)鍵詞:水合制氫超臨界

連曉燕 朱超 黃建兵

摘 ? ? ?要:采用共沉淀法制備了ZnO或Co改性的Ni/Zr(Ce,Y)O2-δ(NZCY、ZnO-NZCY和Co-NZCY)催化劑,將其應(yīng)用于間歇式反應(yīng)釜進(jìn)行葡萄糖超臨界水氣化(SCWG)制氫研究。反應(yīng)條件:進(jìn)料質(zhì)量分?jǐn)?shù)10%、溫度500 ℃、壓力23~24 MPa。結(jié)果表明:使用NZCY后,葡萄糖SCWG的氫氣產(chǎn)量為17.01 mol·kg-1,為不加催化劑的7.62倍,碳?xì)饣蕿?5.46%,使用ZnO和Co改性的催化劑后碳?xì)饣史謩e繼續(xù)增至79.28%和78.54%。使用Co-NZCY后氫氣產(chǎn)量繼續(xù)增至18.46 mol·kg-1,略高于ZnO-NZCY,但甲烷產(chǎn)量略低于ZnO-NZCY??梢?,Co利于水氣轉(zhuǎn)換反應(yīng),而ZnO利于甲烷化反應(yīng)。采用XRD、SEM、N2吸脫附等手段對催化劑進(jìn)行表征,發(fā)現(xiàn)催化劑具有良好的水熱穩(wěn)定性和抗積碳性,可歸因于ZnO或Co與Ni單質(zhì)以及Zr(Ce,Y)O2-δ載體之間的協(xié)同催化作用。

關(guān) ?鍵 ?詞:生物質(zhì);催化劑;超臨界水氣化(SCWG);制氫;水熱穩(wěn)定性;抗積碳性

中圖分類號:TK 6 ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ?文章編號: 1671-0460(2020)10-2142-07

Abstract: In order to improve the catalytic effect of Ni/Zr(Ce,Y)O2-δ (NZCY) catalyst on supercritical water gasification (SCWG) of glucose for hydrogen production, a series of ZnO or Co modified NZCY(ZnO-NZCY or Co-NZCY)catalysts were prepared by carbonate co-precipitation. The catalytic gasification experiments were conducted in a batch reactor under conditions of 500 ℃, 23~24 MPa and feed mass fraction of 10%. The gasification results demonstrated that the hydrogen yield of 17.01 mol·kg-1, about 7.62 times of that without catalyst, was obtained with NZCY catalyst, and carbon gasification efficiency was 75.46%. After using ZnO and Co modified catalysts, carbon gasification efficiency increased to 79.28% and 78.54%, respectively. Hydrogen yield further increased to 18.46 mol·kg-1 with Co-NZCY catalyst,slightly higher than that of ZnO-NZCY, but methane yield was slightly lower than that of ZnO-NZCY. It can be concluded that Co is conducive to water-gas conversion reaction; however, ZnO is conducive to methanation reaction. XRD, SEM, N2 adsorption and desorption, TG and XPS were adopted to characterize the catalysts, and the results demonstrated that the catalysts exhibited excellent hydrothermal stability and anti-carbon performance, attributed to the synergistic catalysis between ZnO or Co, Ni and Zr(Ce,Y)O2-δ carrier.

Key words: Biomass; Catalyst; Supercritical water gasification (SCWG); Hydrogen production; Hydrothermal stability; Anti-carbon performance

氫氣作為一種優(yōu)質(zhì)、清潔、高效的理想能源,具有替代傳統(tǒng)化石燃料的潛力。然而,目前工業(yè)規(guī)模制氫主要依賴于化石燃料原料[1]。生物質(zhì)超臨界水氣化(SCWG)制氫技術(shù)可以實(shí)現(xiàn)“碳中和”和接近零污染,引起了廣泛的關(guān)注[2-5]。在生物質(zhì)SCWG工藝中采用合適的催化劑,可在溫和的反應(yīng)條件顯著提高氣化效率和氫氣產(chǎn)率。鎳基催化劑因其成本低、催化活性高而被廣泛應(yīng)用。然而多數(shù)鎳催化劑及其載體在SCWG過程中會因燒結(jié)和積碳失活[6-9]。

