丁幼春,王凱陽(yáng),杜超群,劉曉東,陳禮源,劉偉鵬
高通量小粒徑種子流檢測(cè)裝置設(shè)計(jì)與試驗(yàn)
丁幼春,王凱陽(yáng),杜超群,劉曉東,陳禮源,劉偉鵬
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070; 2. 農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
針對(duì)油菜播種過(guò)程中因農(nóng)藝要求增大播量以及高速播種產(chǎn)生的排種頻率過(guò)高而導(dǎo)致高通量種子流檢測(cè)精度不足的問(wèn)題,提出了一種將高通量種子流分流為多路低通量種子流并行檢測(cè)的方法,設(shè)計(jì)了基于分流機(jī)制與薄面激光-硅光電池結(jié)合的高通量小粒徑種子流檢測(cè)裝置??紤]高通量種子流分流均勻性與快速通過(guò)性,對(duì)分流結(jié)構(gòu)進(jìn)行設(shè)計(jì),運(yùn)用離散元仿真軟件EDEM及臺(tái)架試驗(yàn)對(duì)處于不同傾斜角度的分流結(jié)構(gòu)分流均勻性進(jìn)行分析,當(dāng)分流結(jié)構(gòu)傾角小于5°時(shí),分流管排量一致性變異系數(shù)的仿真與試驗(yàn)結(jié)果分別不超過(guò)5.19%和8.58%。基于薄面激光照射范圍與落種區(qū)域,確定了薄面激光發(fā)射模組角度、上導(dǎo)種管出種口內(nèi)半徑以及薄面激光距硅光電池距離三者之間的關(guān)系,并優(yōu)選得到三參數(shù)最佳組合。對(duì)4路種子輸入信號(hào)進(jìn)行調(diào)理,經(jīng)電容濾波、雙級(jí)放大、半波整流、電壓比較、單穩(wěn)態(tài)觸發(fā)處理,成為4路獨(dú)立可供單片機(jī)捕捉的脈沖信號(hào)。高通量小粒徑種子流檢測(cè)裝置臺(tái)架試驗(yàn)表明:在排種頻率61.68 Hz范圍內(nèi),油菜種子檢測(cè)準(zhǔn)確率不低于96.1%。田間試驗(yàn)結(jié)果表明:在田間排種頻率62.23 Hz范圍內(nèi),檢測(cè)準(zhǔn)確率不低于95.7%,且試驗(yàn)過(guò)程中無(wú)堵塞現(xiàn)象發(fā)生,田間正常光照、機(jī)具振動(dòng)對(duì)裝置檢測(cè)精度無(wú)影響。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);分流結(jié)構(gòu);高通量;小粒徑;檢測(cè)
油菜是中國(guó)分布最廣,播種面積最大的油料作物[1],同時(shí),隨著相關(guān)生物技術(shù)改良,油菜油用、花用、菜用、蜜用、飼用等功能日益凸顯[2]。油菜播種農(nóng)藝要求隨著播期的推遲,需要增加播量彌補(bǔ)出苗率的降低,另外隨著播種機(jī)的作業(yè)速度提升,均需增加油菜排種器排種頻率以滿(mǎn)足播種密度需要。針對(duì)油菜等小粒徑種子,當(dāng)排種頻率高于30 Hz時(shí)可以認(rèn)為形成了高通量種子流。研究一種高通量小粒徑種子流檢測(cè)裝置,實(shí)現(xiàn)油菜高頻排種過(guò)程中的播量檢測(cè)、漏播檢測(cè)以及對(duì)實(shí)現(xiàn)播種智能化具有重要意義。
國(guó)外對(duì)大中粒徑種子流檢測(cè)技術(shù)研究較為成熟,并已實(shí)現(xiàn)部分播種檢測(cè)裝置的商業(yè)化。Kumar等[3]基于紅外LED及嵌入式平臺(tái),設(shè)計(jì)了對(duì)射式種子流檢測(cè)傳感裝置,將該裝置安裝于導(dǎo)種管之上,可對(duì)通過(guò)的小麥種子流進(jìn)行實(shí)時(shí)檢測(cè)。美國(guó)Precision Planting、John Deere,意大利MC ELECTRONICS公司[4-6]研制的基于聲波與光電式種子流檢測(cè)傳感器,可對(duì)小麥、玉米、大豆等作物的排種總量、漏播率、播種面積等參數(shù)進(jìn)行實(shí)時(shí)監(jiān)測(cè)。上述國(guó)外播種監(jiān)測(cè)裝備價(jià)格昂貴,且主要配套在其各自生產(chǎn)的播種機(jī)具之上,對(duì)于中國(guó)播種機(jī)具兼容性較差,難以直接應(yīng)用。
近年來(lái),國(guó)內(nèi)學(xué)者對(duì)播種檢測(cè)裝置研究日漸深入,和賢桃等[7-12]采用光電傳感器,實(shí)現(xiàn)對(duì)玉米、小麥等作物播種作業(yè)時(shí)播量信息采集,可對(duì)播種作業(yè)質(zhì)量進(jìn)行實(shí)時(shí)監(jiān)控。黃東巖等[13-17]通過(guò)采用壓電薄膜、對(duì)射式紅外檢測(cè)傳感器、光電傳感器結(jié)合旋轉(zhuǎn)編碼器、變距光電傳感器,能夠?qū)崿F(xiàn)對(duì)小麥、玉米、水稻等作物精量排種器排種性能的檢測(cè)。周利明等[18-22]利用種子或肥料介電特性設(shè)計(jì)了基于電容信號(hào)的排種性能檢測(cè)系統(tǒng),能夠?qū)崿F(xiàn)玉米、水稻、棉籽或肥料的播量信息及相關(guān)顆粒含水率的在線(xiàn)檢測(cè),為變量播種、施肥提供參考。
油菜種子粒徑小[23](0.8~2.2 mm),其通過(guò)傳統(tǒng)大中粒徑種子檢測(cè)裝置時(shí)產(chǎn)生的種子信號(hào)微弱不易被捕捉,另一方面檢測(cè)盲區(qū)的存在降低了檢測(cè)精度。李兆東等[24]采用對(duì)射式激光傳感器,通過(guò)檢測(cè)蔬菜種子排種盤(pán)型孔充種狀態(tài),開(kāi)展精量排種器的漏充率與吸孔堵塞率測(cè)試。丁幼春等研制了基于壓電薄膜油菜精量排種器種子流傳感裝置[25]和基于薄面激光-硅光電池的中小粒徑種子流監(jiān)測(cè)傳感裝置[26],在田間低通量排種狀態(tài)下,檢測(cè)準(zhǔn)確率分別不低于99.1%和98.6%。在測(cè)試排種頻率達(dá)62 Hz時(shí),基于壓電薄膜的種子流傳感裝置以及基于薄面激光-硅光電池種子流傳感裝置檢測(cè)準(zhǔn)確率不到85%。究其原因,在排種頻率較高形成高通量種子流時(shí),高通量種子流在傳感裝置內(nèi)部發(fā)生碰撞、混疊概率提高,導(dǎo)致多粒種子同時(shí)穿越感應(yīng)區(qū)概率增大,造成檢測(cè)準(zhǔn)確率降低。
為此,本文提出一種將高通量種子流分流為多路低通量種子流并行檢測(cè)的思路,設(shè)計(jì)基于分流機(jī)制與薄面激光-硅光電池結(jié)合的高通量小粒徑種子流檢測(cè)裝置,并進(jìn)行性能測(cè)試。
本文研究的高通量小粒徑種子流檢測(cè)傳感裝置對(duì)接于油菜精量集排器的某一行,其主要由分流結(jié)構(gòu)、薄面激光發(fā)射模組、硅光電池、信號(hào)調(diào)理電路板等組成,如圖1。油菜精量集排器排出的高通量種子流經(jīng)過(guò)塑料導(dǎo)管進(jìn)入到檢測(cè)裝置入種口,經(jīng)過(guò)聚種漏斗聚集后的種子與分流錐盤(pán)碰撞,流入4支分流管中形成4支低通量種子流,4支低通量種子流獨(dú)立穿越薄面激光層,因?qū)す獾恼趽醺淖兞苏丈湓诠韫怆姵乇砻娴募す鈴?qiáng)度,繼而硅光電池兩端電壓發(fā)生變化,對(duì)這種電壓變化信號(hào)進(jìn)行濾波、放大、整流、電壓比較、單穩(wěn)態(tài)觸發(fā)等數(shù)字化處理,形成4路獨(dú)立單脈沖序列,最終可成為單片機(jī)外部中斷源,實(shí)現(xiàn)高通量種子流的計(jì)數(shù),最后4路種子流再次匯聚由檢測(cè)裝置出種口排出。
