丁鶯 何洋 楊毅
[摘要] 長(zhǎng)鏈非編碼RNA是一種長(zhǎng)度大于200個(gè)核苷酸的非編碼RNA,可在表觀遺傳、轉(zhuǎn)錄以及轉(zhuǎn)錄后三個(gè)水平調(diào)控基因的表達(dá),具有多種生物學(xué)功能。胰腺作為人體中最主要、最復(fù)雜的器官之一,其生理作用和病理變化均與機(jī)體健康息息相關(guān)。本文通過搜集大量國內(nèi)外相關(guān)文獻(xiàn),描述并歸納了長(zhǎng)鏈非編碼RNA在胰腺疾病,如胰腺炎、胰腺癌、糖尿病中所發(fā)揮的作用。本綜述旨在提高臨床醫(yī)生對(duì)胰腺相關(guān)疾病的認(rèn)知及為其提供新的診療方向,并為以后LncRNAs在胰腺疾病中的功能研究奠定基礎(chǔ)。
[關(guān)鍵詞] 長(zhǎng)鏈非編碼RNA;胰腺;胰腺炎;胰腺癌;糖尿病
[中圖分類號(hào)] R735.9? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-9701(2020)16-0187-06
Progress of the research on long-chain non-coding RNA and pancreas related diseases
DING Ying1? ?HE Yang2? ?YANG Yi3
1.Department of Critical Care Medicine,Xiasha Division,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,Hangzhou Xiasha Hospital, Hangzhou 310018,China;2.Department of Emergency Medicine,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,Hangzhou 310016,China;3.Department of Pharmacy,Xiasha Division,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,Hangzhou Xiasha Hospital,Hangzhou 310018, China
[Abstract] Long-chain non-coding RNA is a non-coding RNA with a length of more than 200 nucleotides. It can regulate gene expression at epigenetic, transcriptional and post-transcriptional levels,and it has a variety of biological functions. Pancreas is one of the most important and complicated organs in human body. Its physiological function and pathological changes are closely related to body health. This paper described and summarized the role of long-chain non-coding RNA in pancreatic diseases such as pancreatitis,pancreatic cancer and diabetes by collecting a large number of relevant domestic and foreign literatures. The purpose of this review is to improve clinicians' understanding of pancreas related diseases and provide a new diagnosis and treatment direction for them,and lay a foundation for future research on the function of LncRNAs in pancreatic diseases.