大量研究表明,含有Zr、Ce、Y組元的載體可兼顧高催化活性、高水熱穩(wěn)定性和抗積碳能力的優(yōu)良性能。ZHU[10]等采用超臨界水合成法制備的Ni/ZrO2催化劑對甘油SCWG具有優(yōu)異的水熱穩(wěn)定性和抗結(jié)焦能力。LU[11]等發(fā)現(xiàn)CeO2可除去葡萄糖SCWG過程中鎳基催化劑的表面積碳。AZADI[12]等研究了44種載體對鎳基催化劑催化葡萄糖SCWG的影響,發(fā)現(xiàn)在ZrO2中引入Y2O3,形成穩(wěn)定的Y2O3-ZrO2固溶體,可提高Ni/ZrO2的催化活性。此外,研究發(fā)現(xiàn)引入二次金屬或者金屬氧化物如Co、ZnO、Cu等作為助劑可進(jìn)一步提高鎳基催化劑的活性。KOU[13]等采用溶膠-凝膠法制備了不同助劑(Co、Ce、La、Y、Mg)改性的Ni/ZrO2催化劑,發(fā)現(xiàn)使用Ni-Co/ZrO2后含油廢水SCWG的碳?xì)饣蚀蟠筇岣?。李俊磊[14]等采用等體積浸漬法制備了Ni/Al2O3、Fe/Al2O3、CoMo/Al2O3和NiCo/Al2O3催化劑,研究其對甘油水蒸氣重整制氫反應(yīng)的催化效果,發(fā)現(xiàn)NiCo/Al2O3的催化效果最好。MASTULI[15]等采用催化劑(20NiO/MgO、20CuO/MgO和20ZnO/MgO)在超臨界水中催化油棕櫚葉氣化制氫,發(fā)現(xiàn)20ZnO/MgO的氫氣產(chǎn)率最高。

由于ZrO2、Y2O3和CeO2共同作為葡萄糖SCWG鎳基催化劑載體的研究報(bào)道尚少見,故選取摻雜的Zr(Ce,Y)O2-δ為載體,以綜合利用ZrO2、CeO2和Y2O3在保證Ni催化劑的活性、水熱穩(wěn)定性和抗積碳性方面的協(xié)同作用。為進(jìn)一步提高氣化率和氫氣產(chǎn)率,選取Co和ZnO作為助劑,采用碳酸鹽共沉淀法制備了ZnO或Co改性的Ni/Zr(Ce,Y)O2-δ催化劑,選取葡萄糖為生物質(zhì)模型化合物,在高溫高壓釜式反應(yīng)器中進(jìn)行SCWG實(shí)驗(yàn)。采用XRD、SEM、TG等對催化劑進(jìn)行表征分析,為生物質(zhì)SCWG制氫催化劑的研究提供了指導(dǎo)。

1 ?實(shí)驗(yàn)部分

1.1 ?材料

六水合硝酸鎳、五水合硝酸鋯、六水合硝酸鈰、六水合硝酸釔、六水合硝酸鋅、六水合硝酸鈷、無水碳酸鈉、葡萄糖,以上試劑均屬于分析純,購買于國藥集團(tuán)化學(xué)試劑有限公司。

1.2 ?催化劑的制備

Ni/Zr(Ce,Y)O2-δ(NZCY)及ZnO或Co改性的Ni/Zr(Ce,Y)O2-δ(ZnO-NZCY或Co-NZCY)催化劑根據(jù)前期的研究[16]采用碳酸鹽共沉淀法制備,具體步驟如下:以相應(yīng)的金屬硝酸鹽為原料,配制一定量的摩爾濃度為0.1 mol·L-1的混合金屬離子溶液(其中Ni2+、Zr4+、Ce3+、Y3+的摩爾比為5∶4∶4∶2;對于改性樣品,控制Zn2+或Co2+在總金屬離子中摩爾分?jǐn)?shù)為5%);配制一定量的摩爾濃度為0.2 mol·L-1的Na2CO3溶液作為沉淀劑,其中CO32-與金屬離子的摩爾比為2∶1;將混合金屬離子溶液通過分液漏斗逐滴滴入磁力攪拌器持續(xù)攪拌的40 ℃的Na2CO3溶液中;溶液老化過夜后用去離子水和無水乙醇多次洗滌抽濾;將濾餅于105 ℃真空干燥過夜;將干燥后的沉淀物充分研磨,過200目篩后置于馬弗爐中500 ℃焙燒3 h;將焙燒后的氧化物置于管式爐中650 ℃下通H2還原2.5 h,氫氣流量50 mL·min-1;將還原后的催化劑密封保存待用。

1.3 ?活性評價(jià)