1.信號(hào)調(diào)理電路板 2.電源指示燈 3.開(kāi)關(guān) 4.鋰電池 5.薄面激光發(fā)射模組 6.OLED顯示屏 7.出種口 8.固定銷(xiāo) 9.硅光電池卡槽 10.分流結(jié)構(gòu)主體 11.裝置外殼 12.入種口 10-1.聚種漏斗 10-2.分流管 10-3.上導(dǎo)種管 10-4.下導(dǎo)種管 10-5.分流錐盤(pán) 13.硅光電池 14.油菜種子
高通量種子流一分為四,對(duì)4路低通量種子流進(jìn)行并行檢測(cè),最終實(shí)現(xiàn)對(duì)高通量種子流計(jì)數(shù)。為保證檢測(cè)裝置檢測(cè)準(zhǔn)確率,應(yīng)保證每一分流管內(nèi)種子檢測(cè)準(zhǔn)確率較高,基于此,要求通過(guò)每一分流管內(nèi)種子能快速通過(guò)且通過(guò)各分流管內(nèi)種子數(shù)目差別不大。以分流均勻及快速通過(guò)為目標(biāo),對(duì)分流結(jié)構(gòu)參數(shù)進(jìn)行設(shè)計(jì),包括入種口直徑、聚種漏斗上端口直徑、下端口直徑、聚種漏斗高、分流錐盤(pán)底面直徑、分流錐盤(pán)高度、分流管直徑。為保證各分流管內(nèi)油菜種子無(wú)盲區(qū)穿越薄面激光,對(duì)上導(dǎo)種管出種口尺寸、薄面激光發(fā)射模組發(fā)射角度、薄面激光距硅光電池距離參數(shù)進(jìn)行確定。
分流結(jié)構(gòu)主要由聚種漏斗、分流錐盤(pán)、分流腔、分流管、入種口組成,如圖2所示。
1.聚種漏斗 2.分流錐盤(pán)3.分流腔 4. 分流管 5. 入種口
1. Gather seeds funnel 2. Shunt cone disk 3. Shunt cavity 4. Shunt tube 5.Seeds entry
注:1為聚種漏斗上端口直徑,mm;2為聚種漏斗下端口直徑,mm;1為聚種漏斗高,mm;3為分流錐盤(pán)底面直徑,mm;2為分流錐盤(pán)高度,mm。
Note:1is the diameter of the upper port of gather seeds funnel, mm;2is the diameter of the lower port of gather seeds funnel, mm;1is theheight of gather seeds funnel, mm;3is the diameter of the bottom surface of shunt cone disk, mm;2is the height of shunt cone disk, mm.
圖2 分流結(jié)構(gòu)示意圖
Fig.2 Schematic diagram of shunt structure
為方便將排種軟管與檢測(cè)裝置入種口相連接,將入種口直徑確定為20 mm,該尺寸可方便將排種軟管套接到檢測(cè)裝置入種口。為保證高通量種子流進(jìn)入入種口后能更好均分到4支分流管內(nèi),采取“先聚合,再分流”的設(shè)計(jì)思路,在入種口處設(shè)計(jì)聚種漏斗,聚種漏斗上端口直徑1與入種口直徑一致,為20 mm,為保證種子流均能與分流錐盤(pán)錐面碰撞且能較快速通過(guò)聚種漏斗,設(shè)計(jì)聚種漏斗下端口直徑D為13 mm,高1為7.5 mm。為確保高通量種子流盡可能均勻進(jìn)入4支分流管,且具有較好的流暢性,設(shè)計(jì)圓錐體結(jié)構(gòu)作為分流結(jié)構(gòu),分流錐盤(pán)頂點(diǎn)與聚種漏斗下端面重合,這樣可保證通過(guò)聚種漏斗匯集之后的種子流第一時(shí)間與分流錐盤(pán)發(fā)生碰撞,此時(shí)分流錐盤(pán)高度2為17.5 mm。為保證分流結(jié)構(gòu)緊湊且能容納4支分流管,設(shè)計(jì)分流錐盤(pán)底面直徑3為24 mm。為使得種子在分流管不發(fā)生堵塞,設(shè)定分流管直徑為10 mm。
為保證結(jié)構(gòu)緊湊,采用一組薄面激光發(fā)射模組對(duì)應(yīng)兩塊硅光電池,故整體裝置需兩組薄面激光發(fā)射模組4塊硅光電池。一側(cè)薄面激光發(fā)射模組、導(dǎo)種管與硅光電池安裝示意圖如圖3a所示,另一側(cè)安裝布局同圖3a一致。
為確定上導(dǎo)種管出種口內(nèi)半徑、薄面激光發(fā)射角度與薄面激光距硅光電池距離2,對(duì)圖3b中的邊角關(guān)系分析,得到如下方程組:
1.油菜種子 2.上導(dǎo)種管 3.硅光電池 4.薄面激光 5.薄面激光發(fā)射模組
1.Rapeseed 2.Upper seeds through tube 3.Silicon photocell 4.Thin surface laser 5.Thin surface laser emitting module
注:為處于同一薄面激光兩上導(dǎo)種管軸心之間間距,mm;為薄面激光發(fā)射點(diǎn);為理論上避免檢測(cè)盲區(qū)出現(xiàn)的最小薄面激光發(fā)射模組發(fā)射角度,(°);為角度的一半,(°);2為薄面激光距硅光電池距離,mm;1為硅光電池對(duì)角線(xiàn)長(zhǎng)度,14 mm;為硅光電池?zé)o感應(yīng)區(qū)長(zhǎng)度,4 mm;3、分別為對(duì)應(yīng)三角形邊長(zhǎng),mm;為避免檢測(cè)盲區(qū)出現(xiàn)的最大上導(dǎo)種管出種口內(nèi)徑,mm。
Note:is the distance between the axes of the two upper seeds through tubes in the same thin laser, mm;is the thin surface laser emission point;is the emission angle of the smallest thin surface laser emitting module that avoids the detection of blind spots in theory, (°);is half of theangle, (°);2is the distance between the thin surface laser and the silicon photocell, mm;1is the diagonal length of the silicon photocell, 14 mm;is the length of the non-sense area of the silicon photocell, 4 mm;3,are respectively the length of the corresponding triangle side, mm;is the maximum inner diameter of the seed outlet of the upper seeds through tube to avoid detection of blind spots, mm.
