郭冶 盧鳳美 劉東璞
摘要:《黃帝內(nèi)經(jīng)》里記載“肝者,將軍之官,謀慮出焉”,可見(jiàn)肝臟是維持生命活動(dòng)重要的器官,一旦因炎癥、病毒、寄生蟲(chóng)等發(fā)生疾病,纖維化是肝損傷發(fā)展為肝硬化的必經(jīng)階段。肝纖維化是指各種病因引起的肝細(xì)胞發(fā)生炎癥及壞死等變化,進(jìn)而刺激肝臟中細(xì)胞外基質(zhì)的合成與降解平衡失調(diào),致纖維膠原生成及溶解減少,發(fā)生可逆性動(dòng)態(tài)病理過(guò)程。大黃酸具有抗氧化應(yīng)激與炎癥、抗細(xì)胞凋亡、抗纖維化、調(diào)節(jié)糖脂代謝及抗癌等作用,尤其抗肝纖維化作用的研究受到越來(lái)越多學(xué)者的關(guān)注。研究表明,給予大黃酸預(yù)防或治療,可抑制肌成纖維細(xì)胞增生及纖維膠原轉(zhuǎn)運(yùn)與合成,加速膠原溶解,減少膠原的形成與沉積,可逆轉(zhuǎn)肝纖維化。本文就肝纖維化的發(fā)病機(jī)制及大黃酸抗肝纖維化的功效作一綜述,以期為臨床治療提供參考。
關(guān)鍵詞:肝纖維化;大黃酸;肝損傷
Abstract:It is recorded in Huangdi's internal classic that "the liver is the official of the general, and how to plan". It can be seen that the liver is an important organ to maintain life activities. Once diseases occur due to inflammation, viruses, parasites, etc., fibrosis is the necessary stage for liver damage to develop into cirrhosis. Hepatic fibrosis refers to the reversible dynamic pathological process, which is caused by inflammation and necrosis of liver cells caused by various causes, and then stimulates the imbalance of synthesis and degradation of extracellular matrix in liver, resulting in the decrease of generation and dissolution of fibrocollagen. Rhein has the functions of anti oxidative stress and inflammation, anti apoptosis, anti fibrosis, regulation of glycolipid metabolism and anti-cancer. Especially, more and more scholars have paid attention to the research of anti fibrosis. The prevention or treatment of rhein can inhibit the proliferation of myofibroblasts and the transport and synthesis of fibrocollagen, accelerate the dissolution of collagen, reduce the formation and deposition of collagen, and reverse it hepatic fibrosis. This article reviews the pathogenesis of hepatic fibrosis and the effect of rhein on hepatic fibrosis.
Key words:Hepatic fibrosis;Rhein;Liver damage