[Key words] Long-chain non-coding RNA (LncRNAs); Pancreas; Pancreatitis; Pancreatic cancer; Diabetes
在過去很長(zhǎng)的一段時(shí)間內(nèi),RNA只被認(rèn)為是一座將遺傳信息從DNA轉(zhuǎn)移到蛋白質(zhì)的橋梁,然而,人類基因組測(cè)序結(jié)果顯示,雖然有70%的基因組會(huì)轉(zhuǎn)錄為RNA,但人類僅有約占全基因組2%的基因(20 000個(gè))編碼蛋白質(zhì)[1]。這個(gè)結(jié)果促使人們注意到了數(shù)量龐大的非編碼RNA(non-coding RNA,ncRNA)的存在,但由于其不編碼蛋白質(zhì),ncRNA曾一度被認(rèn)為是一種“轉(zhuǎn)錄噪音”。近幾十年來,隨著各種高通量和深度測(cè)序技術(shù)的發(fā)展,ncRNA在調(diào)控基因和發(fā)育方面的生物功能越來越多的被人類發(fā)現(xiàn)[2,3]。長(zhǎng)鏈非編碼RNA(Long non-coding RNA,LncRNA)是一種長(zhǎng)度大于200個(gè)氨基酸的非編碼RNA,可參與多種生物過程。越來越多的研究也表明,在胰腺炎、胰腺癌、糖尿病等胰腺相關(guān)疾病中,LncRNA的表達(dá)出現(xiàn)變化,提示LncRNA可能在其中發(fā)揮重要作用[4]。
為了更清楚了解LncRNA與胰腺及胰腺相關(guān)疾病之間的關(guān)系,為以后LncRNA在胰腺中的功能研究奠定基礎(chǔ),在本文中就LncRNA與胰腺相關(guān)疾病的研究進(jìn)展進(jìn)行討論。
1 LncRNA與胰腺的發(fā)育
胰腺是人體重要的消化器官及內(nèi)分泌器官,通過其外分泌腺和內(nèi)分泌腺兩個(gè)部分實(shí)現(xiàn)功能。隨著人們對(duì)LncRNA的研究越來越深入,研究人員逐漸發(fā)現(xiàn),LncRNA會(huì)參與調(diào)控胰腺的發(fā)育及胰島細(xì)胞的分化過程。研究者們發(fā)現(xiàn),LncRNA H19可參與糖尿病的子代遺傳,并影響糖尿病妊娠母親胎兒的胰島結(jié)構(gòu)和功能,這表明LncRNA參與調(diào)控胰島發(fā)育和功能的第一個(gè)跡象[5]。近幾年, Ildem Akerman等[4]做了胰島轉(zhuǎn)錄圖譜檢測(cè),發(fā)現(xiàn)在胰島中有將近2400個(gè)轉(zhuǎn)錄本為L(zhǎng)ncRNA,并有55% 的LncRNA具有高度的胰島特異性,這些LncRNA可在小鼠胎兒期間動(dòng)態(tài)的調(diào)節(jié)胰島發(fā)育。
LncRNA除了能推動(dòng)胰腺的發(fā)育過程,還可以影響β細(xì)胞的分化與成熟。Dlk1(delta-like 1 homologue)是在胰島β細(xì)胞中高度表達(dá)的一種人類印跡基因[6],LncRNA MEG3在其下游轉(zhuǎn)錄,研究表明,LncRNA MEG3可通過募集多梳抑制復(fù)合物來沉默Dlk1,影響β細(xì)胞的識(shí)別和功能性成熟[6,7]。胰-十二指腸同源盒1(pancreas-duodenal box 1,Pdx1)是胰島內(nèi)分泌細(xì)胞轉(zhuǎn)錄激活過程中的一種關(guān)鍵性調(diào)控分子[8],在NK6相關(guān)轉(zhuǎn)錄因子1(NK6 transcription factor related 1,NKX6-1)的協(xié)同作用下可誘導(dǎo)多能干細(xì)胞定向分化為胰島β細(xì)胞[8,9]。有研究表明,多外顯子LncRNA XLOC_018755存在于NKX6-1基因的5' N端,其在胰島β細(xì)胞中的表達(dá)比非β細(xì)胞組織高約1600倍;同時(shí),Pdx1的基因座的反義位置上還結(jié)合有一種LncRNA XLOC_019089,這種LncRNA只在胰島β細(xì)胞組織中表達(dá),具有高度特異性。有研究表明,在小鼠中敲除LncRNA βlinc1會(huì)引起葡萄糖耐受不良、胰島素分泌受損,同時(shí)減少胰島β細(xì)胞和δ細(xì)胞的數(shù)量[10],導(dǎo)致大量參與內(nèi)分泌祖細(xì)胞分化和胰島β細(xì)胞成熟、功能調(diào)控的基因失調(diào)。以上結(jié)果均提示LncRNA在胰腺發(fā)育與胰島細(xì)胞的分化、成熟等方面可發(fā)揮重要作用。
