胡翠平 黃慧燕 周桂
摘要:【目的】分離鑒定廣西采后火龍果果實上的病原真菌,明確病原菌菌株對季銨化殼聚糖(HTCC)的敏感特性,為火龍果果實的采后病害防治提供科學(xué)依據(jù)?!痉椒ā坎捎贸R?guī)組織分離法從采后貯藏自然發(fā)病的火龍果果實上分離病原菌,經(jīng)致病性鑒定后,依據(jù)菌株形態(tài)學(xué)特性和rDNA-ITS序列分析,確定病原真菌的分類地位。采用菌絲生長速率法和PI染色法,觀察HTCC對病原真菌菌絲生長及菌絲細胞膜的影響。【結(jié)果】從采后貯藏自然發(fā)病的白心火龍果果實上分離到1株絲狀真菌菌株E;致病性測定結(jié)果表明,菌株E為火龍果采后病害病原真菌;經(jīng)形態(tài)學(xué)特性和rDNA-ITS序列分析,將菌株E鑒定為新月彎孢菌(Curvularia lunata)。HTCC對菌株E的作用結(jié)果顯示,HTCC對菌株E的菌絲生長具有較強抑制作用,其抑制作用與HTCC濃度呈正相關(guān),0.25、0.50、0.75和1.00 mg/mL HTCC對菌株E的抑菌率分別為20.84%、50.05%、72.91%和83.23%;HTCC處理能破壞菌株E的菌絲細胞膜通透性,降低細胞膜的完整性。【結(jié)論】新月彎孢菌能引起廣西采后火龍果發(fā)生真菌病害,依據(jù)HTCC對該菌的抑制效果,火龍果采后流通過程中可使用HTCC來減輕病害發(fā)生。
關(guān)鍵詞: 火龍果;采后病害;真菌;rDNA-ITS序列;季銨化殼聚糖;細胞膜
中圖分類號: S436.679? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2020)07-1560-08
Abstract:【Objective】Isolation and identification of pathogenic fungi from postharvest pitaya in Guangxi and identification of the sensitive characteristics of the purified strains to quaternized chitosan(HTCC), so as to provide theoretical basis for the identification and control of postharvest fungal diseases of pitaya. 【Method】The fungi on the fruit of pitaya were isolated and purified from pitaya fruits which were naturally diseased after post harvest storage by common tissue isolation method. After pathogenicity identification, the taxonomic status of the fungi was determined according to the morphological characteristics and rDNA-ITS sequence of the strains. At the same time, the effects of HTCC on mycelial growth and cell membrane of pathogenic fungi were observed by the methods of mycelial growth rate and PI staining. 【Result】A filamentous fungus E was isolated from white pitaya fruits which were naturally diseased after post harvest storage. The results of pathogenicity test showed that strain E was pitaya post harvest disease pathogenic fungus, which was identified as Curvularia lunata by morphological characteristics analysis and rDNA-ITS sequence. The results showed that HTCC had a strong inhibitory effect on the mycelial growth of fungus E in a dose-dependent manner, and the inhibition rates of 0.25,0.50,0.75 and 1.00 mg/mL HTCC were 20.84%,50.05%,72.91% and 83.23%; HTTC treatment could destroy the membrane permeability and reduce the integrity of the membrane of fungus E. 【Conclusion】C. lunata can cause post harvest pitaya fungus disease in Guangxi. According to the inhibition effect of HTCC on the disease, HTCC can be used to reduce the occurrence of the disease in the process of post harvest circulation.
Key words: pitaya; post harvest disease; fungus; rDNA-ITS sequence; quaternized chitosan; cell membrane