催化劑的活性測試在高溫高壓釜式反應(yīng)系統(tǒng)中進(jìn)行,見圖1。反應(yīng)器材質(zhì)為Inconel 625合金,容積為10 mL。選取葡萄糖作為生物質(zhì)模型化合物,首先將1.5 g質(zhì)量分?jǐn)?shù)為10%的葡萄糖水溶液加入反應(yīng)器中,進(jìn)料干質(zhì)與催化劑的質(zhì)量比為1∶1;然后通過Ar吹掃置換反應(yīng)器中的空氣,并給予一定的初壓;將反應(yīng)器移入已加熱到設(shè)定溫度的電爐中,反應(yīng)器內(nèi)的平均升溫速率約為70 ℃·min-1,當(dāng)反應(yīng)器內(nèi)反應(yīng)溫度達(dá)到500 ℃、壓力達(dá)23 MPa時(shí),開始計(jì)時(shí),停留時(shí)間為30 min。整個(gè)反應(yīng)過程中,反應(yīng)溫度在500±5 ℃內(nèi)波動,反應(yīng)壓力23~24 MPa。反應(yīng)結(jié)束后,通過水冷將反應(yīng)器冷卻至常溫,平均冷卻速率約為200 ℃·min-1。最后,用氣囊收集氣體產(chǎn)物,并通過氣相色譜儀(Agilent 7890A)分析其具體組成。

1.4 ?催化劑的表征

催化劑的晶相分析采用X射線衍射儀(XRD),Cu靶,Kα 輻射,掃描角度為(10~90)o。利用ASAP 2020儀對催化劑的N2吸附/解吸等溫線、比表面積和孔徑分布進(jìn)行了分析。測試前先將樣品在300℃脫氣處理120 min。分別用Brunauere- Emmette-Teller(BET)法和Barrette-Joynere-Halenda(BJH)法測定了催化劑的比表面積和孔徑分布。用JEOL-JSM-6700F場發(fā)射掃描電鏡(SEM)觀察了催化劑的表面形貌。采用DSC-TG測定儀,在空氣氣氛中進(jìn)行TG分析,升溫速率為10 ℃·min-1, ? 20~ 1 000℃,通過分析軟件得DTG曲線。用X射線光電子能譜儀(XPS)分析表面化學(xué)環(huán)境。

2 ?結(jié)果與討論

2.1 ?催化活性

氣化效果見圖2。

從圖2(a)可知,經(jīng)NZCY催化后,葡萄糖SCWG的碳?xì)饣蕪?6.85%增至75.46%,總氣化率從33.49%增至94.98%,氫氣選擇性從12.62%增至34.09%。使用ZnO 和Co改性的催化劑后,碳?xì)饣史謩e繼續(xù)增至79.28%和78.54%,總氣化率分別繼續(xù)增至99.86%和100.47%,氫氣選擇性變化不大。因CeO2豐富的氧空穴和較高的儲氧能力有助于催化劑表面氧化還原反應(yīng)的發(fā)生,可提高催化劑的抗積碳能力,從而可以提高碳?xì)饣蔥11, 18, 19]。從圖2(b)可知,NZCY催化后氫氣產(chǎn)量為17.01 mol·kg-1,為無催化的7.62倍,經(jīng)Co改性后氫氣產(chǎn)量繼續(xù)增至18.46 mol·kg-1,略高于ZnO-NZCY,而甲烷產(chǎn)量略低于ZnO-NZCY,可見,Co利于水氣轉(zhuǎn)換反應(yīng)(H2O+C→CO+H2,2H2O+C→CO2+2H2,CO+H2O→CO2+H2),而ZnO利于甲烷化反應(yīng)(CO+3H2→H2O+CH4,CO2+4H2→2H2O+CH4)。

2.2 ?催化劑的結(jié)構(gòu)形貌

2.2.1 ?晶相

圖3為催化劑的XRD圖譜。由圖3可知,催化劑經(jīng)焙燒后的圖譜中存在顯著的NiO的特征峰,但還原后(使用前),NiO的特征峰消失。催化劑使用前后在2θ為44.5°和76.4°出現(xiàn)了Ni0的兩個(gè)特征峰,分別對應(yīng)(1, 1, 1)和(2, 2, 0)晶面。從圖3(b、c)中可以看出,2θ<60°時(shí),CeYO和ZrCeO的晶面衍射峰強(qiáng)度變化較為明顯,可能是由于催化劑還原過程及反應(yīng)富氫氣氛中Ce4+被還原為Ce3+引起的晶格變化所致。

圖3(c)中催化劑經(jīng)使用后出現(xiàn)較為明顯的單質(zhì)Co的衍射峰,可見氣化產(chǎn)生的氫氣進(jìn)一步將Co2O3全部還原為Co。由于Co與Ni的峰相鄰極近,也可能為Co-Ni合金的峰。使用后的XRD圖譜中沒有發(fā)現(xiàn)明顯的碳峰,可能是由于葡萄糖SCWG過程積碳極少或積碳呈無定型態(tài)。

[5] RODRIGUEZ C C, KRUSE A. Supercritical water gasification of biomass for hydrogen production – Review[J]. The Journal of Supercritical Fluids, 2018,133:573-590.