2 LncRNA與胰腺炎
2.1急性胰腺炎概述
急性胰腺炎(Acute pancreatitis,AP)是消化系統(tǒng)中最常見的疾病之一,常見的病因包括膽結(jié)石和酒精。其發(fā)病機(jī)制主要是由于蛋白水解酶在胰腺內(nèi)的過早激活[11,12]及炎癥細(xì)胞的侵襲[13](圖1)。病理狀態(tài)下,PKC信號(hào)激活且Ca2+離子持續(xù)增加,導(dǎo)致NF-κB信號(hào)通路的進(jìn)一步活化,同時(shí)組織蛋白酶B能夠?qū)⒁鹊鞍酌冈崆盎罨痆14,15],導(dǎo)致早期的胰腺腺泡細(xì)胞死亡。胰腺腺泡細(xì)胞死亡后,大量巨噬細(xì)胞浸潤到腺泡與酶原共定位的細(xì)胞器中并吞噬死亡的腺泡細(xì)胞,同時(shí),大量壞死的胰腺腺泡細(xì)胞會(huì)將巨噬細(xì)胞極化為促炎性的M1型巨噬細(xì)胞并釋放出趨化因子和細(xì)胞因子,驅(qū)動(dòng)胰腺出現(xiàn)系統(tǒng)性炎癥反應(yīng)[16,17]。大多數(shù)急性胰腺炎患者的炎癥反應(yīng)可隨時(shí)間慢慢消退,但在約20%的患者中,炎癥反應(yīng)會(huì)持續(xù)發(fā)展,導(dǎo)致全身多種并發(fā)癥和器官功能障礙,最終造成10%~30%的死亡率[18]。
2.2 LncRNA與胰腺炎
有關(guān)于LncRNA在急慢性胰腺炎發(fā)展過程中的調(diào)控方式的研究較少,直到近幾年,人們才慢慢開始關(guān)注LncRNA在胰腺炎中的作用。Zhao D等[19]的研究發(fā)現(xiàn),在雨蛙素誘導(dǎo)的急性胰腺炎模型中,LncRNA Fendrr可通過與高表達(dá)膜聯(lián)蛋白A2(Annexin A2,ANXA2)相互作用來促進(jìn)大鼠胰腺腺泡細(xì)胞的凋亡。Baojun LI等[20]的研究發(fā)現(xiàn),LncRNA H19在胰腺炎患者的血清中高表達(dá),且LncRNA H19的表達(dá)水平在重癥急性胰腺炎患者與輕癥急性胰腺炎患者的血清中有顯著的統(tǒng)計(jì)學(xué)差異,未來有望作為臨床上診斷急性胰腺炎的潛在生物標(biāo)志物。Wang L等[21]的研究表明,LncRNA B3GALT5-AS1的過表達(dá)可以通過調(diào)節(jié)miR-203/NFIL3軸及抑制NF-κB激活來減輕大鼠胰腺腺泡細(xì)胞AR42J中雨蛙素造模誘導(dǎo)的細(xì)胞損傷。雖然這些實(shí)驗(yàn)的研究工作還沒有進(jìn)行的很全面,對(duì)于LncRNA調(diào)控急性胰腺炎發(fā)病進(jìn)程的機(jī)制也未深入闡明,但以上實(shí)驗(yàn)結(jié)果均顯示出LncRNA有望作為急性胰腺炎的診斷標(biāo)志物或治療靶標(biāo)。
3 LncRNA與胰腺癌
3.1 胰腺癌概述
胰腺癌(Pancreatic cancer,PC)是世界范圍內(nèi)最為致命的惡性腫瘤之一,在全球總體癌癥死亡率持續(xù)下降的情況下,胰腺癌的死亡率仍居高不下,且發(fā)病率逐年升高。據(jù)最新癌癥統(tǒng)計(jì)數(shù)據(jù)結(jié)果顯示,胰腺癌是男性和女性的第三大癌癥死亡原因[22,23],每年我國因胰腺癌死亡的人數(shù)占全球胰腺癌死亡人數(shù)的19.27%[24]。胰腺癌是一種全身性疾病,5年生存率只有5%,即使是接受手術(shù)切除的患者,5年生存率也僅有20%[25],并且,發(fā)達(dá)國家與發(fā)展中國家的存活率差異很小[26]。
胰腺癌早期通常沒有癥狀,且在不使用侵入性手術(shù)探查的情況下,目前的非侵入性篩查方法不能實(shí)現(xiàn)有效的早期診斷;即使診斷出胰腺癌,由于絕大多數(shù)患者在初診時(shí)就已經(jīng)發(fā)展為局部晚期和轉(zhuǎn)移性胰腺癌,出現(xiàn)血管和神經(jīng)的浸潤,大部分胰腺癌均不可進(jìn)行手術(shù)切除[24]。據(jù)統(tǒng)計(jì),只有約10%的胰腺癌患者能在早期被診斷出來,并成功進(jìn)行手術(shù)切除[22]。
