国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

淺談小學(xué)數(shù)學(xué)教學(xué)中邏輯規(guī)律的引入

2020-12-07 13:22:30劉志蘭
魅力中國 2020年38期

劉志蘭

(河北省張家口市宣化區(qū)龐家堡鎮(zhèn)東風(fēng)路小學(xué),河北 張家口 075100)

一、知識結(jié)構(gòu)、邏輯推理及相互間的關(guān)系

在小學(xué)數(shù)學(xué)教學(xué)中,構(gòu)建良好的數(shù)學(xué)知識結(jié)構(gòu)是培養(yǎng)發(fā)展學(xué)生邏輯思維能力的一個重要途徑。烏辛斯基早就指出:“所謂智力發(fā)展不是別的,只是很好組織起來的知識體系。”而知識體系因為其內(nèi)在的邏輯結(jié)構(gòu)而獲得邏輯意義。數(shù)學(xué)中基本的概念、性質(zhì)、法則、公式等都是遵循科學(xué)的邏輯性構(gòu)成的。

“數(shù)學(xué)作為一種演繹系統(tǒng),它的重要特點是,除了它的基本概念以外,其余一切概念都是通過定義引入的?!边@種演繹系統(tǒng)一方面使得數(shù)學(xué)內(nèi)容以邏輯意義相關(guān)聯(lián)。另一方面從知識結(jié)構(gòu)所蘊(yùn)含的邏輯思維形式中得到的研究方法(如邏輯推理等),再去獲取更多的知識。如學(xué)習(xí)“能同時被2、5 整除的數(shù)的特征”時,我們是通過演繹推理得到的:

所有能被2 整除的數(shù)的末尾是0、2、4、6、8;

所有能被5 整除的數(shù)的末尾是0、5;

因此,能同時被2、5 整除的數(shù)的末尾是0。數(shù)學(xué)中的這種推理形式一旦被學(xué)生所熟識,他們又會運用它在已有知識的基礎(chǔ)上做出新的判斷和推理。學(xué)生知識的習(xí)得和構(gòu)建,主要依賴認(rèn)知結(jié)構(gòu)中原有的適當(dāng)觀念,去影響和促進(jìn)新的理解、掌握,溝通新上知識的互相聯(lián)系,形成新的認(rèn)知結(jié)構(gòu)系統(tǒng),這是數(shù)學(xué)知識學(xué)習(xí)過程中的同化現(xiàn)象。它包含三方面的內(nèi)容:一是新舊知識建立下位聯(lián)系;二是新舊知識建立上位聯(lián)系;三是新舊知識建立聯(lián)合意義。這三方面與邏輯結(jié)構(gòu)中的三類推理恰好建立相應(yīng)的聯(lián)系。推理,是從一個或幾個已知的判斷得出新的判斷的過程。通常有:演繹推理(從一般性的前提推出特殊性結(jié)論的推理);歸納推理(從特殊的前提推出一般結(jié)論的推理);類比推理(從特殊的前提推出特殊結(jié)論的推理或從一般前提推出一般結(jié)論的推理)。

在教學(xué)的過程中,教師結(jié)合教學(xué)內(nèi)容,有意識地把邏輯規(guī)律引入教學(xué),注意示范、點撥,顯然是有利于發(fā)展學(xué)生的邏輯思維能力。

二、邏輯推理在教與學(xué)過程中的應(yīng)用

如果原有的認(rèn)知結(jié)構(gòu)觀念極其抽象,概括性和包容性高于新知識,新舊知識建立下位聯(lián)系、新知識從屬于舊知識時,那么宜適當(dāng)運用演繹推理的規(guī)則,由一般性的前提推出特殊性的結(jié)論。

“演繹的實質(zhì)就是認(rèn)為每一特殊(具體)情況應(yīng)當(dāng)看作一般情況的特例”。為了得以關(guān)于某一對象的具體知識,先要找出這一對象的類(最近的類概念),再將這一對象的類的屬性應(yīng)用于哪個對象。如:運用乘法分配律簡便運算時,學(xué)生必須以清晰、穩(wěn)固的乘法分配律知識為基礎(chǔ),才能得出:

999×999+999=999×(999+1)=999000

這里999×999+999=999×(999+1)是根據(jù)一般性判斷a×c+b×c=(a+b)×c推出的。當(dāng)學(xué)生理解這種推理的順序,且懂得要使演繹推理正確,首先要前提正確,并學(xué)會使用這樣的語言:

只有兩個約數(shù)(1 和它本身)的數(shù)是質(zhì)數(shù);

101 只有兩個約數(shù);

101 是質(zhì)數(shù)。

那么,符合形式邏輯的演繹法則就初步被學(xué)生所掌握。

在知識層面中,這種類屬過程的多次進(jìn)行,就導(dǎo)致知識不斷產(chǎn)生新的層次,其邏輯結(jié)構(gòu)就越加嚴(yán)密,新的知識也就會不斷分化和精確化,就可以逐漸演繹出新的類屬性的具體知識。教學(xué)中正確把握這種結(jié)構(gòu),用演繹推理的手段組織學(xué)習(xí)過程,不但能培養(yǎng)學(xué)生的思考方法,理解內(nèi)容的邏輯結(jié)構(gòu),還能提高學(xué)生的模式辨認(rèn)能力,縮短推理過程,快速找到解題途徑。