肝臟是人體內(nèi)最大的實(shí)質(zhì)性器官,其功能較為復(fù)雜,包括代謝、合成、生物轉(zhuǎn)化、分泌、排泄膽汁等,各種外源性和內(nèi)在的因素,都可以導(dǎo)致肝臟疾病。常見(jiàn)的肝臟疾病包括肝炎、肝硬化、肝癌等,是導(dǎo)致人們健康負(fù)擔(dān)的重要原因,同時(shí)也加重社會(huì)經(jīng)濟(jì)成本。據(jù)報(bào)道[1],全球肝硬化患者死亡人數(shù)截止到2013年約122.1萬(wàn)。肝纖維化(hepatic fibrosis)是肝臟疾病發(fā)生、發(fā)展的中間環(huán)節(jié),通過(guò)調(diào)節(jié)肝臟中細(xì)胞外基質(zhì)(extracellular matrix,ECM)合成與降解的平衡,去除病因,給予適當(dāng)干預(yù),可治療并逆轉(zhuǎn)肝纖維化。隨著人類(lèi)對(duì)疾病的認(rèn)識(shí)與研究,越來(lái)越多的藥物被開(kāi)發(fā)利用,尤其我國(guó)重視對(duì)中醫(yī)藥的開(kāi)發(fā),對(duì)延緩或治愈疾病,改善患者生活質(zhì)量具有重要意義。天然蒽醌類(lèi)化合物大黃的主要有效成分大黃酸自我國(guó)古代以來(lái)就作為瀉下藥應(yīng)用,南北朝醫(yī)家陶弘景有云“大黃,其色也。將軍之號(hào),當(dāng)取其駿快也”?,F(xiàn)代藥理研究表明[2,3],大黃酸具有廣泛的藥理活性,包括抗炎、抗氧化應(yīng)激、抗腫瘤、抗纖維化、調(diào)脂、降糖、抑菌、抗病毒等作用,其中大黃酸對(duì)抗纖維化作用受到臨床廣泛關(guān)注?;诖?,本文就肝纖維化的發(fā)病機(jī)制及大黃酸預(yù)防或治療肝纖維化的功效作一綜述。
1肝纖維化的發(fā)病機(jī)制
1.1肝纖維化概述? 肝纖維化是各種慢性肝炎、肝癌等肝病發(fā)展的一個(gè)典型組織病理學(xué)特征[4],持續(xù)性肝臟炎癥、酒精等破壞受趨化因子及其信號(hào)轉(zhuǎn)導(dǎo)途徑作用于肝細(xì)胞、肝星狀細(xì)胞(hepatic stellate cells,HSCs)、門(mén)靜脈成纖維細(xì)胞(portalfibroblast,PF)等,主要受活化的肝星狀細(xì)胞(activated HSCs,aHSCs)刺激分化,大量細(xì)胞因子被激活,合成并增殖大量ECM,從而形成了肝纖維化進(jìn)展的重要因素。在肝纖維化早期階段,膠原沉積在竇周間隙(Disse間隙)內(nèi)皮下,可使間隙變小甚至完全消失,進(jìn)而肝竇毛細(xì)血管化,肝細(xì)胞間的物質(zhì)運(yùn)輸受阻,終因缺血缺氧、變性壞死,導(dǎo)致功能障礙[5];在肝纖維化晚期階段,肝臟內(nèi)纖維膠原組織廣泛增生和異常沉積,主要分布在門(mén)管區(qū)和肝小葉內(nèi),生成假小葉及結(jié)節(jié),即持續(xù)纖維化形成肝硬化,門(mén)靜脈高壓,嚴(yán)重者甚至發(fā)展為肝功能衰竭、肝細(xì)胞癌[6,7],唯一的根治途徑仍是去除有害刺激和肝移植[8]。
截止到目前,即使臨床上廣泛應(yīng)用非侵入性檢測(cè)方法,但活檢仍然是診斷肝纖維化分期的金標(biāo)準(zhǔn)[9]。早發(fā)現(xiàn)、去除病因、給予適當(dāng)干預(yù)、通過(guò)抑制HSC的增值活性和多種信號(hào)通路間串?dāng)_的綜合調(diào)節(jié)及協(xié)調(diào)肝臟中ECM合成與降解的失衡、靶向阻斷結(jié)合納米顆粒治療、TIMP-1-shRNA的干細(xì)胞移植技術(shù)、Smad3蛋白可能是抗肝纖維化的潛在靶標(biāo)[10]。研究表明[11],在細(xì)胞和基因水平上阻斷基質(zhì)金屬蛋白酶-13(MMP-13)和結(jié)締組織生長(zhǎng)因子(connective tissue growth factor,CTGF)對(duì)抑制肝纖維化具有潛在的治療意義。深入研究逆轉(zhuǎn)肝纖維化的有效途徑,仍是人類(lèi)追求肝臟健康的有用價(jià)值取向。
1.2參與肝纖維化的細(xì)胞因子