圖3 薄面激光發(fā)射模組幾何模型
Fig.3 Geometry model of thin surface laser emission module
對(duì)該方程組進(jìn)行求解,可得、、2三者關(guān)系如下
結(jié)合公式(2),繪制θ()、上導(dǎo)種管出種口內(nèi)半徑R、薄面激光距硅光電池距離L2 三者關(guān)系曲線(xiàn),截取20°≤θ≤80°時(shí)的曲線(xiàn)如圖4所示(當(dāng)θ小于20°時(shí),L2急劇變大,導(dǎo)致裝置尺寸較大,故取θ≥20°;由于薄面激光發(fā)射模組加工工藝限制,薄面激光發(fā)射角度最大為160°,即α最大為160°,故θ最大不超過(guò)80°)。
從油菜種子在管道內(nèi)的通過(guò)流暢性考慮,應(yīng)保證上導(dǎo)種管出種口內(nèi)半徑盡可能大。為使得油菜種子通過(guò)上導(dǎo)種管出種口時(shí)不發(fā)生堵塞,應(yīng)滿(mǎn)足≥2(為油菜種子粒徑,0.8≤≤2.2 mm),即最小為4.4 mm。另外,由于處于同一薄面激光的兩上導(dǎo)種管軸心之間間距為12 mm,導(dǎo)管壁厚為1 mm,為防止兩管道出現(xiàn)重疊,故上導(dǎo)種管出種口內(nèi)半徑應(yīng)滿(mǎn)足以下公式:
2(+1)≤12 (3)
由此確定取值為5 mm,此時(shí)對(duì)應(yīng)為35.6°,則為71.2°,由于工藝限制(目前市場(chǎng)上售賣(mài)的薄面激光發(fā)射模組發(fā)射角度只有30°、60°、90°、120°等),并結(jié)合成本(發(fā)射角度越大成本越高),故選擇發(fā)射角度為90°的薄面激光發(fā)射模組,此時(shí)薄面激光距硅光電池距離2=25 mm。
綜上,對(duì)高通量小粒徑種子流檢測(cè)裝置關(guān)鍵結(jié)構(gòu)參數(shù)進(jìn)行了確定,確定入種口直徑20 mm,聚種漏斗上端口直徑1為20 mm,下端出口直徑2為13 mm,高1為7.5 mm,分流錐盤(pán)底面直徑3為24 mm,高2為17.5 mm,分流管直徑為10 mm,上導(dǎo)種管出種口內(nèi)半徑為5 mm,薄面激光發(fā)射模組發(fā)射角度為90°,薄面激光距硅光電池距離L為25 mm。
為設(shè)計(jì)4通道信號(hào)檢測(cè)電路,需對(duì)單通道種子信號(hào)進(jìn)行分析,確保檢測(cè)裝置檢測(cè)適應(yīng)性。不同粒徑油菜種子(0.8~2.2 mm)穿越薄面激光感應(yīng)區(qū)域時(shí),小粒徑種子產(chǎn)生的穿越信號(hào)幅值小、歷時(shí)短,大粒徑種子產(chǎn)生的穿越信號(hào)幅值大、歷時(shí)長(zhǎng)。進(jìn)行檢測(cè)電路設(shè)計(jì)時(shí),充分考慮檢測(cè)電路對(duì)不同粒徑種子的檢測(cè)適應(yīng)性。
單通道自然光條件下,薄面激光照射到硅光電池表面,會(huì)使硅光電池產(chǎn)生300 mV偏置電壓,油菜種子通過(guò)薄面激光層時(shí),由于對(duì)硅光電池產(chǎn)生遮擋,使硅光電池兩端偏置電壓瞬間減小,種子通過(guò)光層后,偏置電壓恢復(fù)正常。通過(guò)測(cè)試得知,油菜種子下落產(chǎn)生的偏置電壓變化范圍為0.8~10 mV。為將此信號(hào)調(diào)理為單片機(jī)可處理的脈沖信號(hào),需對(duì)該信號(hào)進(jìn)行電容濾波、雙級(jí)放大、半波整流、電壓比較、單穩(wěn)態(tài)觸發(fā)處理,最終形成脈寬可控的方波信號(hào),作為單片機(jī)中斷源信號(hào)。
4路信號(hào)檢測(cè)電路設(shè)計(jì)時(shí),為確保幅值小的穿越信號(hào)能被放大至合適倍數(shù),以最小粒徑(0.8 mm)種子產(chǎn)生的穿越信號(hào)幅值為依據(jù),開(kāi)展電路放大環(huán)節(jié)設(shè)計(jì),4路信號(hào)均經(jīng)獨(dú)立雙級(jí)AD620N放大器放大至飽和,則大粒徑種子信號(hào)也能滿(mǎn)足放大要求;為確保歷時(shí)長(zhǎng)的穿越信號(hào)能被準(zhǔn)確數(shù)字化,以最大粒徑(2.2 mm)種子產(chǎn)生的穿越信號(hào)歷時(shí)時(shí)間為依據(jù),開(kāi)展數(shù)字電路設(shè)計(jì),充分發(fā)揮比較器LM393芯片功能,將其中兩路放大信號(hào)接入同一LM393芯片,另外兩路放大信號(hào)接入另一LM393芯片,通過(guò)調(diào)節(jié)接入兩LM393芯片的4個(gè)504電位器阻值大小,確定比較電壓;4路比較器輸出的方波信號(hào),進(jìn)入2個(gè)74HC123單穩(wěn)態(tài)觸發(fā)器中,調(diào)節(jié)74HC123單穩(wěn)態(tài)觸發(fā)器外圍電路參數(shù),使得輸入方波信號(hào)在單穩(wěn)態(tài)觸發(fā)器作用下形成可供單片機(jī)識(shí)別的脈沖信號(hào),最大粒徑種子穿越信號(hào)能被正確數(shù)字化,則也能夠滿(mǎn)足小粒徑種子的正常檢測(cè),相關(guān)元件具體參數(shù)設(shè)置詳見(jiàn)文獻(xiàn)[26]。
與薄面激光-硅光電池中小粒徑種子流檢測(cè)裝置的信號(hào)檢測(cè)電路相比,本文研制的檢測(cè)裝置多出3路信號(hào)檢測(cè)電路,且所有電路使用的電子元件均為常規(guī)元件,成本不會(huì)有較大增加;信號(hào)檢測(cè)電路包含的濾波、放大、比較、單穩(wěn)態(tài)處理等環(huán)節(jié),相應(yīng)電路都較為成熟,檢測(cè)電路的檢測(cè)可靠性可以保證。