3.2 LncRNA與胰腺癌的早期診斷及預(yù)后
根據(jù)LncRNA在癌癥生物學(xué)中所發(fā)揮的功能,近年來,越來越多的研究者們認(rèn)為,LncRNA可以作為潛在的生物標(biāo)志物用于癌癥的早期臨床診斷、治療和預(yù)后預(yù)測(cè)。Wang Y等[27]通過高通量微陣列的方式篩選了胰腺癌患者7500個(gè)LncRNA中的胰腺癌潛在生物標(biāo)志物,發(fā)現(xiàn)在胰腺癌患者的腫瘤組織中,LncRNA HOTTIP-005和LncRNA RP11-567G11.1的表達(dá)水平顯著增加,且兩者均具有相對(duì)較高的靈敏度和特異性,在胰腺癌的早期階段即可顯示出明顯變化,將LncRNA HOTTIP-005和LncRNA RP11-567G11.1作為胰腺癌篩查的血清生物標(biāo)志物并與CA 19-9的水平相結(jié)合,也許可以顯著提高胰腺癌的診斷效率。Muller S等[28]通過新一代測(cè)序,發(fā)現(xiàn)有43個(gè)LncRNA在6例胰腺癌患者和5個(gè)對(duì)照組織中顯示出差異表達(dá)。同樣的,Ye S等[29]使用生物信息學(xué)的方法,以高通量測(cè)序的數(shù)據(jù)為基礎(chǔ),發(fā)現(xiàn)有21個(gè)LncRNA在胰腺癌患者和正常組織中有差異表達(dá)。以上結(jié)果均表明,LncRNA參與了胰腺癌的發(fā)生和發(fā)展,并在其中發(fā)揮重要作用,具有潛在的診斷價(jià)值。
侵襲和遷移是惡性腫瘤重要的生物學(xué)特征,在胰腺癌中,神經(jīng)侵襲是一種攻擊行為,會(huì)影響胰腺癌手術(shù)的切除效果及預(yù)后[30]。已有研究者發(fā)現(xiàn),與非腫瘤組織相比,LncRNA HOTAIR在胰腺腫瘤中高表達(dá),且可影響腫瘤細(xì)胞的侵襲能力、調(diào)節(jié)細(xì)胞活力和細(xì)胞周期進(jìn)程,可作為胰腺癌患者的預(yù)后因子[31]。同時(shí),Peng W等[32]通過檢測(cè)304例胰腺癌患者腫瘤組織及正常組織中LncRNA HULC的表達(dá)后發(fā)現(xiàn),高表達(dá)的LncRNA HULC與晚期淋巴結(jié)轉(zhuǎn)移、血管侵犯和腫瘤大小有著顯著相關(guān)性。接著他們又評(píng)估了LncRNA HULC的表達(dá)與胰腺癌患者預(yù)后之間的關(guān)系,Kaplan-Meier分析顯示,LncRNA HULC的表達(dá)水平高的患者生存時(shí)間明顯短于LncRNA HULC低表達(dá)的患者,多變量分析也進(jìn)一步揭示LncRNA HULC表達(dá)是胰腺癌患者存活率差的重要獨(dú)立預(yù)測(cè)因子。Ye S等[29]選擇肌動(dòng)蛋白絲相關(guān)蛋白1反義RNA(AFAP1-AS1)作為預(yù)后標(biāo)志物測(cè)量了胰腺癌患者的LncRNA表達(dá)譜,發(fā)現(xiàn)其與淋巴結(jié)轉(zhuǎn)移、神經(jīng)周圍浸潤和生存率低有關(guān)。并且,當(dāng)LncRNA AFAP1-AS1作為胰腺癌的預(yù)后標(biāo)志物時(shí),受試者ROC曲線下面積可達(dá)到0.8669。
4 LncRNA與胰腺神經(jīng)內(nèi)分泌瘤