1.2.1 aHSCs? 正常人體內(nèi),肝臟中星狀細(xì)胞的特征與肺、腎、胰腺等其他纖維化器官中的特征類(lèi)似[12]。HSCs是靜止的儲(chǔ)脂細(xì)胞,可通過(guò)脂滴中維生素A的量檢測(cè)HSCs的表達(dá)情況[13,14],一旦肝組織受損或發(fā)生炎癥反應(yīng),星狀細(xì)胞內(nèi)脂滴丟失,大量炎細(xì)胞趨化聚集,刺激并激活靜止的肝星狀細(xì)胞(quiescent HSCs,qHSCs),aHSCs轉(zhuǎn)化成可以釋放大量α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA)的肌成纖維細(xì)胞(myofibroblast,MFB)即成纖維樣細(xì)胞,含纖維膠原蛋白的ECM沉積失調(diào),并伴隨著炎癥介質(zhì)的作用,與此同時(shí)aHSCs激活并釋放大量細(xì)胞因子和基質(zhì)金屬蛋白酶/金屬蛋白酶組織抑制劑(matrix metalloproteinases,MMPs)/(tissue inhibitor of metalloproteinases,TIMPs),其中大量活化的TIMP,抑制MMP降解ECM,促肝纖維化形成[15,16]??梢?jiàn)在肝纖維化過(guò)程中,HSCs起著重要調(diào)控作用。
1.2.2轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)? TGF-β被認(rèn)為是肝臟疾病中的中樞調(diào)節(jié)因子,作為多肽超家族,有3個(gè)同種型(TGF-β1,TGF-β2和TGF-β3)與纖維化有關(guān)[17],其中TGF-β1與肝纖維化關(guān)系最密切,其通過(guò)激活HSCs的活化與增殖,并被證實(shí)為活性氧(ROS)和ECM產(chǎn)生的主要細(xì)胞因子[18]。CTGF在TGF-β1的調(diào)節(jié)下,參與細(xì)胞增殖和組織重塑,并刺激自身的表達(dá)。干擾素-γ(IFN-γ)、腫瘤壞死因子-α(TNF-α)和表皮生長(zhǎng)因子(EGF)能通過(guò)刺激Smad7蛋白的表達(dá)抑制TGF-β/Smad傳導(dǎo)通路的活性,從而抑制HF的進(jìn)展[19]。TGF-β、PDGF、白細(xì)胞介素-1β(IL-1β)、IL-17及腸源性脂多糖(LPS)促HSC活化,活化的HSC釋放IL-1β或TNF-α,并介導(dǎo)MMP/TIMP失衡[20]。有研究表明[21,22],在四氯化碳復(fù)制的肝纖維化大鼠中,IL-1β通過(guò)自分泌或旁分泌誘導(dǎo)產(chǎn)生趨化因子或細(xì)胞因子,使得TNF-α和IL-6的含量顯著升高。因此,肝損傷后發(fā)生肝纖維化,其與細(xì)胞因子間有著密切關(guān)聯(lián)。
1.2.3甲胎蛋白(α-FetoProtein,αFP)? αFP是一種糖蛋白質(zhì),主要來(lái)自胎兒期的肝臟,為生理產(chǎn)物。在孕其3個(gè)月時(shí)開(kāi)始合成,5~6個(gè)月時(shí)達(dá)到高峰,隨后降到極微。αFP正常檢測(cè)時(shí)值應(yīng)在20 ng/ml以?xún)?nèi),如超出正常值,則提示機(jī)體異常。肝細(xì)胞癌的在臨床檢測(cè)中主要指標(biāo)為αFP,其中Hep3B單核培養(yǎng)物可分泌高水平的αFP,但是人HSCs與Hep3B細(xì)胞共培養(yǎng)后,αFP顯著降低,且細(xì)胞凋亡明顯增加。Muhanna N等[23]通過(guò)體內(nèi)外實(shí)驗(yàn)證明,在肝纖維化早期,aHSCs通過(guò)氧化應(yīng)激介導(dǎo)的腫瘤細(xì)胞吞噬和凋亡,直接表達(dá)抗腫瘤作用。另有研究表明[24,25],在肝纖維化晚期,肝硬化患者腸道過(guò)度生長(zhǎng)的菌群和門(mén)靜脈內(nèi)毒素的內(nèi)源性傳感器TLR4可能共同促進(jìn)肝纖維化進(jìn)展。反應(yīng)性氧化劑物質(zhì)(如酒精、病毒、鐵或銅過(guò)載、膽汁淤積等)通過(guò)氧化應(yīng)激反應(yīng),可能有助于肝纖維化的發(fā)作和進(jìn)展[26]。促纖維化的細(xì)胞因子發(fā)生衰老、凋亡或自噬可能是逆轉(zhuǎn)纖維化的關(guān)鍵因素[11,27],如肝纖維化的逆轉(zhuǎn)與肝星狀細(xì)胞的凋亡有關(guān)[28]。Hong F等[29]成功的建立并驗(yàn)證了索拉菲尼在培養(yǎng)的人HSC和硫代乙酰胺(TAA)誘導(dǎo)的大鼠肝纖維化中的抑制作用,及抗肝纖維化的最小有效劑量和最佳治療時(shí)間,充分說(shuō)明肝纖維化是一種可逆的傷口愈合反應(yīng)。大量研究顯示,通過(guò)實(shí)驗(yàn)檢測(cè)αFP、α-SMA、CTGF、MMPs及膠原等因子的表達(dá)[30-32],可用于驗(yàn)證某種藥物干預(yù)抑制和減少肝細(xì)胞凋亡及肝星狀細(xì)胞活化來(lái)逆轉(zhuǎn)肝纖維化,從而延緩肝病進(jìn)展[33-34]。在肝損傷時(shí),多種細(xì)胞因子串?dāng)_作用發(fā)生存活和失活,直接或間接影響肝纖維化發(fā)展。