Foundation item: Guangxi Natural Science Foundation(2014GXNSFAA118076); Project of Guangxi Scientific Research and Technology Development(14125008-1-2); Key Project of Science and Technology Research in Guangxi Universities(ZD2014041)
0 引言
【研究意義】火龍果(Hylocereus spp.)別稱紅龍果、青龍果、仙密果等,是一種仙人掌科量天尺屬植物,原產(chǎn)于中美洲地區(qū),20世紀90年代初引入我國臺灣試種后陸續(xù)在廣東、海南、福建和廣西等地推廣,是一種被廣泛關(guān)注的熱帶亞熱帶果樹(許偉東等,2002;王壯等,2014;張振華等,2019)?;瘕埞麑崰I養(yǎng)豐富,功用獨特,除富含糖、維生素、蛋白質(zhì)、氨基酸、脂肪酸及礦質(zhì)元素等營養(yǎng)成分外,還含有多種功能性物質(zhì),如類黃酮、白蛋白、膳食纖維、色素、甾醇和苷類化合物,具有預(yù)防疾病、增強免疫力、調(diào)節(jié)激素及解毒等功效,是一種具有營養(yǎng)和藥用價值的綠色保健水果(縱偉等,2007;蔡永強等,2008;王彬等,2009;徐慧等,2010)。由于火龍果潛在的利用價值,我國火龍果的種植規(guī)模不斷擴大。廣西地處亞熱帶季風(fēng)氣候區(qū),具有適宜火龍果生長的溫度、光照、降水和土壤等條件,火龍果產(chǎn)業(yè)發(fā)展迅猛,目前廣西已成為我國火龍果種植面積最大的區(qū)域(黃艷芳等,2017)。但火龍果采后極易腐爛變質(zhì),一方面是由于火龍果呼吸代謝旺盛,自然衰老;另一方面則因微生物侵染,火龍果采后病害發(fā)生較嚴重,其中真菌病害最普遍(林珊宇等,2018)。因此,開展火龍果采后病害及其防治研究,對廣西火龍果產(chǎn)業(yè)的可持續(xù)發(fā)展具有重要意義?!厩叭搜芯窟M展】火龍果常見病害主要有炭疽病、潰瘍病、黑斑病、根霉病和果腐病等。Taba等(2007)研究發(fā)現(xiàn)仙人掌平臍蠕孢(Bipolaris cactivora)能引起火龍果腐爛。Hawa等(2009)首次報道新月彎孢菌(Curvularia lunata)可引起馬來西亞紅肉火龍果病害。崔志婧等(2011)研究結(jié)果表明尖孢鐮刀菌(Fusarium oxysporum)和單隔鐮刀菌(F. dimerum)是引起上海市進口火龍果軟腐病的病原真菌。Guo等(2013)研究發(fā)現(xiàn)平頭炭疽菌(Colletotrichum truncatum)可引起火龍果炭疽病,是我國首次報道該菌株引起的火龍果炭疽病。郭力維等(2014)首次發(fā)現(xiàn)引起火龍果采后果腐病的桃吉爾霉(Gilbertella persicaria)。胡美姣等(2015)鑒定出2種火龍果采后病害病原,即平頭炭疽菌和單隔鐮刀菌。姚昇華等(2015)研究結(jié)果表明仙人掌平臍蠕孢是引起上海市進口越南紅心火龍果黑腐病的病原。Oeurn等(2015)從泰國洛伊火龍果果實上分離到仙人掌平臍蠕孢、膠孢炭疽菌(C. gloeosporiodes)和匍枝根霉(Rhizopus stolonifer)3種真菌,致病性試驗確定3種真菌均能使采后火龍果發(fā)生病害。王會會等(2016)認為新暗色柱節(jié)孢是火龍果潰瘍病致病菌。李國林等(2018)用電子鼻檢測到桃吉爾霉侵染火龍果果實后氣味的變化,表明桃吉爾霉可劣化火龍果品質(zhì)。林珊宇等(2018)首次發(fā)現(xiàn)引起火龍果軟腐病的木賊鐮刀菌(F. equiseti)。目前對火龍果采后病害防治的方法有低溫貯藏、熱處理、輻射保鮮、化學(xué)藥劑處理及氣體熏蒸處理等(崔志婧等,2011;李敏等,2012;朱迎迎等,2014;Ngoc et al.,2017),物理防治成本較高,化學(xué)防治則使病原菌產(chǎn)生抗藥性,藥劑殘留還會危害人體健康(杜彩蓮等,2018)。隨著人們對食品安全的重視,開發(fā)新型的綠色生物農(nóng)藥代替?zhèn)鹘y(tǒng)殺菌劑已成為當前研究熱點之一。殼聚糖作為迄今為止在自然界中發(fā)現(xiàn)的唯一陽離子堿性多糖,不僅無毒安全、可生物降解,還具有廣譜的抗菌性能,同時能促進植物宿主防御反應(yīng),對多種植物病害具有防治作用(Bautista-Ba?os et al.,2006;Wang et al.,2014;Kaur et al.,2018)。然而,殼聚糖溶解性較差,只溶于酸性溶液,限制了其應(yīng)用范圍。季銨化改性可有效提高殼聚糖水溶性。研究表明,季銨化殼聚糖(Quaternized chitosan,HTCC)比殼聚糖具有更好的抑菌作用,可用于控制一些植物病原菌(Guo et al.,2007;Badawy,2010;Badawy and Rabea,2014;Liu et al.,2018)。殼聚糖及其衍生物因其優(yōu)異的性能,在果蔬貯藏保鮮和植物病害防治方面應(yīng)用前景廣闊。【本研究切入點】廣西火龍果種植面積大,但采后火龍果真菌病害較普遍,嚴重制約其產(chǎn)業(yè)發(fā)展。目前,有關(guān)火龍果采后病害防治研究相對較少?!緮M解決的關(guān)鍵問題】采用常規(guī)組織分離法從采后貯藏自然發(fā)病的火龍果果實上分離病原菌,經(jīng)致病性測定后,結(jié)合菌株形態(tài)學(xué)特性和rDNA-ITS序列分析,確定病原真菌分類地位,并進一步測定HTCC對火龍果病原真菌的抑制效應(yīng),以期為火龍果果實的采后病害防治提供理論與實踐依據(jù)。
1 材料與方法
1. 1 試驗材料