胰腺神經(jīng)內(nèi)分泌瘤(Pancreatic neuroendocrine tumor,PENT)是一種較為罕見的胰腺腫瘤,在所有原發(fā)性胰腺惡性腫瘤中占比不足5%,每年的發(fā)病率不足十萬分之一。胰腺神經(jīng)內(nèi)分泌瘤可分為兩類:一種為與激素分泌相關(guān)且表現(xiàn)出臨床癥狀的功能性胰腺神經(jīng)內(nèi)分泌瘤,包括胰高血糖素瘤、胰島素瘤、生長(zhǎng)抑素瘤等;另一種為無功能性胰腺神經(jīng)內(nèi)分泌瘤,雖然激素過量產(chǎn)生但并未出現(xiàn)功能性病變。胰高血糖素瘤多表現(xiàn)為體重降低、糖尿病并伴隨有特異性皮炎和口炎等黏膜異常,診斷方法為檢測(cè)胰高血糖素水平;胰島素瘤的臨床表現(xiàn)為神經(jīng)低血糖癥和出汗、心悸等癥狀,診斷的金標(biāo)準(zhǔn)為3 d饑餓試驗(yàn);生長(zhǎng)抑素瘤通常表現(xiàn)為糖尿病、脂肪瀉以及一些膽囊疾病,沙洋瘤小體是其典型的病理表現(xiàn),臨床上可通過檢測(cè)血漿中的生長(zhǎng)抑素類似物來診斷。一旦確診,手術(shù)切除是胰腺神經(jīng)內(nèi)分泌瘤的唯一治療手段,而對(duì)于一些不可切除的晚期胰腺神經(jīng)內(nèi)分泌瘤,則針對(duì)激素受體采用藥物靶向治療。
神經(jīng)內(nèi)分泌瘤的最常見位置是在腸道、胰腺和肺,關(guān)于非編碼RNA和神經(jīng)內(nèi)分泌惡性腫瘤的相關(guān)研究較少。來自Roldo等的一項(xiàng)研究數(shù)據(jù)顯示,miRNA在胰腺腫瘤中的表達(dá)模式與在正常胰腺組織中不同,以此能將胰腺腫瘤與正常胰腺組織區(qū)分開,表明一些miRNA可能參與胰腺腫瘤的發(fā)生。如,miR-103和miR-107的高表達(dá)以及miR-155的低表達(dá)能夠在胰腺腫瘤中檢測(cè)出來。miR-204主要在胰島素瘤中表達(dá),并與胰島素的免疫組織化學(xué)水平相關(guān),而miR-21的過表達(dá)與高Ki67增殖指數(shù)和肝轉(zhuǎn)移的存在密切相關(guān)。
由于胰腺神經(jīng)內(nèi)分泌瘤的發(fā)病率較低,LncRNA在胰腺神經(jīng)內(nèi)分泌瘤中的研究較少。Iyer S等[33]發(fā)現(xiàn)LncRNA MEG3在胰腺神經(jīng)內(nèi)分泌瘤中顯著下調(diào),在小鼠胰島素瘤細(xì)胞中敲低LncRNA MEG3會(huì)使致癌肝細(xì)胞生長(zhǎng)因子(Hepatocyte growth factor,HGF)受體c-MET異常升高,過表達(dá)LncRNA MEG3則會(huì)使c-MET下調(diào),損害細(xì)胞侵襲和遷移能力。c-MET可促進(jìn)傷口修復(fù)、組織再生和癌癥轉(zhuǎn)移,其上調(diào)常與腫瘤的不良預(yù)后有關(guān)[34]。以上結(jié)果表明LncRNA MEG3在胰腺神經(jīng)內(nèi)分泌瘤中具有抗腫瘤活性。
5 LncRNA與糖尿病
5.1 LncRNA與1型糖尿病
1型糖尿?。═ype 1 diabetes mellitus,T1DM)是一種慢性自身免疫性疾病,僅占糖尿病患者的5%~10%[35]。在T1DM中,胰島β細(xì)胞自身免疫破壞,引起胰島素缺乏,最終導(dǎo)致高糖血癥。T1DM患者終身都需要依賴外來胰島素以維持血糖平穩(wěn)。近年來,T1DM一直被認(rèn)為由環(huán)境風(fēng)險(xiǎn)因素和遺傳易感性導(dǎo)致,T1DM與6號(hào)染色體上主要組織相容性復(fù)合體(Major histocompatibility complex,MHC)中的人類白細(xì)胞抗原(Human leukocyte antigen,HLA)關(guān)聯(lián)緊密,并且HLA單倍型會(huì)嚴(yán)重影響自身免疫的遺傳易感性,所以HLA是T1DM風(fēng)險(xiǎn)的主要遺傳決定因素[36]。
已經(jīng)有多項(xiàng)研究表明LncRNA在T1DM中可發(fā)揮潛在作用。LncRNA TUG1是哺乳動(dòng)物中高度保守的LncRNA,在小鼠胰腺組織中高表達(dá)。在小鼠β細(xì)胞中,高血糖可導(dǎo)致LncRNA TUG1的下調(diào),促進(jìn)細(xì)胞凋亡并減少胰島素的合成和分泌[37]。這些發(fā)現(xiàn)表明LncRNA TUG1的下調(diào)會(huì)損害β細(xì)胞的功能,提示LncRNA TUG1可能與糖尿病發(fā)病機(jī)制有關(guān)。LncRNA MEG3是位于人類14號(hào)染色體上的LncRNA,與視網(wǎng)膜發(fā)育、神經(jīng)發(fā)生密切相關(guān)[38],在人β細(xì)胞中也高表達(dá)[39]。小鼠胰島β細(xì)胞株Min6細(xì)胞中敲低LncRNA MEG3可影響β細(xì)胞凋亡并減少胰島素合成,小鼠的體內(nèi)實(shí)驗(yàn)中也顯示出同樣的趨勢(shì)[40]。同時(shí),You LH等[41]的研究發(fā)現(xiàn),DLK1-MEG3基因區(qū)域可改變對(duì)T1DM的易感性。