1.2.4 α-平滑肌肌動(dòng)蛋白(α-SMA)? 研究表明[35-37],肌動(dòng)蛋白(actin)是組成含大量微絲的細(xì)胞骨架的主要成分,生物體內(nèi)有6種肌動(dòng)蛋白異構(gòu)體,α型肌動(dòng)蛋白是按等電點(diǎn)聚焦電泳不同分出的3種類(lèi)型之一,進(jìn)一步可分為心肌型、骨骼肌型和平滑肌型。在正常生理狀態(tài)下,α-SMA表達(dá)主要見(jiàn)于成人平滑肌源型的細(xì)胞,其次在心肌和骨骼肌發(fā)育過(guò)程中呈現(xiàn)短暫表達(dá),具有收縮和形成細(xì)胞骨架的作用。在病理過(guò)程中,α-SMA是HSCs活化的標(biāo)志物,血小板衍生生長(zhǎng)因子-D(PDGF-D)未能激活并促進(jìn)α-SMA的增生,能促進(jìn)TIMP-1的表達(dá),增強(qiáng)肝纖維化進(jìn)展[38]。
1972年Gabbiani G等[39]首次通過(guò)離體肉芽組織驗(yàn)證了成纖維細(xì)胞分化為一種結(jié)構(gòu)和功能類(lèi)似于平滑肌細(xì)胞類(lèi)型,而又非平滑肌細(xì)胞的細(xì)胞結(jié)構(gòu),這種細(xì)胞結(jié)構(gòu)在結(jié)締組織收縮中起重要作用,并提出將其命名為“myo-fibroblast”,譯為“肌成纖維細(xì)胞”,簡(jiǎn)稱(chēng)MFB。MFB不存在正常組織中,其來(lái)源取決于損傷的組織和特定損傷組織的類(lèi)型,如肝、腎、肺、心等器官能夠退化高度重塑的組織成分[40];在發(fā)生損傷炎癥等病理情況下,高度動(dòng)態(tài)的成纖維細(xì)胞轉(zhuǎn)化為活化的α-SMA陽(yáng)性表達(dá)的MFB[41]。對(duì)于不同纖維化疾病,肌成纖維細(xì)胞的來(lái)源目前尚不確定[42,43],通常皮膚成纖維細(xì)胞是固著靜止的,但皮膚損傷后被激活,活化的成纖維細(xì)胞遷移合成肉芽組織,同時(shí)分化為表達(dá)α-SMA的MFB,皮膚損傷后同時(shí)被激活的細(xì)胞因子如TGF-β促進(jìn)PFs向MFB分化,再?gòu)娜庋拷M織到真皮(或疤痕)的轉(zhuǎn)變,即纖維性瘢痕的細(xì)胞外基質(zhì),之后細(xì)胞增殖和生物合成活性的變化,可能是MFB在傷口愈合結(jié)束時(shí)消失的發(fā)展機(jī)制[44];在心肌纖維化時(shí),肌成纖維細(xì)胞主要來(lái)自因心肌廣泛受損激活的成年哺乳動(dòng)物心臟中最為豐富的成纖維細(xì)胞[45,46];Shao S等[47]研究表明,基質(zhì)細(xì)胞衍生因子-1(SDF-1)和Wnt信號(hào)通路在高血壓大鼠心肌纖維化實(shí)驗(yàn)中,通過(guò)體外誘導(dǎo)骨髓間充質(zhì)干細(xì)胞分化肌成纖維細(xì)胞(MFs);陳威等[48]研究表明,腎小管-間質(zhì)細(xì)胞α-SMA的表達(dá)與腎間質(zhì)纖維化程度呈正相關(guān)。TGF-β/Smad信號(hào)通路介導(dǎo)脫氫表雄酮(dehydroepiandrosterone,DHEA)誘導(dǎo)α-SMA高表達(dá)的多囊卵巢綜合征(polycystic ovary syndrome,PCOS),從抑制TGF-β下游信號(hào)因子來(lái)上調(diào)MMP2表達(dá),從平衡纖維化生物標(biāo)志物表達(dá)的角度來(lái)對(duì)抗卵巢纖維化并抑制纖維化過(guò)度產(chǎn)生,從而防治PCOS[49,50];肝臟纖維化時(shí)肌成纖維細(xì)胞主要來(lái)源于肝內(nèi)活化的肝星狀細(xì)胞、活化的門(mén)靜脈成纖維細(xì)胞和間皮細(xì)胞[41];促炎癥和促纖維化細(xì)胞因子的減少,以及促α-SMA和I型膠原活化的肌成纖維細(xì)胞衰老及凋亡,活化的部分肝星狀細(xì)胞逆轉(zhuǎn)為靜止樣肝星狀細(xì)胞表型[51]。由此可見(jiàn),肝纖維化受細(xì)胞因子的雙向調(diào)節(jié),影響著自身的發(fā)展趨勢(shì)。