病原菌菌株與培養(yǎng)基:病原菌菌株于采后貯藏自然發(fā)病的白心火龍果果實上分離獲得;PDA培養(yǎng)基購自北京索萊寶科技有限公司。主要試劑及儀器:DL2000 Plus DNA Ladder和2×Taq PCR Master Mix購自Biomiga公司;HTCC購自酷爾化學(xué)科技(北京)有限公司;碘化丙錠溶液(1 mg/mL)、活性氧檢測試劑盒和ddH2O購自北京索萊寶科技有限公司;通用引物ITS1和ITS4由深圳華大基因科技有限公司合成;PCR儀購自Biometra公司;電泳儀和電泳槽購自Bio-Rad公司;熒光顯微鏡購自O(shè)lympus公司。
1. 2 試驗方法
1. 2. 1 病原菌分離純化 選取火龍果病果,參照常規(guī)組織分離法分離病原真菌(張成玲等,2019),取病健交界處組織塊,用70%酒精和2%次氯酸鈉溶液進行表面消毒后放入PDA培養(yǎng)基中,28 ℃恒溫培養(yǎng),待菌落長出后用無菌竹簽挑取邊緣菌絲植入另一PDA培養(yǎng)基內(nèi),28 ℃繼續(xù)培養(yǎng);經(jīng)3次繼代培養(yǎng)可得純化菌種,將其接種于PDA斜面培養(yǎng)基,并置于4 ℃冰箱保存?zhèn)溆谩?/p>
1. 2. 2 病原菌致病性能鑒定 參照許玲等(2003)的有傷接種方法進行菌株致病性鑒定。用70%酒精對火龍果果實進行表面消毒,再用無菌蒸餾水沖洗后晾干。用滅菌竹簽在火龍果果實表面刺破5個孔,使孔眼集中在直徑約5 mm的范圍內(nèi),用5 mm無菌打孔器取純化后的真菌塊,將其反貼于傷口處,室溫培養(yǎng),以PDA培養(yǎng)基作為空白對照,定期觀察火龍果接種處是否有病害癥狀出現(xiàn)。
1. 2. 3 病原菌形態(tài)學(xué)觀察 用無菌竹簽挑取純化后病原真菌菌絲接種于PDA培養(yǎng)基上,28 ℃恒溫培養(yǎng),觀察菌落形態(tài)、菌絲疏密性、顏色等特征。熒光顯微鏡下觀察菌株菌絲、產(chǎn)孢結(jié)構(gòu)和孢子形態(tài)等特征。
1. 2. 4 病原菌rDNA-ITS鑒定 用簡易微波爐法提取DNA(潘力等,2010)。利用真菌通用引物ITS1(5'-TCCGTAGGTGAACCTGCGG-3')和ITS4(5'-TCCTCCGCTTATTGATATGC-3')進行PCR擴增。PCR反應(yīng)體系20 μL:2×Taq PCR Master Mix 10 μL,10 μmol/L ITS1和ITS4引物各1 μL,DNA模板1 μL,ddH2O 7 μL。擴增程序:94 ℃預(yù)變性10 min;94 ℃ 30 s,55 ℃ 45 s,72 ℃ 1 min,進行35個循環(huán);72 ℃延伸10 min。擴增產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測后送至北京擎科新業(yè)生物技術(shù)有限公司進行純化、測序。測序結(jié)果在NCBI上進行BLAST比對,選取同源性較高及形態(tài)相近的菌株序列,用MEGA 7.0中的鄰接法(Neighbor-joining,NJ)構(gòu)建其系統(tǒng)發(fā)育進化樹,使用Bootstraps進行自檢,1000次重復(fù)。
1. 2. 5 HTCC對病原真菌菌絲生長的抑制作用 參考Jia等(2016)的方法進行測定,配制含不同濃度HTCC的PDA培養(yǎng)基,121 ℃高壓滅菌15 min后倒平板,以不含HTCC的PDA培養(yǎng)基作為空白對照。PDA培養(yǎng)基凝固后,在28 ℃培養(yǎng)7 d的菌株邊緣,用無菌打孔器打下直徑5 mm的菌餅,反貼于PDA培養(yǎng)基中央,Parafilm封口膜密封,28 ℃培養(yǎng)5 d后,用游標卡尺測量菌落直徑。
1. 2. 6 HTCC對病原真菌菌絲細胞膜完整性的影響
參考Ouyang等(2018)的方法對病原菌菌絲進行碘化丙錠(Propidium iodide,PI)染色。無菌打孔器取直徑5 mm的菌餅反貼于HTCC濃度為0.5 mg/mL的PDA培養(yǎng)基上,無菌水作對照,28 ℃培養(yǎng)3 d后,于菌落邊緣斜插無菌蓋玻片,繼續(xù)培養(yǎng)2 d,取出蓋玻片,置于潔凈載玻片上,滴加50 μg/mL的PI染色液避光染色10 min后,蒸餾水洗去多余染色液,熒光顯微鏡下觀察熒光強度。
1. 3 統(tǒng)計分析
試驗數(shù)據(jù)利用Excel 2007和SPSS 23.0進行整理、繪圖和統(tǒng)計分析。
2 結(jié)果與分析
2. 1 病原菌分離及致病性測定結(jié)果
采用常規(guī)組織分離法從采后貯藏自然發(fā)病的白心火龍果果實上分離到1株絲狀真菌,將其命名為E。采用有傷接種方法將菌株E回接至健康白心火龍果果實,結(jié)果顯示,空白對照傷口無明顯病害癥狀出現(xiàn)(圖1-A),而回接菌株E的傷口出現(xiàn)略凹陷的病斑(圖1-B)。由此確定菌株E為火龍果采后病害病原真菌。
2. 2 病原菌形態(tài)特征觀察結(jié)果
菌株E在PDA培養(yǎng)基上生長旺盛,菌落均勻、近似圓形,初期為白色,后菌落中心逐漸變?yōu)榛液谏z絨狀致密(圖2-A和圖2-B)。在光學(xué)顯微鏡下觀察,該菌株菌絲透明,分枝,有隔膜;分生孢子梗叢生或散生;分生孢子呈褐色,梭形或近橢圓形,直立或彎曲,有隔膜,無縊縮(圖2-C)。
2. 3 rDNA-ITS同源性比對及系統(tǒng)發(fā)育分析結(jié)果