在新舊知識建立下位聯(lián)系時,整個類屬過程可分化為兩種情況。

(一)當(dāng)新知識從屬于舊知識時,新知識只是舊知識的派生物??梢詮脑姓J(rèn)識結(jié)構(gòu)中直接推衍。新知識可以直接納入原有的認(rèn)知結(jié)構(gòu)中。

如學(xué)生已學(xué)過兩位數(shù)的筆算,清晰而穩(wěn)固地掌握了加法的計算法則,現(xiàn)在要學(xué)三、四位數(shù)的加法,只要讓學(xué)生思考并回憶兩位數(shù)加法計算的表象結(jié)構(gòu),適當(dāng)?shù)攸c撥一下三、四位數(shù)加法與兩位數(shù)加法有相同的筆算法則,學(xué)生就能順利解決新課題。新知識很快被舊知識同化,并使原有筆算法則得到充實新的知識獲得意義。雖然這些知識的外延得到擴(kuò)大,但內(nèi)涵不變。

教學(xué)中,掌握這些知識的內(nèi)涵的邏輯結(jié)構(gòu),就會有一個清晰的教學(xué)思路,就會自覺地運用演繹推理的手段,與學(xué)生一起愉快地順利地進(jìn)行下位學(xué)習(xí)。就不會在講三、四位數(shù)加法時,著眼于竭力以三、四位數(shù)加法為例證,說明加法的計算法則。

(二)新知識類屬于原有較高概括性的觀念中,但不能從原有上位觀念中直接派生出來,而需要對原有知識做部分的改組,才能同化新知識。新知識納入原有知識后,原有知識得到擴(kuò)展、加深、限制、修飾和精確化。新舊知識之間處于相關(guān)類屬。這時,運用演繹推理之前,先要對原有知識做部分改組,請出一個“組織者”,再步步演繹。(為新知識生長提供觀念上的“固定點”,增加新舊知識間的可辨性,充當(dāng)新舊知識聯(lián)系的“認(rèn)知橋梁”,奧蘇伯爾稱它為“先行組織者”簡稱“組織者”。)

如果原有認(rèn)識結(jié)構(gòu)已形成幾個觀念,要在原有的觀念上學(xué)習(xí)一個抽象、概括和包容性高于舊知識的新知識,即新舊知識建立上位聯(lián)系時,那么適當(dāng)運用歸納推理的規(guī)則,可由特殊的前提推出一般性的結(jié)論。當(dāng)需要研究某一對象集時,先要研究各個對象(情況),從中找出整個對象集所具有的性質(zhì),這就是歸納推理。歸納推理的基礎(chǔ)是觀察和試驗,是從具體的、特殊的情況過渡到一般情況(結(jié)論、推論)。

教材中關(guān)于概念的形成,運算法則和運算定律、性質(zhì)得出,一般是通過歸納推理得到的。如分?jǐn)?shù)的初步認(rèn)識。在學(xué)習(xí)前,學(xué)生認(rèn)知結(jié)構(gòu)中已有了分?jǐn)?shù)的某些具體經(jīng)驗,加上教材提供的和教師列舉的生活實例和圖形。如:一個蘋果平均分成兩份,每份是它的1/2,一根鋼管平均截成三段,每段是它的1/3,一張紙平均分成4 份,每份是這張紙的1/4……所有這些操作和演示都讓學(xué)生認(rèn)識到幾分之一這個概念。隨后,再認(rèn)識幾分之幾。這種不完全的歸納推理,是在考察了問題的若干個具體特例后,從中找出的規(guī)律。(嚴(yán)格地說,由不完全歸納法推理得到的結(jié)論還需要論證,才能判定它的正確性。)

運用歸納推理傳授知識時,要根據(jù)學(xué)生的實際經(jīng)驗,選取典型的特例,并能夠通過典型特例的推理得出一般性的結(jié)論。又要用這個“一般結(jié)論”,去解決具體特例。在教與學(xué)的進(jìn)程中,歸納和演繹不是孤立地出現(xiàn)的,它們緊密交織在一起。

余干县| 申扎县| 武平县| 江门市| 湄潭县| 于田县| 永登县| 万源市| 方城县| 唐山市| 马关县| 灵宝市| 荔浦县| 杂多县| 成武县| 田阳县| 简阳市| 平罗县| 体育| 南澳县| 周口市| 长治县| 太仆寺旗| 仁化县| 南乐县| 德安县| 稷山县| 遵义市| 扶余县| 昌黎县| 金川县| 山阴县| 宜宾县| 徐水县| 政和县| 新宾| 建德市| 忻城县| 蓬安县| 襄城县| 宁国市|