1.3肝纖維化與MMPs/TIMPs? MMPs是金屬離子鈣鎂鋅依賴(lài)性肽鏈內(nèi)切酶家族,幾乎在肝纖維化、纖維蛋白溶解、肝細(xì)胞癌及肝再生中各自發(fā)揮著重要作用。通常裂解ECM的是鋅依賴(lài)性?xún)?nèi)切酶,至少包括28個(gè)成員,其家族成員具有相似的分子結(jié)構(gòu),主要裂解ECM,不同MMP可有不同裂解ECM的效率,同種MMP可裂解多種ECM成分,而其一種ECM成分又可被多種MMP裂解,除此之外還可激活其他MMPs類(lèi),也有學(xué)者稱(chēng)其為蛋白水解酶家族[52]。MMPs按底物不同分為:①膠原酶(collagenases):包括間質(zhì)膠原酶(MMP-1、-8)和膠原酶3(MMP-13),MMP13是嚙齒動(dòng)物主要的纖維膠原降解酶[53];②明膠酶(gelatinases):包括明膠酶A(MMP-2)和明膠酶B(MMP-9),主要是Ⅳ型膠原酶的2種變現(xiàn)形式;③間質(zhì)溶解素(stromelysins):MMP-3、-7、-10、-11,其中MMP-7在腎纖維化的發(fā)病機(jī)制中起重要作用[54],MMP-3存在于肝臟中,但動(dòng)態(tài)變化尚不清楚;④模型基質(zhì)金屬蛋白酶(membrane-type MMPs):MMP-14、-15、-16、-17、-24、-25,可促進(jìn)膠原酶A的激活,并降解間質(zhì)膠原蛋白;⑤金屬?gòu)椥缘鞍酌福╩etalloelastase):MMP-12,其來(lái)源于巨噬細(xì)胞,可降解ECM中彈性蛋白酶和纖連蛋白等[55];⑥基質(zhì)溶素(matrilysins);⑦釉質(zhì)溶解素(enamelysin)等,其中正常肝臟中MMPs含量少,多表達(dá)MMP-1、-2、-3、-11、-13組成型[56]。Chan MF等[57]研究表明,MMP12通過(guò)對(duì)炎癥和血管生成的影響來(lái)預(yù)防損傷后的角膜纖維化。Vincenti MP等[58]研究發(fā)現(xiàn),兔具有與人膠原酶MMP-1和MMP-13同源的不同基因,而小鼠和大鼠表現(xiàn)出有MMP-13的同源物。MMP-13主要來(lái)源于瘢痕相關(guān)巨噬細(xì)胞(scar-associated macrophages,SAMs),肝巨噬細(xì)胞通過(guò)產(chǎn)生趨化因子CXCL9和MMP-13,從而促進(jìn)纖維化消退[59]。Fallowfield JA等[60]在慢性CCl4致肝纖維化模型中消耗SAMs,導(dǎo)致MMP-13的表達(dá)減少5倍,而在MMP-13基因敲除的小鼠中纖維化的逆轉(zhuǎn)被延遲??梢?jiàn)在肝纖維化過(guò)程中,MMPs的表達(dá)差異具有研究意義。
TIMPs家族是一個(gè)多基因編碼的蛋白群,作為MMPs的特異性抑制劑,可以抑制MMPs在ECM合成過(guò)程中的拮抗作用,使MMPs被激活受到阻礙并使其活性受限而降低[61]。目前普遍認(rèn)為T(mén)IMPs和MMPs合成和分泌來(lái)自相同的細(xì)胞因子,主要來(lái)自于HSC、kupffer細(xì)胞、MFB,TIMPs主要由TIMP-1、-2、-3、-4組成,均可與MMPs成員以1∶1的比例結(jié)合來(lái)抑制MMPs的活性[62];也有證據(jù)表明[63],TIMPs可能具有與MMPs無(wú)關(guān)的其他活性作用??傊?,除TIMPs其他作用潛力有待深入研究外,還應(yīng)深入研究它的活化表型加速肝纖維化作用。
此外,在生理?xiàng)l件下,Disse間隙中ECM合成與降解的穩(wěn)態(tài)受MMPs/TIMPs之間的平衡協(xié)調(diào),MMPs的活性受TIMPs的控制,TIMP-1的含量與肝纖維化程度呈平行關(guān)系,活化的HSCs增加TIMP-1的表達(dá)。TIMP-1本身可能不會(huì)引起肝纖維化,一旦MMPs/TIMPs失衡,ECM異常沉積和降解減少,可加重HF[56]。Robert S等[21]研究證實(shí),松弛素(RLN)能使MMPs(MMP-1,-3,-8,-9和-13)的表達(dá)增加,TIMPs(TIMP-1和-4)的表達(dá)降低,并通過(guò)降低纖維連接蛋白(FN)、α-SMA和Smad2磷酸化的表達(dá)來(lái)抑制ECM的過(guò)度合成,從而抑制纖維化形成。Liang J等[64]研究表明,藥物可控制TIMP2的表達(dá)來(lái)減少肝實(shí)質(zhì)內(nèi)ECM沉積,從而減輕了肝纖維化。為此遵從“未病先防,既病防變”原則,從最開(kāi)始肝纖維化著手預(yù)防和治療,延緩或治愈肝臟疾病,才是健康的基石。