經(jīng)調(diào)理后的4路油菜種子流信號(hào),分別接入MSP430F149單片機(jī)的4個(gè)引腳(分別為單片機(jī)引腳P4.1、P4.2、P4.3、P4.4),4路信號(hào)作為MSP430F149單片機(jī)定時(shí)器B1捕捉中斷的外部中斷源,對(duì)該中斷進(jìn)行觸發(fā),單片機(jī)通過(guò)對(duì)四路觸發(fā)信號(hào)分別計(jì)數(shù)與求和,即可獲得通過(guò)各通道種子數(shù)目及種子總數(shù)目,并將相關(guān)播種信息進(jìn)行實(shí)時(shí)顯示。燒錄到單片機(jī)中的程序包括系統(tǒng)初始化、中斷計(jì)數(shù)程序、顯示程序等。
依據(jù)上文確定的結(jié)構(gòu)參數(shù),運(yùn)用3D打印,并集成電路處理系統(tǒng)等獲得高通量小粒徑種子流檢測(cè)裝置。為驗(yàn)證高通量小粒徑種子流檢測(cè)裝置分流均勻性,開(kāi)展仿真與臺(tái)架試驗(yàn)。
同時(shí)開(kāi)展與課題組前期研制的基于薄面激光-硅光電池中小粒徑種子流檢測(cè)裝置準(zhǔn)確率對(duì)比試驗(yàn)。利用數(shù)粒儀(模擬低通量排種)與離心式集排器(可產(chǎn)生高通量種子流)模擬油菜不同排種狀態(tài),檢驗(yàn)兩裝置在油菜低通量、高通量排種條件下的檢測(cè)準(zhǔn)確率。為進(jìn)一步評(píng)估高通量小粒徑種子流檢測(cè)裝置在實(shí)際播種時(shí)的檢測(cè)效果,開(kāi)展田間試驗(yàn)。
油菜籽粒表面光滑、流動(dòng)性較好、球形度高,可定義為球狀散粒體。在仿真時(shí)將顆粒簡(jiǎn)化為硬球模型,設(shè)置其直徑為2 mm,千粒質(zhì)量為4.68 g,泊松比為0.25,剪切模量為1.1×107Pa,密度為680 kg/m3,接觸模型選用Hert-Mindlin無(wú)滑動(dòng)接觸模型[27]。為便于仿真分析,將分流后的油菜種子采用4個(gè)長(zhǎng)方體空槽進(jìn)行收集,圖5所示為分流結(jié)構(gòu)仿真模型。
圖5 分流結(jié)構(gòu)仿真模型
仿真試驗(yàn)時(shí),設(shè)計(jì)顆粒生成總數(shù)為2 000粒,生成時(shí)間為30 s,期間種子均勻生成。結(jié)合實(shí)際播種情況,綜合考慮田間狀況以及機(jī)械自身浮動(dòng)作用,田間狀況引起的機(jī)器傾斜角度在5°以?xún)?nèi)[28],實(shí)際播種時(shí)排種器出種口距檢測(cè)裝置入種口約為40 cm,建立EDEM仿真模型,如圖5(仿真試驗(yàn)時(shí),按照?qǐng)D中所示編號(hào)記錄各分流管通過(guò)的種子數(shù)目)?;诖藢?duì)檢測(cè)裝置傾斜角度為0°和5°時(shí)開(kāi)展EDEM仿真試驗(yàn),每個(gè)角度進(jìn)行3次仿真,分析其分流均勻性,利用分流管通過(guò)的種子排量一致性變異系數(shù)表征其分流效果優(yōu)劣,變異系數(shù)越小,表明分流均勻性越好。
臺(tái)架試驗(yàn)時(shí),采用華油雜62油菜種子作為試驗(yàn)材料,平均粒徑0.8~2.2 mm,千粒質(zhì)量4.68 g。試驗(yàn)所用設(shè)備主要有:離心集排式油菜精量排種器、臺(tái)架、調(diào)速器、導(dǎo)種軟管、接種杯、角度儀、秒表、高通量小粒徑種子流檢測(cè)裝置,檢測(cè)裝置由3D打印技術(shù)制成,打印所用材料為工程塑料ABS。臺(tái)架試驗(yàn)中,分別對(duì)檢測(cè)裝置傾斜角度為0°和5°開(kāi)展臺(tái)架試驗(yàn),每個(gè)角度測(cè)試3次,每次排種60 s,控制排種器排種頻率約為60 Hz,對(duì)4通道內(nèi)種子進(jìn)行計(jì)數(shù),臺(tái)架試驗(yàn)如圖6所示,仿真與臺(tái)架試驗(yàn)結(jié)果如表1。
1.離心集排式油菜精量排種器 2.排種器臺(tái)架 3.直流電機(jī) 4.調(diào)速器 5.電位器 6.接種袋 7.高通量小粒徑種子流檢測(cè)裝置 8.導(dǎo)種軟管
表1 分流結(jié)構(gòu)不同傾角時(shí)各分流管排量一致性仿真與臺(tái)架試驗(yàn)結(jié)果
仿真結(jié)果表明:當(dāng)分流裝置傾斜角度不超過(guò)5°時(shí),各分流管道種子排量一致性變異系數(shù)不超過(guò)5.19%,該結(jié)構(gòu)具有較好分流效果。臺(tái)架試驗(yàn)結(jié)果表明:當(dāng)裝置傾斜角度不超過(guò)5°時(shí),各分流管道種子排量一致性變異系數(shù)不大于8.58%,具有較好分流均勻性,為后期精準(zhǔn)檢測(cè)高通量種子流提供了基礎(chǔ)。
4.2.1 臺(tái)架試驗(yàn)
臺(tái)架試驗(yàn)材料與前文分流均勻性檢驗(yàn)試驗(yàn)材料相同,均為華油雜62油菜種子,試驗(yàn)所用設(shè)備主要有:SLY-C微電腦自動(dòng)數(shù)粒儀(浙江托普儀器有限公司)、離心集排式油菜精量排種器(下文簡(jiǎn)稱(chēng)排種器)、SW6234C速為測(cè)速器、電位器、臺(tái)架、調(diào)速器、導(dǎo)種軟管、接種杯、接種袋、秒表、高通量小粒徑種子流檢測(cè)裝置、基于薄面激光-硅光電池中小粒徑種子流檢測(cè)裝置等,試驗(yàn)如圖7所示。
1.數(shù)粒儀 2.臺(tái)架 3.高通量小粒徑種子流檢測(cè)裝置 4.基于薄面激光-硅光電池中小粒徑種子流監(jiān)測(cè)裝置