測序結(jié)果表明,菌株E的rDNA-ITS序列大小為556 bp,將其上傳至NCBI進行BLAST比對,結(jié)果(圖3)顯示,菌株E的rDNA-ITS與C. lunata(KJ767095.1/KX443633.1/LC317566.1)、Curvularia sp.(HE86184 3.1/HE861844.1)、Cochliobolus lunatus(HQ248191.1)、C. aeria(KT283679.1/LC314151.1/LC314152.1)和Fungal endophyte(KF436144.1)的同源性均在99.0%以上?;谡婢鷕DNA-ITS序列構(gòu)建的系統(tǒng)發(fā)育進化樹也顯示,病原真菌菌株E與C. lunata、Curvularia sp.、C. lunatus、C. aeria和F. endophyte在同一分支。結(jié)合菌株E的形態(tài)學(xué)特征并參考前人的相關(guān)研究(Avasthi et al.,2015),將其鑒定為新月彎孢菌(C. lunata)。
2. 4 HTCC對菌株E菌絲生長的抑制作用
如圖4所示,HTCC能抑制菌株E的菌絲生長,其抑制作用與HTCC濃度呈正相關(guān),0.25、0.50、0.75和1.00 mg/mL HTCC對菌株E的抑菌率分別為20.84%、50.05%、72.91%和83.23%,均與CK(0.0 mg/mL)差異顯著(P<0.05)。
2. 5 HTCC對菌株E菌絲細胞膜完整性的影響
PI本身不熒光,但與細胞內(nèi)DNA結(jié)合后,在綠色激發(fā)光下能發(fā)出紅色熒光,當完整的細胞膜受損后,PI進入細胞內(nèi)并與核酸結(jié)合發(fā)出熒光,其熒光強度能反映出細胞膜完整性。如圖5所示,未經(jīng)處理的菌絲,暗場下基本無紅色熒光產(chǎn)生,而經(jīng)0.50 mg/mL HTCC處理過的菌絲,則顯示出較強烈的紅色熒光。表明HTCC處理后病原真菌菌株E的菌絲細胞膜完整性受損,使PI進入胞內(nèi)與核酸結(jié)合,故熒光強度增強。
3 討論
查閱文獻發(fā)現(xiàn),火龍果采后常見的病原真菌有仙人掌平臍蠕孢(Taba et al.,2007;姚昇華等,2015;Oeurn et al.,2015)、尖孢鐮刀菌(崔志婧等,2011),單隔鐮刀菌(崔志婧等,2011;胡美姣等,2015)、桃吉爾霉(郭力維等,2014;李國林等,2018)、平頭炭疽菌(胡美姣等,2015)、膠孢炭疽菌(Oeurn et al.,2015)和匍枝根霉(Oeurn et al.,2015)等。本研究從發(fā)病的白心火龍果果實上分離得到1株病原真菌,經(jīng)形態(tài)學(xué)特性、rDNA-ITS序列分析,將其鑒定為新月彎孢菌,是首次發(fā)現(xiàn)新月彎孢菌引起我國火龍果采后病害。此外,Hawa等(2009)也發(fā)現(xiàn)新月彎孢菌是馬來西亞紅肉火龍果的病原真菌。
在我國,由新月彎孢菌引起的玉米彎孢葉斑?。–urvularia leaf spot of maize)是一種嚴重的玉米病害,對我國玉米生產(chǎn)造成巨大影響(Liu et al.,2015;常佳迎等,2019)。新月彎孢菌具有廣泛的寄主范圍,包括膜稃草(Monteiro et al.,2003)、小麥(Iram and Ahmad,2006)、結(jié)縷草(Roberts and Tredway,2008)、黑麥草(Tian et al.,2008)、草莓(Verma and Gupta,2010)、菠菜(Pandey et al.,2011)、高粱(Panchal and Dhale,2011)、蓮花(Cui and Sun,2012)、水稻(Liu et al.,2014;楊小林等,2019)和番茄(Iftikhar et al.,2016)等。與大多數(shù)病原真菌相似,新月彎孢菌侵染植物的過程包括附著、萌發(fā)、感染結(jié)構(gòu)形成、宿主滲透和宿主組織定殖,已證實多種毒力因子參與其感染過程,如黑色素、毒素、細胞壁降解酶、角質(zhì)酶和激素(Gao et al.,2014b)。Liu等(2016a)通過研究新月彎孢菌中大量的角質(zhì)酶基因,認為其產(chǎn)生的角質(zhì)酶能降解不同寄主植物不同類型的角質(zhì)層,可能是新月彎孢菌擁有廣泛寄主的原因之一。致病基因是疾病發(fā)展的必要條件,在了解新月彎孢菌的相關(guān)毒力因子后,科學(xué)家開始致力于研究一些毒力相關(guān)基因,如角質(zhì)酶基因ClCUT7參與發(fā)病過程,在發(fā)病早期,其轉(zhuǎn)錄水平逐漸升高,ClCUT7基因缺失時,其致病性降低(Liu et al.,2016a);絲裂原活化蛋白激酶(MAPK)基因Clk1參與菌絲生長、細胞壁降解酶生物合成的正調(diào)控,Clk1功能域缺乏,影響分生孢子的產(chǎn)生,但有形成厚垣孢子狀結(jié)構(gòu)的傾向,Clk1突變體的致病性降低(Gao et al.,2013);Ras基因的同源基因Clg2p對新月彎孢菌附著孢的形成和致病性至關(guān)重要,Clg2p通過其RA結(jié)構(gòu)域與clf相互作用,在clf上游調(diào)控附著孢的形成和致病性(Liu et al.,2016b);Clt-1基因與毒素的產(chǎn)生和致病性密切相關(guān)(Gao et al.,2014a);Brn1基因參與1,8-二羥基萘黑色素的合成(Liu et al.,2011)。
殼聚糖是甲殼素脫乙酰化產(chǎn)物,是自然界最豐富的生物聚合物之一,具有無毒安全、環(huán)境兼容性好、可生物降解、可再生、生物活性和來源廣泛等優(yōu)點。殼聚糖不僅可抑制多種植物病原菌的生長,還可誘導(dǎo)植物產(chǎn)生防御反應(yīng),對多種植物病害具有防治作用。殼聚糖處理能提高番茄植株對尖孢鐮刀菌引起的根腐病和冠腐病的抗性(Benhamou and Thériaul,1992)。Meng等(2010)報道350 kD殼聚糖能抑制梨黑斑病菌和輪紋病菌的菌絲生長和孢子萌發(fā),并使梨果實過氧化物酶活性顯著提高。殼聚糖可通過誘導(dǎo)花生種子產(chǎn)生更多的酚類化合物來限制黃曲霉生長和黃曲霉毒素B1產(chǎn)生(Fajardo et al.,1995)。Liu等(2007)研究表明,殼聚糖能防治番茄果實采后病害,能顯著提高番茄果實中多酚氧化酶、過氧化物酶活性和酚類物質(zhì)的含量。
