李維銀,張永莉,馬海軍,張 莎,海 蓮
貴金屬團(tuán)簇在染料敏化太陽(yáng)能電池中的研究進(jìn)展
李維銀,張永莉,馬海軍,張 莎,海 蓮
(北方民族大學(xué) 電氣信息工程學(xué)院 物理與光電信息功能材料重點(diǎn)實(shí)驗(yàn)室,銀川 750021)
貴金屬團(tuán)簇可用作太陽(yáng)能電池的染料敏化劑。綜述了銀、金、銅、銀-金和銀-銅團(tuán)簇的制備方法、團(tuán)簇的粒徑和紫外-可見吸收光譜特征,比較了幾種貴金屬團(tuán)簇敏化太陽(yáng)能電池的性能。對(duì)比表明,雙金屬團(tuán)簇作為染料敏化劑時(shí)比單金屬團(tuán)簇具有更好的性能,并可降低成本。要實(shí)現(xiàn)貴金屬團(tuán)簇的實(shí)際應(yīng)用,需加強(qiáng)在合成方法、電極的制備和電解液在電池中的作用機(jī)理等方面的研究。
太陽(yáng)能電池;貴金屬團(tuán)簇;染料敏化劑;性能;光電轉(zhuǎn)化效率
為滿足不斷增長(zhǎng)的能源需求和解決化石燃料對(duì)環(huán)境的影響,人們?cè)诓粩嗟貙ふ液烷_發(fā)新能源[1-2]。太陽(yáng)能電池技術(shù)通過光伏系統(tǒng)將太陽(yáng)能轉(zhuǎn)化成電能,是當(dāng)前最重要的新能源之一。在第三代太陽(yáng)能電池中,染料敏化太陽(yáng)能電池因制作工藝簡(jiǎn)單、成本低、電池材料來源豐富,成為今后發(fā)展趨勢(shì)之一。
染料敏化太陽(yáng)能電池最早是1991年由O'Regan等[3]提出的,其采用TiO2電極,涂上有機(jī)染料作為光敏化劑。染料敏化劑受太陽(yáng)光激發(fā)產(chǎn)生電子,再將產(chǎn)生的電子輸入到半導(dǎo)體(如TiO2)的導(dǎo)帶中實(shí)現(xiàn)光伏轉(zhuǎn)化,在此過程中染料敏化劑對(duì)光的吸收能力是整個(gè)電池效率的關(guān)鍵因素[4]。目前,效率較高的染料大多是以N3[5]、N719[6]為代表的釕系多吡啶配合物。雖然它們的光電轉(zhuǎn)化效率均超過10%,但是這些染料摩爾消光系數(shù)較低、穩(wěn)定性也較差。后來發(fā)展了以Z907[7]為代表的穩(wěn)定性較高的兩親性染料,但摩爾消光系數(shù)還是較低;Bai等[8]制備了摩爾消光系數(shù)較高的染料C101。由于釕系多吡啶染料成本較高,穩(wěn)定性較低,因此研發(fā)成本較低、穩(wěn)定性較高的染料成為本領(lǐng)域的熱點(diǎn),如蔣生輝等[9]研制了一種噻吩-三苯胺染料,光電轉(zhuǎn)化效率達(dá)9.1%。
近年來,對(duì)貴金屬團(tuán)簇光學(xué)性能的理論研究發(fā)現(xiàn),貴金屬團(tuán)簇在可見光范圍內(nèi)具有吸收性能[10-23]。實(shí)驗(yàn)上實(shí)現(xiàn)了貴金屬團(tuán)簇作為染料敏化劑制備的太陽(yáng)能電池[24-34],其中一種谷胱甘肽保護(hù)的金團(tuán)簇制備的太陽(yáng)能電池的轉(zhuǎn)化效率高于2%[24]。雙金屬團(tuán)簇敏化劑太陽(yáng)能電池是當(dāng)前的研究熱點(diǎn)。Kobayashi等[35]制備了一種雙金屬金-銀團(tuán)簇,為雙金屬團(tuán)簇的應(yīng)用提供了基礎(chǔ);本團(tuán)隊(duì)研究[36-38]發(fā)現(xiàn),相比于單一金屬團(tuán)簇敏化太陽(yáng)能電池,雙金屬團(tuán)簇敏化太陽(yáng)能電池提高了電池的短路電流密度和光電轉(zhuǎn)化效率,并且保持了電流的穩(wěn)定性。金屬團(tuán)簇作為敏化劑大大降低了太陽(yáng)能電池的成本,并且提高了電池的穩(wěn)定性。本文綜述貴金屬團(tuán)簇的制備和性能,以及它們?cè)诿艋?yáng)能電池中的應(yīng)用。