臺(tái)架試驗(yàn)分低通量、高通量排種檢測(cè)兩部分。低通量排種條件下,將高通量小粒徑種子流檢測(cè)裝置與基于薄面激光-硅光電池的中小粒徑種子流檢測(cè)裝置的上導(dǎo)種管分別與數(shù)粒儀出種口連接,利用接種杯收集由檢測(cè)裝置出種口落下的種子。設(shè)定數(shù)粒儀排種數(shù)量為1 000粒,通過(guò)調(diào)整數(shù)粒儀振動(dòng)檔位改變數(shù)粒儀落種頻率,記錄排種時(shí)間及檢測(cè)裝置顯示屏上的種子數(shù)目,并對(duì)排出的種子進(jìn)行人工計(jì)數(shù),試驗(yàn)中調(diào)節(jié)數(shù)粒儀檔位,不斷增大落種頻率,將屏幕上的種子數(shù)目與人工計(jì)數(shù)的種子數(shù)目進(jìn)行對(duì)比,試驗(yàn)結(jié)果如表2。
由表2可知,高通量小粒徑種子流檢測(cè)裝置在數(shù)粒儀模擬排種器低通量排種條件下,排種頻率不超過(guò)21.54 Hz時(shí)(因數(shù)粒儀性能限制,若排種頻率再增加,則數(shù)粒儀不能均勻排種),檢測(cè)準(zhǔn)確率不低于98.3%;薄面激光-硅光電池中小粒徑種子流監(jiān)測(cè)裝置在數(shù)粒儀模擬排種器低通量排種條件下,排種頻率不超過(guò)21.24 Hz時(shí),檢測(cè)準(zhǔn)確率不低于98.1%。
表2 數(shù)粒儀低頻條件下兩檢測(cè)裝置試驗(yàn)結(jié)果
為測(cè)試更高排種頻率下兩檢測(cè)裝置的檢測(cè)準(zhǔn)確率,選用離心集排式油菜精量排種器[29]進(jìn)行高通量排種試驗(yàn),臺(tái)架試驗(yàn)裝置同圖6(在測(cè)試基于薄面激光-硅光電池中小粒徑種子流檢測(cè)裝置的檢測(cè)準(zhǔn)確率時(shí),只需將圖6中的裝置7更換為基于薄面激光-硅光電池中小粒徑種子流檢測(cè)裝置即可)。排種器工作原理為直流電機(jī)驅(qū)動(dòng)其排種軸轉(zhuǎn)動(dòng),帶動(dòng)油菜種子在內(nèi)錐桶內(nèi)轉(zhuǎn)動(dòng),利用離心力將種子排出。臺(tái)架試驗(yàn)中電位器為排種器供電,通過(guò)調(diào)節(jié)調(diào)速器改變排種器驅(qū)動(dòng)軸轉(zhuǎn)速,進(jìn)而改變排種頻率,為保證出種均勻,始終保持排種器內(nèi)錐筒內(nèi)充滿(mǎn)種子。油菜精量聯(lián)合直播機(jī)在田間實(shí)際作業(yè)時(shí),集開(kāi)溝、滅茬、旋耕、播種、施肥、覆土于一體,作業(yè)速度相對(duì)較慢,一般不超過(guò)5 km/h[30],當(dāng)其工作速度為5 km/h時(shí),根據(jù)《2018-2019年度冬油菜生產(chǎn)技術(shù)指導(dǎo)意見(jiàn)》計(jì)算,保證排種器每一路排種頻率約為60 Hz時(shí),才能滿(mǎn)足油菜播種密度要求。利用測(cè)速器檢測(cè)電機(jī)轉(zhuǎn)速,分別設(shè)定電機(jī)轉(zhuǎn)速110、120、130、140、150、160、170、180、190 r/min(經(jīng)測(cè)試電機(jī)轉(zhuǎn)速為190 r/min時(shí),排種器單通道排種頻率約為60 Hz,該轉(zhuǎn)速下的排種頻率滿(mǎn)足油菜精量聯(lián)合直播機(jī)最大排種頻率要求)9個(gè)轉(zhuǎn)速水平,每次試驗(yàn)排種60 s,每種水平測(cè)試3次,通過(guò)記錄高通量小粒徑種子流檢測(cè)裝置顯示屏上的數(shù)據(jù),同時(shí)將下落的種子由接種袋接收并人工計(jì)數(shù),試驗(yàn)結(jié)果見(jiàn)表3。
表3 排種器不同轉(zhuǎn)速下檢測(cè)裝置試驗(yàn)結(jié)果
由表3可知,高通量小粒徑種子流檢測(cè)裝置在排種器排種頻率為20.00~61.68 Hz時(shí),檢測(cè)準(zhǔn)確率不低于96.1%;基于薄面激光-硅光電池的中小粒徑種子流檢測(cè)裝置在排種器排種頻率為21.28~61.93 Hz時(shí),檢測(cè)準(zhǔn)確率不低于84.4%。
基于薄面激光-硅光電池的中小粒徑種子流檢測(cè)裝置在高頻排種條件下檢測(cè)準(zhǔn)確率較低的原因?yàn)椋悍N子在穿越厚度為1 mm的薄面激光感應(yīng)區(qū)域時(shí),速度約為1.1 m/s,不同粒徑(0.8~2.2 mm)種子完全穿越薄面激光層所用時(shí)間范圍為1.6~2.9 ms,此時(shí)會(huì)產(chǎn)生對(duì)應(yīng)時(shí)長(zhǎng)的信號(hào)波形,檢測(cè)電路響應(yīng)時(shí)間為微秒級(jí)別,能夠迅速對(duì)種子信號(hào)進(jìn)行處理,而油菜專(zhuān)用型精量直播機(jī)排出的種子流在導(dǎo)種管內(nèi)運(yùn)動(dòng)時(shí),管內(nèi)氣流、管壁的作用在一定程度上破環(huán)了種子的有序性,當(dāng)2?;蚨嗔7N子“同時(shí)”(相鄰種子時(shí)間間隔低于1.6~2.9 ms)穿越薄面激光感應(yīng)區(qū)域時(shí),多粒種子產(chǎn)生的信號(hào)發(fā)生混疊,導(dǎo)致多粒種子被檢測(cè)為1粒,且隨著排種頻率的增大,這種概率也會(huì)增加,造成檢測(cè)準(zhǔn)確率降低。利用高速攝影儀觀察種子下落軌跡,的確存在2?;蚨嗔7N子“同時(shí)”下落的情況。