殼聚糖線型分子鏈上含有氨基、羥基和乙?;裙δ芑鶊F,使其表現(xiàn)出獨特的物理、化學(xué)和生物特性,如抗菌性、生物相容性及生物可降解性等(Ali et al.,2010;Deng et al.,2010)。然而,殼聚糖溶解性較差,只溶于酸性溶液,限制了其應(yīng)用范圍。對殼聚糖進行物理、化學(xué)和生物改性,如酶催化(Sun and Payne,2000)、共混(Dunia et al.,2008; Abdelghany et al.,2013 )、交聯(lián)(Wang et al.,2013)、衍生化(Luan et al.,2018)及酸解(Zhang et al.,2018)等,可增強其的溶解性、抗菌性、抗病毒、抗腫瘤、吸附性和螯合性等,因而在食品、生物醫(yī)藥和環(huán)境等領(lǐng)域具有廣泛的應(yīng)用前景。
4 結(jié)論
從采后自然發(fā)病的白心火龍果果實上分離得到1株病原真菌菌株E,經(jīng)形態(tài)學(xué)特征和分子生物學(xué)分析,確定其為新月彎孢菌。HTCC對該病原真菌的菌絲生長具有較強的抑制作用,并呈劑量依賴性,火龍果采后流通過程中可使用HTCC來減輕病害發(fā)生。
參考文獻:
常佳迎,劉樹森,馬紅霞,石潔,郭寧,張海劍. 2019. 黃淮海地區(qū)夏玉米彎孢葉斑病菌遺傳多樣性分析[J]. 中國農(nóng)業(yè)科學(xué),52(5):822-836. [Chang J Y,Liu S S,Ma H X,Shi J,Guo N,Zhang H J. 2019. Genetic diversity analysis of Curvularia lunata in summer maize in Huang-Huai-Hai Region[J]. Scientia Agricultura Sinica,52(5):822-836.]
蔡永強,向青云,陳家龍,彭玉基,王彬. 2008. 火龍果的營養(yǎng)成分分析[J]. 經(jīng)濟林研究,26(4):53-56. [Cai Y Q,Xiang Q Y,Chen J L,Peng Y J,Wang B. 2008. Analysis of nutritional components in pitaya fruit[J]. Nonwood Forest Research,26(4):53-56.]
杜彩蓮,張燦,袁芳,李佳穎,孫廷飛,樂揚,Shaukat Ali. 2018. 溫度、pH和培養(yǎng)基對長毛擬青霉菌株SP053生長和繁殖的影響[J]. 南方農(nóng)業(yè)學(xué)報,49(12):2447-2453. [Du C L,Zhang C,Yuan F,Li J Y,Sun T F,Yue Y,Shaukat Ali. 2018. Effects of temperature,pH and culture media on growth and sporulation of Paecilomyces penicillatus strain SP053[J]. Journal of Southern Agriculture,49(12):2447-2453.]
崔志婧,王奕文,于岳,許玲. 2011. 上海市進口火龍果軟腐病病害分析[J]. 微生物學(xué)通報,38(10):1499-1506. [Cui Z J,Wang Y W,Yu Y,Xu L. 2011. Pathogens analysis of soft rot disease of imported pitaya in Shanghai[J]. Microbiology China,38 (10):1499-1506.]
郭力維,吳毅歆,何漢興,毛自朝,何鵬博,何月秋. 2014. 云南省火龍果采后果腐病研究(英文)[J]. 果樹學(xué)報,31(1):111-114. [Guo L W,Wu Y X,He H X,Mao Z C,He P B,He Y Q. 2014. A new fruit rot disease in Hylocereus costaricensis in Yunnan Province of China[J]. Journal of Fruit Science,31(1):111-114.]
胡美姣,高兆銀,李敏,朱迎迎,陳亮. 2015. 火龍果2種采后病害病原菌的鑒定及生物學(xué)特性研究[C]//中國熱帶作物學(xué)會. 中國熱帶作物學(xué)會第九次全國會員代表大會暨2015年學(xué)術(shù)年會論文摘要集. [Hu M J,Gao Z Y,Li M,Zhu Y Y,Chen L. 2015. Identification and biological characteristics of two pathogens of postharvest diseases of pitaya[C]//China Tropical Crop Society. Proceedings of the 9th National Meeting and 2015 Academic Annual Meeting of China Tropical Crop Society.]
黃艷芳,秦媛媛,阮曉靜,蘭宗寶. 2017. 廣西火龍果產(chǎn)業(yè)發(fā)展現(xiàn)狀及可持續(xù)發(fā)展對策研究[J]. 熱帶農(nóng)業(yè)科學(xué),37(6):97-99. [Huang Y F,Qin Y Y,Ruan X J,Lan Z B. 2017. Present situation and countermeasures of sustainable development of pitaya industry in Guangxi[J]. Chinese Journal of Tropical Agriculture,37(6):97-99.]