金屬團(tuán)簇作為染料敏化劑,是太陽(yáng)能電池的關(guān)鍵組成部分。制備穩(wěn)定性較好、光學(xué)性能優(yōu)異的金屬團(tuán)簇直接決定著太陽(yáng)能電池的性能。制備團(tuán)簇的方法主要有凝聚相合成法、真空合成法和氣相合成法等3種。凝聚相合成法主要是用化學(xué)法制備金屬、半導(dǎo)體和化合物分子團(tuán)簇。真空合成法是用幾至幾十千電子伏特載能粒子轟擊固體表面,使固體表面濺射出各種次級(jí)粒子,包括電子、離子、原子和團(tuán)簇等。氣相合成法主要是將物質(zhì)元素或化合物放在低壓的惰性氣體腔室的蒸發(fā)皿中,高溫加熱至氣化,與惰性原子或分子碰撞,迅速冷卻形成原子團(tuán)簇;或者利用光學(xué)聚焦系統(tǒng)把激光聚焦到很小的區(qū)域,使焦耳級(jí)的能量作用到固體靶表面,靶表面微區(qū)溫度極高,發(fā)生離子發(fā)射或中性粒子蒸發(fā),再用惰性氣體冷卻,聚集成團(tuán)簇。通常凝聚相合成法制備的團(tuán)簇直徑范圍從幾十到幾百納米,目前已可用此法制備小于5 nm的粒子。本文主要介紹屬凝聚相合成法的谷胱甘肽保護(hù)的化學(xué)合成金團(tuán)簇方法。
一種方法是低溫直接合成方法[25-29, 39-40]。主要材料為高純氯金酸((HAuCl4?4H2O)>99%),高純硝酸銀((AgNO3)>99.8%),高純硝酸銅((Cu (NO3)2?3H2O)>99.9%),硼氫化鈉((NaBH4)>98%),還原型谷胱甘肽(98%)和高純甲醇(99.8%)。將谷胱甘肽和金屬鹽分別溶在少量的去離子水中,加入0℃的甲醇,迅速將上述溶液混合攪拌30 min。在攪拌的過程中,加入新制備NaBH4水溶液[25-31, 35-39]或者通入CO氣體2 min[32-33],25℃持續(xù)攪拌12 h。將得到的溶液離心10 min,獲得的沉淀物用甲醇清洗干凈,再將這些沉淀在25℃真空干燥。制備得到貴金屬團(tuán)簇分散在水溶液中備用。
另一種方法是水浴合成法[24, 34, 40]。在室溫下將高純氯金酸和還原型谷胱甘肽在去離子水中混合,再將混合液攪拌到無色狀態(tài),然后在70℃水浴24 h。將上述溶液用乙腈提純?cè)俳Y(jié)晶生成金團(tuán)簇,用去離子水清洗,最后得到的金團(tuán)簇分散在水溶液中。
利用NaBH4和CO直接還原法得到貴金屬團(tuán)簇-納米顆粒的高分辨透射電鏡圖像如圖1所示。谷胱甘肽保護(hù)的納米顆粒直徑在1~5 nm之間。用XRD測(cè)得低溫合成的銀、金、銅[28]和銀-金[35]納米顆粒的核心平均直徑分別為0.85、1.02、0.80和0.61 nm;水浴法[24, 34, 40]制備得到金團(tuán)簇的直徑為1.0~1.6 nm。
谷胱甘肽保護(hù)的貴金屬團(tuán)簇的紫外-可見吸收光譜如圖2所示。銀、金、銅、銀-金和銀-銅團(tuán)簇的最大吸收峰分別為388、424、474、468和472 nm。
從圖2(a)可見,銀-金雙金屬團(tuán)簇的紫外-可見吸收光譜發(fā)生了紅移,吸收波長(zhǎng)500 nm是譜線形狀的分界線。當(dāng)波長(zhǎng)小于500 nm時(shí),銀-金雙金屬團(tuán)簇的紫外-可見吸收光譜形狀與單一金屬團(tuán)簇的紫外-可見吸收光譜形狀非常相似。波長(zhǎng)大于500 nm,吸收光譜曲線形狀差異比較大:銀-金雙金屬團(tuán)簇表現(xiàn)出更寬的吸收范圍;單一金屬團(tuán)簇吸收性能降低,幾乎為零。由圖2(b)可見,銀-銅雙金屬團(tuán)簇的紫外-可見吸收光譜相對(duì)于銀團(tuán)簇發(fā)生了紅移,但與銅團(tuán)簇的紫外-可見吸收光譜非常相似,這種現(xiàn)象成因復(fù)雜,需要進(jìn)一步研究。
金或銀團(tuán)簇的紫外-可見吸收光譜吸收范圍比較窄,銅、銀-金和銀-銅團(tuán)簇的紫外-可見吸收光譜吸收范圍比較寬。所以,通過摻雜單金屬團(tuán)簇合成為雙金屬團(tuán)簇,不但可以改變單金屬團(tuán)簇的紫外-可見吸收光譜吸收峰的位置,而且還可以調(diào)制它們的范圍,這與理論計(jì)算中銀-銅[10, 12-19, 23]和銀-金[20-21]的紫外-可見吸收光譜調(diào)制作用相似。銀-金和銀-銅雙金屬團(tuán)簇光吸收范圍更寬,成本更低,具有作為太陽(yáng)能電池染料敏化劑的前景。