綜上,2種檢測(cè)裝置在排種頻率不超過(guò)22 Hz的條件下,檢測(cè)都具有較高可靠性,檢測(cè)準(zhǔn)確率不低于98.1%;在排種頻率約62 Hz的高頻排種條件下,高通量小粒徑種子流檢測(cè)裝置檢測(cè)準(zhǔn)確率不低于96.1%,基于薄面激光-硅光電池的中小粒徑種子流檢測(cè)傳感裝置檢測(cè)準(zhǔn)確率不低于84.4%,高通量小粒徑種子流檢測(cè)裝置檢測(cè)準(zhǔn)確率相較于薄面激光-硅光電池的中小粒徑種子流檢測(cè)傳感裝置檢測(cè)準(zhǔn)確率高11.7%。
4.2.2 田間試驗(yàn)
為考察在田間復(fù)雜工況下,振動(dòng)、光照等對(duì)高通量小粒徑種子流檢測(cè)裝置性能的影響,于2019年9月28日在華中農(nóng)業(yè)大學(xué)工學(xué)院水稻地開(kāi)展高通量小粒徑種子流檢測(cè)裝置性能田間試驗(yàn)。
試驗(yàn)前首先檢驗(yàn)光照條件對(duì)高通量小粒徑種子流檢測(cè)裝置的影響。種箱內(nèi)不放種子,利用塑料軟管將檢測(cè)裝置入種口與排種器某一出種口連接,使播種機(jī)處于田間靜止?fàn)顟B(tài),打開(kāi)傳感裝置,在太陽(yáng)光照、人為打光、人為遮擋自然光條件下進(jìn)行測(cè)試,測(cè)試結(jié)果表明:在田間正常光照條件下,檢測(cè)裝置計(jì)數(shù)始終為0,田間正常光照條件對(duì)檢測(cè)裝置性能無(wú)影響。進(jìn)一步測(cè)試播種機(jī)在正常播種時(shí)產(chǎn)生的振動(dòng)對(duì)檢測(cè)裝置檢測(cè)效果的影響,種箱內(nèi)不放種子,讓播種機(jī)在田間以正常播種速度行駛30 m,重復(fù)3次,模擬振動(dòng)測(cè)試結(jié)果表明:在播種機(jī)行駛過(guò)程中,檢測(cè)裝置計(jì)數(shù)始終為0,田間直播機(jī)正常作業(yè)產(chǎn)生的振動(dòng)對(duì)檢測(cè)裝置性能無(wú)影響。
為保證出種均勻性,排種器內(nèi)錐筒內(nèi)始終應(yīng)充滿(mǎn)種子,利用塑料軟管將傳感裝置與排種器某一出種口連接,拖拉機(jī)電瓶為排種器驅(qū)動(dòng)電機(jī)供電,田間試驗(yàn)如圖8所示。
試驗(yàn)中為保證與實(shí)際油菜條播播種狀態(tài)一致,參照農(nóng)業(yè)農(nóng)村部《2018-2019年度冬油菜生產(chǎn)技術(shù)指導(dǎo)意見(jiàn)》,每公頃地需播種油菜6 000 g才能滿(mǎn)足油菜播種密度要求?;诖?,計(jì)算直播機(jī)每一路油菜排種頻率為20、30、40、50、60 Hz時(shí),對(duì)應(yīng)拖拉機(jī)行進(jìn)速度分別為1.65、2.48、3.30、4.13、4.90 km/h。在上述5種速度狀態(tài)下利用調(diào)速器調(diào)整排種器轉(zhuǎn)速,使得排種器排種頻率為20、30、40、50、60 Hz,每種狀態(tài)進(jìn)行3次試驗(yàn),每次試驗(yàn)播種距離30 m,記錄檢測(cè)裝置檢測(cè)的排種數(shù)量,并通過(guò)接種袋收集各次試驗(yàn)中下落的油菜種子,后期進(jìn)行人工數(shù)粒,與檢測(cè)裝置所得結(jié)果進(jìn)行對(duì)照,試驗(yàn)結(jié)果如表4所示。
1.東方紅-LX954拖拉機(jī) 2.排種器內(nèi)錐筒 3.種箱 4.導(dǎo)種管 5.高通量小粒徑種子流檢測(cè)裝置 6.播種檢測(cè)顯示屏 7.接種袋
表4 檢測(cè)裝置田間油菜播種試驗(yàn)結(jié)果
由表4可知,田間試驗(yàn)時(shí),高通量小粒徑種子流檢測(cè)裝置在排種頻率不超過(guò)62.23 Hz時(shí),檢測(cè)準(zhǔn)確率不低于95.7%,且在試驗(yàn)中無(wú)堵塞現(xiàn)象發(fā)生。
本文設(shè)計(jì)了一種高通量小粒徑種子流檢測(cè)裝置用于解決因農(nóng)藝要求增大播量以及高速播種產(chǎn)生的排種頻率過(guò)高而導(dǎo)致油菜播量檢測(cè)精度不足的問(wèn)題,并對(duì)高通量小粒徑種子流檢測(cè)裝置檢測(cè)準(zhǔn)確率、抗光照干擾和抗振性進(jìn)行了測(cè)試。
1)高通量小粒徑種子流檢測(cè)裝置包括入種口、分流錐盤(pán)、分流管、薄面激光發(fā)射模組、硅光電池、出種口、信號(hào)調(diào)理電路等組成,適用于高通量排種的油菜種子流播量監(jiān)測(cè)。
2)對(duì)檢測(cè)裝置的分流效果進(jìn)行檢驗(yàn),結(jié)果表明,分流結(jié)構(gòu)傾角小于5°時(shí),分流管排量一致性變異系數(shù)的仿真與試驗(yàn)結(jié)果為分別不超過(guò)5.19%和8.58%,具有較好分流均勻性。同時(shí)在分流后的各分流管內(nèi),利用光伏效應(yīng)原理,結(jié)合相應(yīng)信號(hào)調(diào)理電路,實(shí)現(xiàn)對(duì)高通量小粒徑種子流的計(jì)數(shù)。
3)高通量小粒徑種子流檢測(cè)傳感裝置臺(tái)架試驗(yàn)表明:油菜排種頻率在62 Hz范圍內(nèi),油菜種子檢測(cè)準(zhǔn)確率不低于96.1%。田間試驗(yàn)表明:油菜籽排種頻率在62.23 Hz范圍內(nèi),檢測(cè)準(zhǔn)確率不低于95.7%,且在田間正常光照及機(jī)具振動(dòng)狀態(tài)下對(duì)檢測(cè)精度無(wú)影響。
該檢測(cè)裝置可為未來(lái)田間高速精量播種的播量監(jiān)測(cè)提供解決方案。
[1] 郭燕枝,楊雅倫,孫君茂. 我國(guó)油菜產(chǎn)業(yè)發(fā)展的現(xiàn)狀及對(duì)策[J]. 農(nóng)業(yè)經(jīng)濟(jì),2016(7):44-46.