[6] LI S, GUO L J. Stability and activity of a co-precipitated Mg promoted Ni/Al2O3 catalyst for supercritical water gasification of biomass[J]. International Journal of Hydrogen Energy, 2019, 44(30): ? ? 15842- 15852.

[7] HOSSAIN M Z, CHOWDHURY M B I, CHARPENTIER P A. Effect of surface acidity of Al2O3 supported metal catalysts on catalytic activity and carbon deposition during SCWG of glucose[J]. Biomass and Bioenergy, 2019,124:142-150.

[8] KANG K, AZARGOHAR R, DALAI A K, et al. Systematic screening and modification of Ni based catalysts for hydrogen generation from supercritical water gasification of lignin[J]. Chemical Engineering Journal, 2016, 283:1019-1032.

[9] HUANG J B, ZHU C, LIAN X Y, et al. Catalytic supercritical water gasification of glucose with in-situ generated nickel nanoparticles for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(38):21020-21029.

[10] ZHU B, LI S, WANG W J, et al. Supercritical water synthesized Ni/ZrO2 catalyst for hydrogen production from supercritical water gasification of glycerol[J]. International Journal of Hydrogen Energy, 2019, 44(59):30917-30926.

[11] LU Y J, ZHU Y M, LI S, et al. Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support[J]. Biomass and Bioenergy, 2014, 67:125-136.

[12] AZADI P, AFIF E, AZADI F, et al. Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose[J]. Green Chemistry, 2012, 14:1766.

[13] KOU J J, XU J L, JIN H, et al. Evaluation of modified Ni/ZrO2 catalysts for hydrogen production by supercritical water gasification of oil-containing wastewater[J]. International Journal of Hydrogen Energy, 2018, 43(30):13896-13903.

[14] 李俊磊,李曉香,李冬鋒,等.甘油水蒸氣重整制氫Ni、Co、Fe催化劑的研究[J].當(dāng)代化工,2014,43(4):486-488.

[15]MASTULI M S, KAMARULZAMAN N, KASIM M F, et al. Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(16):11215-11228.

[16] HUANG J B, LIAN X Y, WANG L, et al. Hydrogen production from glucose by supercritical water gasification with Ni/Zr(Ce,Y)O2-δ catalysts[J]. International Journal of Hydrogen Energy, 2017,42(7): 4613-4625.

[17] CORTRIGHT R D, DAVDA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418(6901):964-967.

[18] LU Y J, LI S, GUO L J, et al. Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts[J]. International Journal of Hydrogen Energy, 2010, 35(13):7161-7168.

[19]LU Y J, LI S, GUO L J. Hydrogen production by supercritical water gasification of glucose with Ni/CeO2/Al2O3:Effect of Ce loading[J]. Fuel, 2013, 103:193-199.

[20] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations) 1984 [J]. Pure and Applied Chemistry, 1985, 57:603-619.

[21]CHUEH W C, FALTER C, ABBOTT M, et al. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichio- metric Ceria[J]. Science, 2010, 330(6012):1797-1801.

猜你喜歡
水合制氫超臨界
超臨界CO2在頁巖氣開發(fā)中的應(yīng)用研究進(jìn)展
云南化工(2021年5期)2021-12-21 07:41:20
紅球菌菌株腈水合酶提取方法優(yōu)化
制氫工藝技術(shù)比較
600MW超臨界機(jī)組熱經(jīng)濟(jì)性定量分析
高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
1200MW等級超超臨界機(jī)組可行性研究
電解制氫設(shè)備開發(fā)入選“863”
低溫與特氣(2014年4期)2014-03-20 13:36:50
花生蛋白水合性質(zhì)的研究進(jìn)展
二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
CTAB-Ti-Co-β沸石的制備、表征及其對環(huán)己烯水合催化性能
疏勒县| 沧州市| 平利县| 巴塘县| 彰武县| 吴忠市| 封丘县| 恩平市| 郎溪县| 江门市| 正宁县| 满城县| 唐海县| 响水县| 襄城县| 衡阳市| 呈贡县| 织金县| 恩施市| 绩溪县| 肃宁县| 绥德县| 曲阜市| 乐陵市| 聂荣县| 忻城县| 莲花县| 大英县| 武强县| 岳阳县| 甘洛县| 阿拉善左旗| 南和县| 石首市| 纳雍县| 黎平县| 大港区| 门源| 洛浦县| 博爱县| 霍林郭勒市|