圖1 銀、金、銅、銀-金和銀-銅金屬團(tuán)簇的高分辨率透射電鏡(HRTEM)圖像[37, 39]
圖2 銀、金和銀-金(a)以及銀、銅和銀-銅(b)團(tuán)簇紫外-可見吸收光譜[37, 39]
貴金屬團(tuán)簇染料敏化太陽(yáng)能電池的結(jié)構(gòu)示意如圖3所示。它由3層結(jié)構(gòu)組成,即金屬團(tuán)簇修飾的TiO2電極、鈷基電解液和鉑對(duì)電極組裝成的三明治結(jié)構(gòu);外層用導(dǎo)電玻璃(FTO)包夾。利用絲網(wǎng)印刷將納米晶TiO2涂在FTO上得到TiO2電極,再將TiO2電極浸泡在金屬團(tuán)簇溶液中得到金屬團(tuán)簇修飾的TiO2電極。在金屬團(tuán)簇修飾的TiO2電極和鉑對(duì)電極之間注入鈷基電解液制備成簡(jiǎn)易太陽(yáng)能電池。
圖3 貴金屬團(tuán)簇染料敏化太陽(yáng)能電池的結(jié)構(gòu)示意
用AM1.5模擬太陽(yáng)光,銀、金、銅、銀-金和銀-銅金屬團(tuán)簇制備的敏化太陽(yáng)能電池的電流密度和電壓變化曲線如圖4所示,開路電壓、電流密度、填充因子以及光電轉(zhuǎn)換效率見表1。圖5描述了這幾種團(tuán)簇染料敏化太陽(yáng)能電池的電流密度隨時(shí)間的變化曲線。
圖4 銀、金和銀-金(a)以及銀、銅和銀-銅(b)團(tuán)簇敏化太陽(yáng)能電池的電流密度-電壓變化曲線[36, 38]
表1 貴金屬團(tuán)簇染料敏化太陽(yáng)能電池的性能
Tab.1 Photovoltaic performance of the noble metal cluster- sensitized solar cells
從表1可知,金團(tuán)簇[24]作為染料敏化劑時(shí),各項(xiàng)性能(包括開路電壓、短路電流密度、填充因子以及光電轉(zhuǎn)化效率)都明顯提高,其中轉(zhuǎn)化效率達(dá)到2.36%且穩(wěn)定性好。結(jié)合圖4和表1的數(shù)據(jù),本文筆者所進(jìn)行的研究[36, 38]中,銀、金、銅、銀-金和銀-銅團(tuán)簇作為染料敏化劑時(shí),對(duì)應(yīng)的性能參數(shù)都低于文獻(xiàn)[24]所報(bào)道的數(shù)值,可能由于團(tuán)簇的合成方法、實(shí)驗(yàn)環(huán)境條件、載流子在傳輸過程中數(shù)量及協(xié)同作用等不同。但是以自身數(shù)據(jù)作比較,只有TiO2電極時(shí),開路電壓很小,對(duì)應(yīng)的電流密度也非常小;當(dāng)有金屬團(tuán)簇作為敏化劑時(shí),對(duì)應(yīng)性能參數(shù)都比只有TiO2電極時(shí)要大,其變化趨勢(shì)與文獻(xiàn)[24]一致。
圖5 銀、金和銀-金(a)以及銀、銅和銀-銅(b)團(tuán)簇敏化太陽(yáng)能電池的電流密度-時(shí)間變化曲線[36, 38]
以雙金屬團(tuán)簇作為敏化劑時(shí),太陽(yáng)能電池的性能發(fā)生了一些變化。銀-金團(tuán)簇敏化太陽(yáng)能電池的開路電壓高于銀團(tuán)簇敏化太陽(yáng)能電池的開路電壓,低于金團(tuán)簇敏化太陽(yáng)能電池的開路電壓;銀-金團(tuán)簇敏化太陽(yáng)能電池的短路電流密度比金和銀團(tuán)簇敏化太陽(yáng)能電池的短路電流密度大好幾倍。銀-金雙金屬團(tuán)簇敏化太陽(yáng)能電池的填充因子均小于金或銀團(tuán)簇敏化太陽(yáng)能電池的填充因子,它的轉(zhuǎn)化效率是金或銀團(tuán)簇敏化太陽(yáng)能電池的5倍。雙金屬銀-銅團(tuán)簇敏化太陽(yáng)能電池的變化趨勢(shì)與銀-金團(tuán)簇敏化太陽(yáng)能電池的變化趨勢(shì)相似,雙金屬銀-銅團(tuán)簇敏化太陽(yáng)能電池的短路電流密度和轉(zhuǎn)化效率都大于單一銀或銅團(tuán)簇敏化太陽(yáng)能電池的短路電流密度和轉(zhuǎn)化效率。