Guo Yanzhi, Yang Yalun, Sun Junmao. The current situation and countermeasures of rapeseed industry development in China[J]. Agricultural Economy, 2016(7): 44-46. (in Chinese with English abstract)
[2] 張哲,殷艷,劉芳,等. 我國(guó)油菜多功能開(kāi)發(fā)利用現(xiàn)狀及發(fā)展對(duì)策[J]. 中國(guó)油料作物學(xué)報(bào),2018,40(5):14-19.
Zhang Zhe, Yin Yan, Liu Fang, et al. Current situation and development countermeasures of Chinese rapeseed multifunctional development and utilization[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 14-19. (in Chinese with English abstract)
[3] Kumar R , Raheman H. An embedded system for detecting seed flow in the delivery tube of a seed drill[C]// International Conference on Advances in Chemical. 2015.
[4] Precision Planting .WaveVision[EB/OL]_ (2014-07-15) [2019-11-08]. https://www.precisionplanting.com/Products/ product/wavevision
[5] John D. Monitoring and documentation [EB/OL]. (2015-08-04) [2019-11-08]. http://www.deere.com/en_US/ parts/parts_by_industry/ag/seeding/monitoring/monitoring. Page
[6] MC Electronics. Sistema full semina [EB/OL].(2018-04-11) [2019-11-08]. https://www.mcelettronica.it/it/prodotti/semina/semina-di-precisione/full-semina_272c28.html
[7] 和賢桃,郝永亮,趙東岳,等. 玉米精量排種器排種質(zhì)量自動(dòng)檢測(cè)儀設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(10):19-27.
He Xiantao, Hao Yongliang, Zhao Dongyue, et al. Design and experiment of testing instrument for maize precision seed meter’s performance detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 19-27. (in Chinese with English abstract)
[8] 紀(jì)超,陳學(xué)庚,陳金成,等.玉米免耕精量播種機(jī)排種質(zhì)量監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(8):1-6.
Ji Chao, Chen Xuegeng, Chen Jincheng, et al. Monitoring system for working performance of no-tillage corn precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 1-6. (in Chinese with English abstract)
[9] 朱瑞祥,葛世強(qiáng),翟長(zhǎng)遠(yuǎn),等. 大籽粒作物漏播自補(bǔ)種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):1-8.
Zhu Ruixiang, Ge Shiqiang, Zhai Changyuan, et al. Design and experiment of automatic reseeding device for miss-seeding of crops with large grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 1-8. (in Chinese with English abstract)
[10] Lu Caiyun, Fu Weiqiang, Zhao Chunjiang, et al. Design and experiment on real-time monitoring system of wheat seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(2): 32-40.
盧彩云,付衛(wèi)強(qiáng),趙春江,等. 小麥播種實(shí)時(shí)監(jiān)控系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):32-40. (in English with Chinese abstract)
[11] 趙淑紅,周勇,劉宏俊,等. 玉米勺式排種器變速補(bǔ)種系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(12):38-44.
Zhao Shuhong, Zhou Yong, Liu Hongjun, et al. Design of reseed shift speed System of scoop-type metering device of corn[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016,47(12): 38-44. (in Chinese with English abstract)
[12] 張繼成,陳海濤,歐陽(yáng)斌林,等. 基于光敏傳感器的精密播種機(jī)監(jiān)測(cè)裝置[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2013,53(2):265-268,273.
Zhang Jichen, Chen Haitao, Ouyang Binlin, et al. Monitoring system for precision seeders based on a photosensitive sensor[J]. Tsinghua Univ (Sci & Tech), 2013, 53(2): 265-268, 273. (in Chinese with English abstract)
[13] 黃東巖,賈洪雷,祁?lèi)?,? 基于聚偏二氟乙烯壓電薄膜的播種機(jī)排種監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):15-22.
Huang Dongyan, Jia Honglei, Qi Yue, et al. Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 15-22. (in Chinese with English abstract)
[14] 孫偉,王關(guān)平,吳建民. 勺鏈?zhǔn)今R鈴薯排種器漏播檢測(cè)與補(bǔ)種系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):8-15.
Sun Wei, Wang Guanping, Wu Jianmin. Design and experiment on loss sowing testing and compensation system of spoon-chain potato metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 8-15. (in Chinese with English abstract)
[15] 車(chē)宇,偉利國(guó),劉婞韜,等. 免耕播種機(jī)播種質(zhì)量紅外監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):11-16. Che Yu, Wei Liguo, Liu Xingtao, et al. Design and experiment of seeding quality infrared monitoring system for no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 11-16. (in Chinese with English abstract)
[16] 賈洪雷,路云,齊江濤,等. 光電傳感器結(jié)合旋轉(zhuǎn)編碼器檢測(cè)氣吸式排種器吸種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):28-39.
Jia Honglei, Lu Yun, Qi Jiangtao, et al. Detecting seed suction performance of air suction feeder by photoelectric sensor combined with rotary encoder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 28-39. (in Chinese with English abstract)
[17] 趙立新,張?jiān)鲚x,王成義,等. 基于變距光電傳感器的小麥精播施肥一體機(jī)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):27-34.
Zhao Lixin, Zhang Zenghui, Wang Chengyi, et al. Design of monitoring system for wheat precision seeding-fertilizing machine based on variable distance photoelectric sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13):27-34. (in Chinese with English abstract)
[18] 周利明,王書(shū)茂,張小超,等. 基于電容信號(hào)的玉米播種機(jī)排種性能監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):16-21.
Zhou Liming, Wang Shumao, Zhang Xiaochao, et al. Seed monitoring system for corn planter based on capacitance signal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 16-21. (in Chinese with English abstract)
[19] 周利明,馬明,苑嚴(yán)偉,等. 基于電容法的施肥量檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):44-51. Zhou Liming, Ma Ming, Yuan Yanwei, et al. Design and test of fertilizer mass monitoring system based on capacitance method[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(24): 44-51. (in Chinese with English abstract)
[20] 周利明,李樹(shù)君,張小超,等. 基于電容法的棉管籽棉質(zhì)量流量檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):47-52.
Zhou Liming, Li Shujun, Zhang Xiaochao, et al. Detection of seedcotton mass flow based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 47-52. (in Chinese with English abstract)
[21] 陳建國(guó),李彥明,覃程錦,等. 小麥播種量電容法檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):51-58.