2大黃酸與肝纖維化的關(guān)系
2.1大黃酸的藥理機(jī)制? 大黃酸(rhein,4,5-二羥基-2-羧基蒽醌)是分布在蓼科植物中的單蒽核類(lèi)物質(zhì)[65],主要在古老中藥大黃內(nèi)提取,也存在何首烏、虎杖、蘆薈等中藥中[66]。近年來(lái)研究發(fā)現(xiàn)[67,68],大黃酸具有抗氧化應(yīng)激與炎癥、抗細(xì)胞凋亡、抗纖維化、調(diào)節(jié)糖脂代謝及抗癌等作用,其臨床益處可能增強(qiáng)更多的潛在機(jī)制,尤其大黃酸抗纖維化作用更為實(shí)用。Huang CH等[69]研究表明,大黃酸誘導(dǎo)小鼠囊胚氧化應(yīng)激和凋亡,在胚胎發(fā)育過(guò)程中具有免疫毒性作用。Mao Y等[70]研究發(fā)現(xiàn),大黃酸能夠通過(guò)腎小管上皮細(xì)胞(HK-2細(xì)胞)中的ROS依賴(lài)性線(xiàn)粒體途徑誘導(dǎo)細(xì)胞凋亡,通過(guò)線(xiàn)粒體解偶聯(lián)蛋白2(UCP2)抑制促氧化應(yīng)激并加劇其誘導(dǎo)的HK-2細(xì)胞凋亡。Ge H等[71]通過(guò)轉(zhuǎn)基因斑馬魚(yú)體內(nèi)外研究發(fā)現(xiàn),大黃酸抑制NF-κB和NALP3炎性體的表達(dá)來(lái)減輕潰瘍性結(jié)腸炎的炎癥反應(yīng)。此外,大黃酸可誘導(dǎo)肝癌細(xì)胞HepG2和宮頸癌細(xì)胞Hela中β-連環(huán)蛋白(β-catenin)的降解并抑制腫瘤細(xì)胞的生長(zhǎng)[72],并直接靶向脯氨酰異構(gòu)酶Pin1和c-Jun之間的相互串?dāng)_,從而表現(xiàn)出抑制Pin1的腫瘤,促進(jìn)其活性[73];同時(shí),其還可導(dǎo)致細(xì)胞周期阻滯、半胱氨酸天冬氨酸蛋白酶介導(dǎo)細(xì)胞凋亡、胞內(nèi)酸性小炮誘導(dǎo)細(xì)胞自噬、ERK抑制介導(dǎo)細(xì)胞分化。Tang N等[74]通過(guò)檢測(cè)形態(tài)學(xué)特征及膠質(zhì)纖維酸性蛋白(GFAP)表達(dá)的變化驗(yàn)證了大黃酸對(duì)大鼠F98膠質(zhì)瘤細(xì)胞的抗瘤癌特性。大黃酸也有調(diào)節(jié)糖脂代謝作用,陳衛(wèi)東等[75]和Wang S等[76]研究表明,增加2型糖尿病大鼠腎組織沉默接合型信息調(diào)節(jié)因子2同源蛋白1(SIRT1)mRNA及蛋白的表達(dá),改善胰島素抵抗和血脂紊亂,對(duì)糖尿病腎病大鼠的腎臟起保護(hù)作用,改善了慢性高脂飲食肥胖小鼠的識(shí)別記憶障礙。Zeng CC等[77]通過(guò)抑制高血糖、高脂血癥等與機(jī)體內(nèi)多種分子靶標(biāo)相互串?dāng)_作用,從而改善糖尿病腎病病變過(guò)程中的病理進(jìn)展。
2.2大黃酸對(duì)纖維化的作用? 大黃酸作為一種天然自噬調(diào)節(jié)因子,可通過(guò)調(diào)節(jié)AMPK/mTOR信號(hào)途徑有效抑制腎小管細(xì)胞的自噬活性[78];通過(guò)TGF-β/Smad和Wnt/β-catenin信號(hào)通路,顯著降低了腎細(xì)胞中TGF-β引起的Klotho啟動(dòng)子轉(zhuǎn)錄,從而起到抗腎纖維化作用[79]。蘇健等[80]研究表明,抗纖維化因子肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)及骨形態(tài)發(fā)生蛋白(bone-morphorgenetic proteins,BMP7)的表達(dá)皆較模型組明顯升高,移植腎組織間質(zhì)纖維化減輕,證明大黃酸對(duì)慢性移植腎腎?。╟hronical allograft nephropathy,CAN)有治療作用。