T1DM是一類由β細(xì)胞自身破壞的自身免疫性疾病,近年來,越來越多的證據(jù)表明LncRNA的表達(dá)失調(diào)與一系列自身免疫性疾病密切相關(guān)。Hrdlickova B等[42]對(duì)9種類型的自身免疫性相關(guān)疾病的基因芯片進(jìn)行檢測(cè),發(fā)現(xiàn)自身免疫性疾病相關(guān)基因座中的LncRNA在免疫細(xì)胞亞群中富集。LI Z等[43]的研究發(fā)現(xiàn),許多LncRNA能夠調(diào)節(jié)巨噬細(xì)胞的活化,其中,LncRNA Linc1992是維持許多先天免疫相關(guān)基因表達(dá)所必需的,其可以與不均一核糖蛋白L(heterogeneous nuclear ribonucleoprotein,hnRNPL)結(jié)合,通過兩者的相互作用調(diào)節(jié)TNF-α的表達(dá)。同時(shí),LncRNA也被證明在Toll樣受體(toll-likereceptor,TLR)信號(hào)通路中發(fā)揮著關(guān)鍵作用[44]。如LncRNA Cox2A在用TLR配體刺激巨噬細(xì)胞和樹突細(xì)胞時(shí)可被高度誘導(dǎo),并且hnRNP-A/B和A2/B1可以與LncRNA Cox2A結(jié)合,控制干擾素刺激基因(Interferon stimulated genes,ISGs)和促炎細(xì)胞因子的基礎(chǔ)表達(dá)水平。由以上研究結(jié)果可以看出,LncRNA在自身免疫疾病中發(fā)揮著重要的作用,在以后的研究工作中,或許可以從這個(gè)角度出發(fā),更為全面深入的研究LncRNA在T1DM發(fā)病過程中的作用。
[5] Motterle A,Sanchez-Parra C,Regazzi R. Role of long non-coding RNAs in the determination of beta-cell identity[J]. Diabetes,Obesity and Metabolism,2016,18:41-50.
[6] Falix FA,Dani?l C Aronson,Lamers WH,et al. Possible roles of DLK1 in the Notch pathway during development and disease[J]. Biochimica et Biophysica Acta,2012,1822(6):988-995.
[7] Kameswaran V,Bramswig N,Mckenna L,et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets[J]. Cell Metabolism,2014, 19(1):135-145.
[8] Johnson JD,Ahmed NT,Luciani DS,et al. Increased islet apoptosis in Pdx1+/- mice[J]. Journal of Clinical Investigation,2003,111(8):1147-1160.
[9] Walczak MP,Drozd AM,Stoczynska-Fidelus E,et al. Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors[J]. Journal of Translational Medicine,2016,14(1):341.
[10] Arnes L,Akerman I,Balderes DA,et al. βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function[J]. Genes & Development,2016,30(5):502-507.