李國林,孟繁博,鄭秀艷,黃道梅,陳曦,林茂. 2018. 紅肉火龍果貯藏期間氣味監(jiān)測及桃吉爾霉對氣味的影響[J]. 食品安全質(zhì)量檢測學(xué)報,9(18):74-78. [Li G L,Meng F B,Zheng X Y,Huang D M,Chen X,Lin M. 2018. Odor monitoring during storage of red pitaya and effect of Gilbertella persicariaon odor[J]. Journal of food safety and quality inspection,9(18):74-78.]
李敏,胡美姣,高兆銀,張正科,薛丁榕,楊冬平,楊波. 2012. 海南火龍果采后病害調(diào)查及防治技術(shù)研究[J]. 中國熱帶農(nóng)業(yè),(6):42-44. [Li M,Hu M J,Gao Z Y,Zhang Z K,Xue D R,Yang D P,Yang B. 2012. Investigation and control of postharvest diseases of pitaya in Hainan[J]. China Tropical Agriculture,(6):42-44.]
林珊宇,賢小勇,韋小妹,韋繼光,朱桂寧. 2018. 廣西火龍果采后病害主要病原菌分離與鑒定[J]. 中國南方果樹,47(2):6-12. [Lin S Y,Xian X Y,Wei X M,Wei J G,Zhu G N. 2018. Isolation and identification of pathogens for the postharvest diseases in pitaya fruits[J]. South China Fruits,47(2):6-12.]
潘力,崔翠,王斌. 2010. 一種用于PCR擴增的絲狀真菌DNA快速提取方法[J]. 微生物學(xué)通報,37(3):450-453. [Pan L,Cui C,Wang B. 2010. Rapid extraction of filamentous fungal DNA for PCR amplification[J]. Microbiology China,37(3):450-453.]
王彬,蔡永強,鄭偉. 2009. 火龍果果實氨基酸含量及組成分析[J]. 中國農(nóng)學(xué)通報,25(8):210-214. [Wang B,Cai Y Q,Zheng W. 2009. Analysis on the amino acid content and the composition in the pitaya fruit[J]. Chinese Agricultural Science Bulletin,25(8):210-214.]
王會會,符碧海,戴俊,徐倩,王萌,陶挺燕,謝昌平,朱朝華. 2016. 火龍果潰瘍病菌的鑒定及室內(nèi)藥劑篩選[J]. 中國南方果樹,45(1):8-12. [Wang H H,F(xiàn)u B H,Dai J,Xu Q,Wang M,Tao T Y,Xie C P,Zhu C H. 2016. Identification of dragon fruit canker pathogen and indoor scree-ning of fungicides[J]. South China Fruits,45(1):8-12.]
王壯,王立娟,蔡永強,周俊良,馬玉華. 2014. 火龍果營養(yǎng)成分及功能性物質(zhì)研究進展[J]. 中國南方果樹,43(5):25-29. [Wang Z,Wang L J,Cai Y Q,Zhou J L,Ma Y H. 2014. Present research of the nutritional components and functional substances of pitaya fruit[J]. South China Fruits,43(5):25-29.]
徐慧,王秋玲,韋剛,莫建光. 2010. 火龍果的保健功效及其研究進展[J]. 廣西科學(xué)院學(xué)報,26(3):383-385. [Xu H,Wang Q L,Wei G,Mo J G. 2010. The health benefits and research progress of pitaya[J]. Journal of Guangxi Academy of Sciences,26(3):383-385.]
許玲,李學(xué)文,滕康寧. 2003. 果蔬采后致病真菌的檢測及其控制[J]. 食品科學(xué),24(7):155-158. [Xu L,Li X W,Teng K N. 2003. Detection and control of postharvest pathogenic fungi in fruits and vegetables[J]. Food Science,24 (7):155-158.]
許偉東,廖劍鍬,劉加建,關(guān)金順. 2002. 火龍果引種初報[J]. 中國南方果樹,31(1):33-34. [Xu W D,Liao J Q,Liu J J,Guan J S. 2002. Preliminary report on the introduction of pitaya[J]. South China Fruits,31(1):33-34.]
楊小林,韓燁,殷得所,張瑞洋,張佑宏,張舒. 2019. 湖北稻區(qū)穗腐病病原ITS鑒定及其生物學(xué)特性分析[J]. 河南農(nóng)業(yè)科學(xué),48(4):82-87. [Yang X L,Han Y,Yin D S,Zhang R Y,Zhang Y H,Zhang S. 2019. ITS identification and biological characterization of the pathogens of rice spikelet rot disease in Hubei rice region[J]. Journal of Henan Agricultural Sciences,48(4):82-87.]
姚昇華,范詩睿,邢云萊,何嘉琳. 2015. 越南‘紅心火龍果黑腐病病原真菌鑒定及環(huán)境因素影響分析[J]. 植物生理學(xué)報,51(9):1419-1424. [Yao S H,F(xiàn)an S R,Xing Y L,He J L. 2015. Pathogen identification and environmental effects analysis of black rot disease of imported Vietna-mese ‘Red pitaya[J]. Plant Physiology Journal,51(9):1419-1424.]
縱偉,劉艷芳,白新鵬. 2007. 火龍果的營養(yǎng)保健成分及加工[J]. 中國食物與營養(yǎng),(10):46-48. [Zong W,Liu Y F,Bai X P. 2007. Nourishment components and processing of pitaya[J]. Food and Nutrition in China,(10):46-48.]
朱迎迎,陳亮,祝慶剛,張正科,李敏,高兆銀,胡美姣. 2014. 火龍果采后病害與防控技術(shù)研究進展[J]. 中國熱帶農(nóng)業(yè),(4):55-58. [Zhu Y Y,Chen L,Zhu Q G,Zhang Z K,Li M,Gao Z Y,Hu M J. 2014. Present research of postharvest diseases and control technology of pitaya[J]. China Tropical Agriculture,(4):55-58.]