屈艷等[81]通過(guò)大黃酸抑制miR-21及干預(yù)TGF-β1/Smad7通路的研究,證實(shí)其抗肺纖維化作用。Tsang SW等[82]在慢性胰腺炎(chronic pancreatitis,CP)小鼠模型中發(fā)現(xiàn),大黃酸顯著降低了與胰腺星狀細(xì)胞(pancreatic stellate cells,PSCs)有關(guān)的纖維激活因子α-SMA和TGF-β;在體外培養(yǎng)的PSC中,大黃酸顯著抑制TGF-β刺激的成纖維標(biāo)志物α-SMA、纖維連接蛋白1(fibronectin 1,F(xiàn)N1)、Ⅰ型膠原蛋白α1(type I collagen,COL I-α1)的表達(dá),抑制SHH/GLI1信號(hào)傳導(dǎo),進(jìn)而證明大黃酸有很強(qiáng)的抗胰腺纖維化作用。Guo MZ等[83]通過(guò)四氯化碳造模大鼠肝纖維化進(jìn)一步檢測(cè)TGF-β1和a-SMA的表達(dá),給予大黃酸大、小劑量,從大黃酸抗炎、抗氧化及抑制肝星狀細(xì)胞的活化,抑制TGF-β1作用等可能相關(guān)角度考慮,從而驗(yàn)證大黃酸抗肝纖維化作用。盧鳳美等[84]從MMP-13及α-SMA表達(dá)量的角度實(shí)驗(yàn)顯示,中藥大黃酸聯(lián)合紅景天可抑制肝纖維化進(jìn)展。近年來(lái)隨著中草藥成分作為“補(bǔ)充和替代醫(yī)療(complementary and alternative medicine,CAM)”里新型生物活性物質(zhì)的主要來(lái)源[85],大黃酸作為特性中藥成分,及早干預(yù)肝纖維化是有效的,對(duì)慢性肝病進(jìn)展有舉足輕重的理論與實(shí)踐意義。
3總結(jié)
肝纖維化逆轉(zhuǎn)機(jī)制的研究正在不斷進(jìn)展,為尋求更多的干預(yù)途徑,針對(duì)特異性生物因子的表達(dá)和多種信號(hào)通路間串?dāng)_的調(diào)節(jié),其發(fā)病機(jī)制及治療靶點(diǎn)為目前國(guó)內(nèi)外研究現(xiàn)狀。而纖維化作為器官損傷和衰竭的共同途徑,不僅肝纖維化,還包括心肌、腎、肺、胰腺、腸等纖維化,對(duì)機(jī)體器官正常運(yùn)行都具有舉足輕重的作用。隨著現(xiàn)代社會(huì)中醫(yī)藥的不斷發(fā)展研究,截至到目前,大黃酸是大黃有效成分中抗氧化應(yīng)激、清除超氧陰離子自由基能力最強(qiáng)的,也是多臟器纖維化治療的選用藥物之一。隨著大黃酸的應(yīng)用越來(lái)越廣泛,肝臟可能成為大黃酸抗纖維化作用的再一個(gè)靶標(biāo)。
參考文獻(xiàn):
[1]Naghavi M,Wang H,Lozano R.Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013:a systematic analysis for the global burden of disease study 2013[J].Lancet,2015,385(9963):117-171.
[2]Hao K,Qi Q,Wan P,et al.Prediction of human pharmacokinetics from preclinical information of rhein,an antidiabetic nephropathy drug,using a physiologically based pharmacokinetic model[J].Basic & Clinical Pharmacology & Toxicology,2014,114(2):160-167.
[3]Zhu W,Wang XM,Zhang L,et al.Pharmacokinetic of Rhein in healthy male volunteers following oral and retention enema administration of rhubarb extract: a single dose study[J].Am J Chin Med,2005,33(6):839-850.
[4]Mormone E,George J,Nieto N.Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches[J].Chem Biol Interact,2011,193(3):225-231.