從圖5可知,銀、金和銀-銅團(tuán)簇染料敏化太陽(yáng)能電池的電流密度隨著測(cè)試時(shí)間的延長(zhǎng)而逐漸變小。其中銀-銅團(tuán)簇染料敏化太陽(yáng)能電池的電流密度隨著測(cè)試時(shí)間的延長(zhǎng),初始時(shí)比較快地減少,隨后減少的比較慢,最后趨于穩(wěn)定;銅和銀-金團(tuán)簇染料敏化太陽(yáng)能電池的電流密度隨著測(cè)試時(shí)間的延長(zhǎng)幾乎保持不變。因此,可以推斷,貴金屬團(tuán)簇作為太陽(yáng)能電池的染料敏化劑,增強(qiáng)了太陽(yáng)能電池的性能,可降低太陽(yáng)能電池的成本。
貴金屬團(tuán)簇可作為太陽(yáng)能電池的染料敏化劑,其中雙金屬團(tuán)簇有利于提高性能,降低成本,具有一定的應(yīng)用前景。目前有少量貴金屬團(tuán)簇敏化太陽(yáng)能電池的研究,但團(tuán)簇的合成方法、電極的制備方法和電解液在電池中的作用機(jī)理等因素仍不明確,其光電轉(zhuǎn)化效率還不高,整體穩(wěn)定性也不理想,尚達(dá)不到實(shí)際應(yīng)用要求,需通過進(jìn)一步的研究提高其性能和轉(zhuǎn)化率。
[1] HOFFERT M, CALDEIRA K, JAIN A. Energy implications of future stabilization of atmospheric CO2content[J]. Nature,1998, 395(6705): 881.
[2] LEWIS N S, NOCERA D G. Powering the planet: Che- mical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences,2006, 103(43): 15729.
[3] O'REGAN B, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films[J]. Nature,1991, 353: 737.
[4] 徐長(zhǎng)志, 肖斌, 柳清菊. 染料敏化太陽(yáng)能電池的研究進(jìn)展[J]. 材料導(dǎo)報(bào),2014, 28(4): 149.
XU C, XIAO B, LIU Q. Research progress in dye- sensitized solar cells[J]. Materials reports, 2014, 28(4): 149.
[5] NAZEERUDDIN M K, KAY A, RODICIO I, et al. Conversion of light to electricity by cis-X2bis(2,2'- bipyridyl-4,4'-dicarboxylate) ruthenium(II) chargetransfer sensitizers (X = Cl-,Br-,I-,CN-,and SCN-) on nano- crystalline TiO2electrodes[J]. Journal of the American Chemical Society, 1993, 115(14): 6382.
[6] NAZEERUDDIN M K, ANGELIS F D, FANTACCI S, et al. Combined experimental and DFT-TDDFT compu- tational study of photo-electro-chemical cell ruthenium sensitizers[J]. Journal of the American Chemical Society, 2005, 127: 16835.
[7] WANG P, ZAKEERUDDIN S M, MOSER J E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J]. Nature materials,2003, 2(6): 402.