張成玲,孫厚俊,趙永強,楊冬靜,徐振,馬居奎,謝逸萍. 2019. 甘薯根腐病病原分子鑒定及防治藥劑篩選[J]. 江西農(nóng)業(yè)學(xué)報,31(8):46-51. [Zhang C L,Sun H J,Zhao Y Q,Yang D J,Xu Z,Ma J K,Xie Y P. 2019. Molecular detection of sweetpotato root rot disease and screening of fungicides[J]. Acta Agriculturae Jiangxi,31(8):46-51.]
張振華,林江,王文雅,許暢,楊開樣,何世偉. 2019. 火龍果潰瘍病原菌拮抗菌株的篩選與生物防治效果初探[J]. 河南農(nóng)業(yè)科學(xué),48(8):88-94.[Zhang Z H,Lin J,Wang W Y,Xu C,Yang K Y,He S W. 2019. Screening of antagonistic strains of pitaya ulcer pathogen and primary study on biocontrol effects[J]. Journal of Henan Agricultural Sciences,48(8):88-94.]
Abdelghany S M,Schmid D,Deacon J,Jaworski J,F(xiàn)ay F. 2013. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticle[J]. Biomacromolecules,14(2):302-310.
Ali S W,Joshi M,Rajendran S. 2010. Modulation of size,shape and surface charge of chitosan nanoparticles with reference to antimicrobial activity[J]. Journal of Computational and Theoretical Nanoscience,3(4):452-460.
Avasthi S,Gautam,A. K,Bhadauria R. 2015. Occurrence of leaf spot diseases on(L.) Burm.f. caused by species from Madhya Pradesh,India[J]. Biodiversitas Journal of Biological Diversity,16(1):79-83.
Badawy M E I. 2010. Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens[J]. Journal of Applied Polymer Science,117(2):960-969.
Badawy M E I,Rabea E I. 2014. Synthesis and antifungal property of N-(aryl) and quaternary N-(aryl) chitosan derivatives against Botrytis cinerea[J]. Cellulose,21(4):3121-3137.
Bautista-Ba?os S,Hernandez-Lauzardo A N,Velazquez-Del Valle M G,Hernandez-Lopez M,Ait Barka E,Bosquez-Molina E,Wilson C L. 2006. Chitosan as a potential na-tural compound to control pre and postharvest diseases of horticultural commodities[J]. Crop Protection,25(2):108-118.
Benhamou N,Thériault G. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicislycopersici[J]. Physiological and Molecular Plant Pathology,41(1):33-52.
Cui R Q,Sun X T. 2012. First report of Curvularia lunata causing leaf spot on lotus in China[J]. Plant Disease,96(7):1068-1068.
Deng H B,Zhou X,Wang X Y,Zhang C Y,Ding B,Zhang Q H,Du Y M. 2010. Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture[J]. Carbohydrate Polymers,80(2):474-479.
Dunia M,García C,José L,Gomez R,Manuel S S. 2008. Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends[J]. Journal of Biomedical Materials Research. Part B:Applied Biomaterials,85B (2):303-313.
Fajardo J E,Waniska R D,Cuero R G,Pettit R E. 1995. Phenolic compounds in peanut seeds:Enhanced elicitation by chitosan and effects on growth and aflatoxin B1 production by Aspergillus flavus[J]. Food Biotechnology,9(1-2):59-78.
Gao J X,Liu T,Chen J. 2014a. Insertional mutagenesis and cloning of the gene required for the biosynthesis of the non-host-specific toxin in Cochliobolus lunatus that causes maize leaf spot[J]. Phytopathology,104(4):332-339.
Gao S G,Li Y Q,Gao J X,Suo Y J,F(xiàn)u K H,Li Y Y,Chen J. 2014b. Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata,an important maize pathogenic fungus[J]. BMC Genomics,15(1):627.
Gao S G,Zhou F H,Liu T,Li Y Y,Chen J. 2013. A MAP kinase gene,Clk1,is required for conidiation and pathogenicity in the phytopathogenic fungus Curvularia lunata[J]. Journal of Basic Microbiology,53(3):214-223.
Guo L W,Wu Y X,Ho H H,Su Y Y,Mao Z C,He P F,He Y Q. 2013. First report of dragon fruit(Hylocereus undatus) anthracnose caused by Colletotrichum truncatum in China[J]. Journal of Phytopathology,162(4):272-275.
Guo Z Y,Xing R,Liu S,Zhong Z M,Ji X,Wang L,Li P C. 2007. Antifungal properties of Schiff bases of chitosan,N-substituted chitosan and quaternized chitosan[J]. Carbohydrate Research,342(10):1329-1332.
Hawa M M,Salleh B,Latiffah Z. 2009. First report of Curvularia lunata on red-fleshed dragon fruit(Hylocereus poly-rhizus) in Malaysia[J]. Plant Disease,93(9):971-971.
Iftikhar S,Shahid A A,Nawaz K,Ali S W. 2016. First report of Curvularia lunata causing fruit rot of tomato(Lycopersicum esculentum) in Pakistan[J]. Plant Disease,100(5):1013.
Iram S,Ahmad I. 2006. Aggressiveness analysis of foliar fungi to leaves of wheat and rice crops[J]. Archives of Phytopathology and Plant Protection,39(6):429-437.
Jia R X,Duan Y F,F(xiàn)ang Q,Wang X Y,Huang J Y. 2016. Pyri-dine-grafted chitosan derivative as an antifungal agent[J]. Food Chemistry,196:381-387.