[11] Whitcomb DC,Gorry MC,Preston RA,et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene[J]. Nat Genet,1996,14(2):141-145.
[12] Hofbauer B,Saluja AK,Lerch MM,et al. Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats[J]. The American Journal of Physiology,1998,275:G352-G362.
[13] Sabrina Gea-Sorlí,Closa D. Role of macrophages in the progression of acute pancreatitis[J]. World Journal of Gastrointestinal Pharmacology and Therapeutics,2010,1(5):107-111.
[14] Halangk W,Lerch MM,Brandt-Nedelev B,et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis[J]. Journal of Clinical Investigation,2000,106(6):773-781.
[15] Lerch M,Gorelick F. Early trypsinogen activation in acute pancreatitis[J]. Medical Clinics of North America,2000, 84(3):549-563.
[16] Lawrence T,Willoughby DA, Gilroy DW. Anti-inflammatory lipid mediators and insights into the resolution of inflammation[J]. Nature Reviews Immunology,2002,2(10):787-795.
[17] Cocco RE,Ucker DS. Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure[J]. Molecular Biology of the Cell,2001,12(4):919-930.
[18] Madhav Bhatia,Mark Brady,Sheila Shokuhi,et al. Inflammatory mediators in acute pancreatitis[J]. The Journal of Pathology,2000,190(2):117-125.
[19] Zhao D,Ge H,Ma B,et al. The interaction between ANXA2 and lncRNA Fendrr promotes cell apoptosis in caerulein-induced acute pancreatitis[J]. Journal of Cellular Biochemistry,2019,120(5):8160-8168.
[20] Baojun LI,Lai H,Yuanxin S,et al. Expression of long non-coding RNA H19 in serum in patients with acute pancreatitis and its clinical significance[J]. Journal of Clinical Hepatology,2017,3(3):492-496.
[21] Wang L,Zhao X,Wang Y. The pivotal role and mechanism of long non-coding RNA B3GALT5-AS1 in the diagnosis of acute pancreatitis[J]. Artificial Cells,Nano-medicine and Biotechnology,2019,47:2307-2315.
[22] Siegel RL,Miller KD,Jemal A. Cancer statistics,2018[J]. CA:A cancer journal for clinicians,2018,68(1):7-30.
[23] Zhu H,Li T,Du Y,et al. Pancreatic cancer:Challenges and opportunities[J]. BMC Medicine,2018,16(1):214.
[24] Lin QJ,Yang F,Jin C,et al. Current status and progress of pancreatic cancer in China[J]. World Journal of Gastroenterology,2015,(21):7988-8003.
[25] Conroy T,Bachet JB,Ayav A,et al. Current standards and new innovative approaches for treatment of pancreatic cancer[J]. European Journal of Cancer,2016,57:10-22.
[26] Sant M,Aareleid T,Berrino F,et al. EUROCARE-3: Survival of cancer patients diagnosed 1990-94--results and commentary[J]. Annals of Oncology,2003,14(Supple 5):v61-118.
[27] Wang Y,Li Z,Zheng S,et al. Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers[J]. Oncotarget,2015,6(34):35684-35698.
[28] Muller S,Raulefs S,Bruns P,et al. Erratum to: Next-generation sequencing reveals novel differentially regulated mRNAs,lncRNAs,miRNAs,sdRNAs and a piRNA in pancreatic cancer[J]. Molecular Cancer,2015,14:94.
[29] Ye S,Yang L,Zhao X,et al. Bioinformatics method to predict two regulation mechanism:TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer[J]. Cell Biochemistry and Biophysics,2014,70(3):1849-1858.
[30] Bapat AA,Hostetter G,Von Hoff DD,et al. Perineural invasion and associated pain in pancreatic cancer[J]. Nature Reviews Cancer,2011,11(10):695-707.
[31] Kim K,Jutooru I,Chadalapaka G,et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer[J]. Oncogene,2013,32:1616-1625.
[32] Peng W,Gao W,F(xiàn)eng J. Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer[J]. Medical Oncology,2014,31(12):346.
[33] Iyer S,Modali SD,Agarwal SK. The long non-coding RNA MEG3 is an epigenetic determinant of oncogenic signaling in functional pancreatic neuroendocrine tumor cells[J]. Molecular and Cellular Biology,2017,37(22):e00278-17.