[8] BAI Y, CAO Y, ZHANG J, et al. High-performance dye- sensitized solar cells based on solvent-free electrolytes produced from eutectic melts[J]. Nature materials,2008, 7(8): 626.
[9] 蔣生輝, 周維平, 譚卓, 等. 基于不同取代基的噻吩-三苯胺染料敏化劑的合成與光伏性能[J]. 中國(guó)科學(xué): 化學(xué),2011, 41(6): 982.
JIANG S, ZHOU W, TAN Z, et al. Synthesis and photovoltaic performance of dye-sensitizers based on thiophene-triphenylamine with varied substituents[J]. Scientia sinica chimica, 2011, 41(6): 982.
[10] LI W, CHEN F. A density functional theory study of structural, electronic, optical and magnetic properties of small Ag-Cu nanoalloys[J]. Journal of nanoparticle research, 2013, 15(7): 1809.
[11] LI W, CHEN F. Effect of transition metal (Fe, Cu, Ni, Rh)-doped on optics of plasmon resonances of small silver chains[J]. Applied physics A,2013, 113(3): 543.
[12] LI W, CHEN F. Effect of Cu-doped site and charge on the optical and magnetic properties of 55-atom Ag cluster: A density functional theory study[J]. Computational materials science,2014, 81: 587.
[13] LI W, CHEN F. Structural, electronic and optical properties of 7-atom Ag-Cu nanoclusters from density functional theory[J]. The European physical journal D,2014, 68(4): 91.
[14] LI W, CHEN F. Optical, Raman and vibrational properties of closed shell Ag-Cu clusters from density functional theory: The influence of the atomic structure, exchange- correlation approximations and pseudopotentials[J]. Physica B:Condensed matter, 2014, 443: 6.
[15] LI W, CHEN F. Effect of multiple exciton generation on ultraviolet-visible absorption of Ag-Cu clusters: Ab initio study[J]. Journal of alloys and compounds,2014, 607: 238.
[16] LI W, CHEN F. Multiple exciton generation in Ag and Ag-Cu quantum clusters by visible wavelength excitation [J]. Journal of nanoparticle research,2014, 16(8): 2498.
[17] LI W, CHEN F. Ultraviolet-visible absorption, Raman, vibration spectra of pure silver and Ag-Cu clusters: A density functional theory study[J]. Physica B:Condensed matter,2014, 451: 96.
[18] LI W, CHEN F. Effects of shape and dopant on structural, optical absorption, Raman, and vibrational properties of silver and copper quantum clusters: A density functional theory[J]. Chinese physics B,2014, 23(11): 117103.
[19] LI W Y, ZHANG S, HAI L. Structural, optical, electronic, and magnetic properties of Ag-Cu bimetallic clusters: a density functional theory study[J]. Journal of nanoparticle research,2018, 20(7): 188.
[20] CHEN F, JOHNSTON R L. Structure and spectral characteristics of the nanoalloy Ag3Au10[J]. Applied physics letters,2007, 90(15): 153123.
[21] CHEN F, JOHNSTON R L. Charge transfer driven surface segregation of gold atoms in 13-atom Au-Ag nanoalloys and its relevance to their structural, optical and electronic properties[J]. Acta materialia,2008, 56(10): 2374.
[22] MA W Q, CHEN F Y. Optical and electronic properties of Cu doped Ag clusters[J]. Journal of alloys and compounds,2012, 541: 79.
[23] RAO Y, LEI Y M, CUI X Y, et al. Optical and magnetic properties of Cu-doped 13-atom Ag nanoclusters[J]. Journal of alloys and compounds,2013, 565: 50.
[24] CHEN Y S, CHOI H, KAMAT P V. Metal-cluster- sensitized solar cells. a new class of thiolated gold sensitizers delivering efficiency greater than 2%[J]. Journal of the American Chemical Society,2013, 135(24): 8822.
[25] KOGO A, SAKAI N, TATSUMA T. Photoelectro- chemical analysis of size-dependent electronic structures of gold clusters supported on TiO2[J]. Nanoscale,2012, 4(14): 4217.
[26] KOGO A, TAKAHASHI Y, SAKAI N, et al. Gold cluster- nanoparticle diad systems for plasmonic enhancement of photosensitization[J]. Nanoscale,2013, 5(17): 7855.
[27] SAKAI N, NAKAMURA S, TATSUMA T. Photovoltaic properties of TiO2loaded with glutathione-protected silver clusters[J]. Dalton transactions,2013, 42(45): 16162.