Chen Jianguo, Li Yanming, Qin Chengjin, et al. Design and test of capacitive detection system for wheat seeding quantity[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(18): 51-58. (in Chinese with English abstract)
[22] 劉志壯,呂貴勇. 基于電容法的稻谷含水率檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(7):179-182.
Liu Zhizhuang, Lv Guiyong. Mositure Content Detection of paddy rice based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 179-182. (in Chinese with English abstract)
[23] 丁幼春,王雪玲,廖慶喜,等. 油菜籽漏播螺管式補(bǔ)種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):16-24.
Ding Youchun, Wang Xueling, Liao Qingxi, et al. Design and experiment on spiral-tube reseeding device for loss sowing of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(22): 16-24. (in Chinese with English abstract)
[24] 李兆東,孫譽(yù)寧,楊文超,等. 光束阻斷式小粒蔬菜種子漏充與堵孔同步檢測(cè)系統(tǒng)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(8):119-126.
Li Zhaodong, Sun Yuning, Yang Wenchao, et al. Design of synchronous detection system of missing filling seeds and suction hole blocking based on beam blocking for small vegetable grains[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 119-126. (in Chinese with English abstract)
[25] 丁幼春,楊軍強(qiáng),朱凱,等. 油菜精量排種器種子流傳感裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):29-36.
Ding Youchun, Yang Junqiang, Zhu Kai, et al. Design and experiment on seed flow sensing deVice for rapeseed precision metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 29-36. (in Chinese with English abstract)
[26] 丁幼春,朱凱,王凱陽(yáng),等. 薄面激光-硅光電池中小粒徑種子流監(jiān)測(cè)裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):20-28.
Ding Youchun, Zhu Kai, Wang Kaiyang, et al. Development of monitoring device for medium and small size seed flow based on thin surface laser- silicon photocell[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 20-28. (in Chinese with English abstract)
[27] 廖慶喜,張朋玲,廖宜濤,等. 基于 EDEM 的離心式排種器排種性能數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):109-114. Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114. (in Chinese with English abstract)
[28] 劉曉東,丁幼春,舒彩霞,等. 螺旋擾動(dòng)錐體離心式排肥器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):40-49.
Liu Xiaodong, Ding Youchun, Shu Caixia , et al. Design and experiment of spiral disturbance cone centrifugal fertilizer apparatus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 40-49. (in Chinese with English abstract)
[29] 張寧. 離心集排式油菜精量排種器的設(shè)計(jì)及試驗(yàn)研究[D].武漢:華中農(nóng)業(yè)大學(xué),2012.
Zhang Ning. Design and Experiment Research on Centralized Centrifugal Precision Metering Device for Rapeseed[D]. Wuhan: Hua Zhong Agricultural University, 2012. (in Chinese with English abstract)
[30] 田波平,廖慶喜,黃海東,等. 2BFQ-6型油菜精量聯(lián)合直播機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008(10):211-213.
Tian Boping, Liao Qingxi, Huang Haidong, et al. Design of 2BFQ-6 precision seeder for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008(10): 211-213. (in Chinese with English abstract)
Design and experiment of high-flux small-size seed flow detection device
Ding Youchun, Wang Kaiyang, Du Chaoqun, Liu Xiaodong, Chen Liyuan, Liu Weipeng
(1.,,430070,;2.,,430070,)
Rapeseed is the most widely distributed and grown oil crop in China. At the same time, with the improvement of related biotechnology, the variety of rapeseed functions has become increasingly prominent. According to the agronomic requirements for rapeseed, with the delay of the sowing date, it is necessary to increase the sowing amount to make up for the decrease of the emergence rate. In addition, as the operation speed of the planter increasing, the rapeseed seeder seeding frequency is needed to increase to meet the seeding density. For small size seeds such as rapeseed, when the sowing frequency is higher than 30 Hz, it can be considered that a high-flux seeds flow. It is great significance to research a kind of high-flux and small size seeds flow detection device to realize the detection of seeds quantities and missing seeds during high-frequency sowing of rapeseed. Because the rapeseed has a small size (0.8-2.2 mm), the seed signal generated by the conventional large and medium size detection device is weak and difficult to be captured. On the other hand, the existence of blind spots in detection has reduced the detection accuracy. In the text, when the sowing frequency reaches 62 Hz, the detection accuracy of the seeds flow detection device based on thin piezoelectric film and the seeds flow detection device based on thin-surface laser silicon photocell developed by the research team in the early stage was less than 85%. The reason is that when a high-flux seeds flow is formed at a high sowing frequency, the high-flux seeds flow will collide and increase the probability of aliasing inside the detection device, resulting in an increased probability of multiple seeds passing through the sensing zone at the same time, and detection accuracy is reduced. Aiming at the problem of insufficient precision of high-flux seeds flow detection due to agronomic requirements during the sowing of rapeseed and the high seeding frequency caused by high speed sowing,a method for parallel detection of high-flux seeds flow into multiple low-flux seeds flow was proposed, then the high-flux small size seeds flow detection device based on a combination of a shunt mechanism and a thin surface laser silicon photocell was designed.Considering the uniformity and fast passage of the high-flux seeds flow, the shunt structure was designed. Discrete element simulation software EDEM and bench test were used to verify the seeding uniformity when the shunt tube tilt angles. When the inclination angle of the shunt structure was less than 5°, simulation and bench test results of the consistency of the displacement each shunt tube at different inclination angles did not exceed 5.19% and 8.58% respectively. Combining the thin face laser and the seeding area, determine the relationship between the thin face laser emitting module angle, the inner radius of upper seeds through tube, and the distance of the thin face laser to the silicon photocell, comprehensive device cost and volume optimization to get the best combination of three parameters. Bench test of high-flux small size seeds flow detection device showed that within the seeding frequency range of 61.68 Hz, the accuracy of rapeseed detection was not less than 96.1%.The field test results showed that the detection accuracy rate was not less than 95.7% when the field seeding frequency was not more than 62.23 Hz, and no blocking phenomenon occured during the test.Normal light in the field and machine vibration had no effects on the detection accuracy of the device.
argicultural machinery; design; experiments;shunt structure; high-flux; small size; detection
丁幼春,王凱陽(yáng),杜超群,等. 高通量小粒徑種子流檢測(cè)裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(13):20-28.doi:10.11975/j.issn.1002-6819.2020.13.003 http://www.tcsae.org
Ding Youchun, Wang Kaiyang, Du Chaoqun, et al. Design and experiment of high-flux small-size seed flow detection device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 20-28. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.003 http://www.tcsae.org
2020-01-07
2020-06-19
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200600、2016YFD0200606)
丁幼春,教授,博士生導(dǎo)師,主要從事油菜機(jī)械化生產(chǎn)智能化技術(shù)與裝備研究。Email:kingbug163@163.com
10.11975/j.issn.1002-6819.2020.13.003
S223.2+5
A
1002-6819(2020)-13-0020-09