[34] Trusolino L,Bertotti A,Comoglio PM. MET signalling:Principles and functions in development,organ regeneration and cancer[J]. Nature Reviews. Molecular Cell Biology,2010,11(12):834-848.
[35] Home C. Self-reported visual impairment among persons with diagnosed diabetes-United States,1997-2010[J]. Morbidity & Mortality Weekly Report,2011,60(45):1549-1553.
[36] American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care,2010,33(Suppl 1):S62-S69.
[37] Liu X,Hong C,Wu S,et al. Downregulation of lncRNA TUG1 contributes to the development of sepsis-associated acute kidney injury via regulating miR-142-3p/sirtuin 1 axis and modulating NF-κB pathway[J]. Journal of Cellular Biochemistry,2019,120(7):11331-11341.
[38] Miyoshi N,Wagatsuma H,Wakana S,et al. Identification of an imprinted gene,Meg3/Gtl2 and its human homologue MEG3,first mapped on mouse distal chromosome 12 and human chromosome 14q[J]. Genes to Cells,2000, 5(3):211-220.
[39] Blackshaw S,Harpavat S,Trimarchi J,et al. Genomic analysis of mouse retinal development[J]. Plos Biology,2004,2(9):E247.
[40] Dorrell C,Schug J,Lin CF,et al. Transcriptomes of the major human pancreatic cell types[J]. Diabetologia,2011, 54(11):2832-2844.
[41] You LH,Wang N,Yin DD,et al. Downregulation of long noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells[J]. Journal of Cellular Physiology,2016,231(4):852-862.
[42] Hrdlickova B,Kumar V,Kanduri K,et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity[J]. Genome Medicine,2014,6(10):88.
[43] Li Z,Chao TC,Chang KY,et al. The long noncoding RNA THRIL regulates TNFαexpression through its interaction with hnRNPL[J]. Proceedings of the National Academy of Sciences,2014,111(3):1002-1007.
[44] Wallace C,Smyth DJ,Maisuria-Armer M,et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes[J]. Nature Genetics,2009,42(1):68-71.
[45] Carpenter S,Aiello D,Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes[J]. Science,2013,341(6147):789-792.
[46] Bell GI,Polonsky KS. Diabetes mellitus and genetically programmed defects in beta-cell function[J]. Nature,2001,414(6865):788-791.
[47] Aguiree F, Brown A, Cho NH, et al. IDF Diabetes Atlas: Sixth edition[M]. International Diabetes Federation,2013:1-155.
[48] Motterle A,Gattesco S,Peyot ML,et al. Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes[J]. Molecular Metabolism,2017,6(11):1407-1418.
[49] Donath MY,Schumann DM, Faulenbach M,et al. Islet inflammation in type 2 diabetes:From metabolic stress to therapy [J]. Diabetes Care,2008,31(Suppl 2):S161-S164.
[50] Donath MY,Boni-Schnetzler M,Ellingsgaard H,et al. Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes[J]. Physiology,2009,24(6):325-331.
[51] Elmarakby AA,Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy[J]. Cardiovascular Therapeutics,2012,30(1):49-59.
[52] Sun Y,Peng R,Peng H,et al. miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy[J]. Molecular and Cellular Endocrinology,2016,433:75-86.
[53] Carter G,Miladinovic B,Patel AA,et al. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus[J]. BBA Clinical,2015,4:102-107.
[54] Yi H,Peng R,Zhang LY,et al. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy[J]. Cell Death and Disease, 2017,8(2):e2583.
[55] Matsuda M,Defronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing:Comparison with the euglycemic insulin clamp[J]. Diabetes Care,1999, 22(9):1462-1470.
[56] Amaral PP,Clark MB,Gascoigne DK,et al. lncRNAdb:A reference database for long noncoding RNAs[J]. Nucleic Acids Research,2011,39:D146-151.
[57] Li X,Zhao Z,Gao C,et al. The diagnostic value of whole blood lncRNA ENST00000550337.1 for pre-Diabetes and type 2 diabetes mellitus[J]. Experimental and Clinical Endocrinology & Diabetes,2017,125(6):377-383.
(收稿日期:2019-11-25)