[28] SAKAI N, TATSUMA T. One-step synthesis of glutathione-protected metal (Au, Ag, Cu, Pd, and Pt) cluster powders[J]. Journal of materials chemistry A,2013, 1(19): 5915.
[29] SAKAI N, TATSUMA T. Photovoltaic properties of glutathione-protected gold clusters adsorbed on TiO2electrodes[J]. Advanced materials,2010, 22(29): 3185.
[30] CHEVRIER D M, RAICH L, ROVIRA C, et al. Molecular-scale ligand effects in small gold-thiolate nano-clusters[J]. Journal of the American Chemical Society,2018, 140(45): 15430.
[31] CHEN T K, FUNG V, YAO Q F, et al. Synthesis of water-soluble [Au-25(SR)(18)](-) using a stoichiometric amount of NaBH4[J]. Journal of the American Chemical Society,2018, 140: 11370.
[32] LUO Z T, NACHAMMAI V, ZHANG B, et al. Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au-25 nanoclusters[J]. Journal of the American Chemical Society,2014, 136(30): 10577.
[33] YU Y, LUO Z T, CHEVRIER D M, et al. Identification of a highly luminescent Au-22(SG)(18) nanocluster[J]. Journal of the American Chemical Society,2014, 136(4): 1246.
[34] LUO Z T, YUAN X, YU Y, et al. From Aggregation- induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters [J]. Journal of the American Chemical Society,2012, 134: 16662.
[35] KOBAYASHI R, NONOGUCHI Y, SASAKI A, et al. Chiral monolayer-protected bimetallic Au-Ag nano- clusters: Alloying effect on their electronic structure and chiroptical activity[J]. Journal physical chemistry C,2014, 118(28): 15506.
[36] LI W, CHEN F. Alloying effect on performances of bimetallic Ag-Au cluster sensitized solar cells[J]. Journal of alloys and compounds,2015, 632: 845.
[37] SHAHZAD N, CHEN F Y, HE L R, et al. Silver-copper nanoalloys - An efficient sensitizer for metal-cluster- sensitized solar cells delivering stable current and high open circuit voltage[J]. Journal of power sources,2015, 294: 609.
[38] 李維銀. 銀銅雙金屬團(tuán)簇的結(jié)構(gòu)、電子和光學(xué)性能[D]. 西安: 西北工業(yè)大學(xué), 2015.
LI W Y. Structural, electronic and optical properties of silver-copper bimetallic clusters[D]. Xi'an: Northwestern Polytechnical University, China, 2015.
[39] FARRAG M, TSCHURL M, HEIZ U. Chiral gold and silver nanoclusters: preparation, size selection, and chiroptical properties[J]. Chemistry of materials,2013, 25(6): 862.
[40] WANG H K, CHEN F Y, LI W Y, et al. Gold nanocluster- sensitized TiO2nanotubes to enhance the photocatalytic hydrogen generation under visible light[J]. Journal of power sources,2015, 287: 150.
Research Progress of Noble Metal Clusters in Dye-sensitized Solar Cells
LI Wei-yin, ZHANG Yong-li, MA Hai-jun, ZHANG Sha, HAI Lian
(Key Laboratory of Physics and Photoelectric Information Functional Materials, School of Electrical and Information Engineering, North Minzu University, Yinchuan 750021, China)
Noble metal clusters can be used as dye sensitizers for solar cells. The preparation methods, sizes, and UV-vis absorption spectra characteristics of silver, gold, copper, silver-gold and silver-copper clusters are reviewed, and the performances of several noble metal cluster sensitizers solar cells are compared. The comparison results show that bimetallic clusters have better performance than monometallic clusters when they are used as sensitizers solar cells and can reduce costs. In order to realize the practical application of noble metal clusters, it is necessary to strengthen the research on the synthesis methods of clusters, the preparations of electrodes, and the reaction mechanisms of electrolyte in solar cells.
solar cell; noble metal cluster; dye-sensitizer; photoelectric conversion efficiency
TM914.4;O621.3
A
1004-0676(2020)02-0089-07
2019-08-02
國(guó)家自然科學(xué)基金(11764001);寧夏自然科學(xué)基金(2018AAC03122);寧夏高等學(xué)??茖W(xué)技術(shù)研究項(xiàng)目(NGY2017167);寧夏高等學(xué)校一流學(xué)科建設(shè)項(xiàng)目(NXYLXK2017A07);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金;北方民族大學(xué)人才引進(jìn)項(xiàng)目
李維銀,男,博士,研究方向:貴金屬團(tuán)簇性能及應(yīng)用。E-mail:lwy744019@163.com