Kaur P,Duhan J S,Thakur R. 2018. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea(Cicer arietinum L.)[J]. Biocatalysis and Agricultural Biotechnology,14:466-471.
Liu J,Tian S P,Meng X H,Xu Y. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit[J]. Postharvest Biology and Technology,44(3):300-306.
Liu L M,Huang S W,Wang L,Hou E Q,Xiao D F. 2014. First report of leaf blight of rice caused by Cochliobolus lunatus in China[J]. Plant Disease,98(5):686-686.
Liu T,Hou J M,Wang Y Y,Jin Y Z,Borth W,Zhao F Z,Liu Z,Hu J,Zuo Y H. 2016a. Genome-wide identification,classification and expression analysis in fungal-plant interactions of cutinase gene family and functional analysis of a putative ClCUT7 in Curvularia lunata[J]. Molecular Genetics and Genomics,291(3):1105-1115.
Liu T,Wang Y Y,Ma B C,Hou J M,Jin Y Z,Zhang Y L,Ke X W,Tai L M,Zuo Y H,Dey K. 2016b. Clg2p interacts with Clf and ClUrase to regulate appressorium formation,pathogenicity and conidial morphology in Curvula-ria lunata[J]. Scientific Reports,6(1):24047.
Liu T,Xu S F,Liu L X,Zhou F H,Hou J M,Chen J. 2011. Cloning and characteristics of Brn1 gene in Curvularia lunata causing leaf spot in maize[J]. European Journal of Plant Pathology,131(2):211-219.
Liu T,Zhao F Z,Wang Y Y,Hou J M,Liu L Z,Shen Y Q,Liu Z,Zhang H T,Zuo Y H. 2015. Comparative analysis of phylogenetic relationships,morphologies,and pathogenicities among Curvularia lunata isolates from maize in China[J]. Genetics & Molecular Research,14(4):12537-12546.
Liu W X,Qin Y K,Liu S,Xing R,Yu H H,Chen X L,Li K C,Li P C. 2018. Synthesis,characterization and antifungal efficacy of chitosan derivatives with triple quaternary ammonium groups[J]. International Journal of Biological Macromolecules,114:942-949.
Luan F,Wei L J,Zhang J J,Tan W Q,Chen Y,Dong F,Li Q,Guo Z Y. 2018. Preparation and characterization of qua-ternized chitosan derivatives and assessment of their antioxidant activity[J]. Molecules,23(3):516.
Meng X H,Yang L Y,Kennedy J F,Tian S P. 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit[J]. Carbohydrate Polymers,81(1):70-75.
Monteiro F T,Vieira B S,Barreto R W. 2003. Curvularia lunata and Phyllachora sp.:Two fungal pathogens of the grassy weed Hymenachne amplexicaulis from Brazil[J]. Australasian Plant Pathology,32(4):449-453.
Ngoc N K,Phong N V,Tung N T,Hos N V,Woolf A B,F(xiàn)ullerform R A. 2017. Postharvest diseases and effect of hot water treatments on white fleshed dragon fruit [Hyloce-reus undatus(Haw.) Britton & Rose][J]. International Journal of Current Research in Biosciences and Plant Bio-logy,4(5):30-37.
Oeurn S,Jitjak W,Sanoamuang N. 2015. Fungi on dragon fruit in Loei Province,Thailand and the ability of Bipolaris cactivora to cause post-harvest fruit rot[J]. Asia-Pacific Journal of Science and Technology,20(4):405-418.
Ouyang Q L,Tao N G,Zhang M L. 2018. A damaged oxidative phosphorylation mechanism is involved in the antifungal activity of citral against Penicillium digitatum[J]. Frontiers in Microbiology. doi:10.3389/fmicb.2018.00239.
Panchal V H,Dhale D A. 2011. Isolation of seed-borne fungi of Sorghum(Sorghum vulgare pers.)[J]. Journal of Phytology,3(12):45-48.
Pandey R K,Gupta P K,Srivastava M,Singh S R,Gogo R. 2011. First report of brown leaf spot disease caused by Curvularia lunata infecting Indian spinach or poi(Basella rubra)[J]. Indian Phytopathology,64(2):207.
Roberts J A,Tredway L P. 2008. First report of Curvularia blight of zoysiagrass caused by Curvularia lunata in the United States[J]. Plant Disease,92(1):173.
Sun W Q,Payne G F. 2000. Tyrosinase-containing chitosan gels:A combined catalyst and sorbent for selective phenol removal[J]. Biotechnology and Bioengineering,51(1):79-86.
Taba S,Miyahira N,Nasu K,Takushi T,Moromizato Z. 2007. Fruit rot of strawberry pear(pitaya) caused by Bipolaris cactivora[J]. Journal of General Plant Pathology,73(5):374-376.
Tian P,Nan Z B,Li C J,Spangenberg G C. 2008. Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens[J]. European Journal of Plant Pathology,122(4):593-602.
Verma V S,Gupta V K. 2010. First report of Curvularia lunata causing root rot of strawberry in India[J]. Plant Di-sease,94(4):477.
Wang L T,Wu H,Qin G Z,Meng X H. 2014. Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit[J]. Food Control,41:56-62.
Wang W B,Huang D J,Kang Y R,Wang A Q. 2013. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion[J]. Colloids and Surfaces B:Biointerfaces,106:51-59.
Zhang H K,Lu Y T,Wang Y H,Zhang X R,Wang T Y. 2018. D-Glucosamine production from chitosan hydrolyzation over a glucose-derived solid acid catalyst[J]. RSC Advances,8(10):5608-5613.
(責任編輯 麻小燕)