[5]Bottcher K,Pinzani M.Pathophysiology of liver fibrosis and the methodological barriers to the development of anti-fibrogenic agents[J].Adv Drug Deliv Rev,2017(121):3-8.
[6]Marra F,Tacke F.Roles for Chemokines in Liver Disease[J].Gastroenterology,2014,147(3):577-594.
[7]Peri K.Cellular basis of hepatic fibrosis and its role in inflammation and cancer[J].Frontiers in Bioscience,2013,S5(1):217-230.
[8]Hibi T,Eguchi S,Egawa H.Evolution of living donor liver transplantation: a global perspective[J].J Hepatobiliary Pancreat Sci,2018,25(8):388-389.
[9]Li CX,Li RT,Zhang W.Progress in non-invasive detection of liver fibrosis[J].Cancer Biol Med,2018,15(2):124-136.
[10]Schon HT,Bartneck M,Borkham-Kamphorst E,et al.Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis[J].Front Pharmacol,2016(7):33.
[11]Mòdol T,Brice N,Ruizd GM,et al.Fibronectin peptides as potential regulators of hepatic fibrosis through apoptosis of hepatic stellate cells[J].Journal of Cellular Physiology,2015,230(3):546-553.
[12]Raghu G,Amatto V C,Behr,et al.Comorbidities in idiopathic pulmonary fibrosis patients:a systematic literature review[J].European Respiratory Journal,2015,46(4):1113-1130.
[13]Lin Z,Zheng L,Zhang H,et al.Anti-fibrotic effects of phenolic compounds on pancreatic stellate cells[J].BMC Complement Altern Med,2015,15(1):259.
[14]Chen Y,Mu L,Xing L,et al.Rhein alleviates renal interstitial fibrosis by inhibiting tubular cell apoptosis in rats[J].Biol Res,2019,52(1):50.
[15]George J,Tsutsumi M,Tsuchishima M.MMP-13 deletion decreases profibrogenic molecules and attenuates N -nitrosodimethylamine-induced liver injury and fibrosis in mice[J].J Cell Mol Med,2017,21(12):3821-3835.
[16]Roeb E.Matrix metalloproteinases and liver fibrosis (translational aspects)[J].Matrix Biology,2018(68-69):463-473.
[17]Xu F,Liu C,Zhou D,et al.TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis.J Histochem Cytochem,2016,64(3):157-167.
[18]Yang C,Zeisberg M,Mosterman B,et al.Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors[J].Gastroenterology,2003,124(1):147-159.
[19]Dooley S,Ten Dijke P.TGF-β in progression of liver disease[J].Cell Tissue Res,2012,347(1):245-256.
[20]Robert S,Gicquel T,Bodin A,et al.Characterization of the MMP/TIMP Imbalance and Collagen Production Induced by IL-1β or TNF-α Release from Human Hepatic Stellate Cells[J].PLoS One,2016,11(4):e0153118.
[21]Robert S,Gicquel T,Victoni T,et al.Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis[J].Biosci Rep,2016,36(4):e00360.
[22]許瓊梅,李躍龍,曹后康,等.溪黃草水提物對(duì)四氯化碳誘導(dǎo)大鼠肝纖維化的保護(hù)作用及機(jī)制研究[J].中國(guó)藥房,2018,29(20):2791-2796.
[23]Muhanna N,Doron S,Abu-Tair L,et al.Early fibrosis inhibits hepatocellular carcinoma mediated by free radical effects[J].Mitochondrion,2013,13(5):391-398.
[24]Seki E,Brenner DA.Recent advancement of molecular mechanisms of liver fibrosis[J].Journal of Hepato-Biliary-Pancreatic Sciences,2015,22(7):512-518.
[25]Schnabl B,Brenner DA.Interactions Between the Intestinal Microbiome and Liver Diseases[J].Gastroenterology,2014,146(6):1513-1524.
[26]Poli G.Pathogenesis of liver fibrosis: role of oxidative stress[J].Molecular Aspects of Medicine,2000,21(3):49-98.
[27]Frank R.Murphy,Razao Issa,Xiaoying Zhou,et al.Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition implications for reversibility of liver fibrosis[J].Journal of Biological Chemistry,2002,277(13):11069-11076.
[28]Rockey DC,Bell PD,Hill JA.Fibrosis--A common pathway to organ injury and failure[J].N Engl J Med,2015,372(12):1138-1149.
[29]Hong F,Chou H,F(xiàn)iel M I,et al.Antifibrotic Activity of Sorafenib in Experimental Hepatic Fibrosis:Refinement of Inhibitory Targets,Dosing,and Window of Efficacy In Vivo[J].Digestive Diseases and Sciences,2013,58(1):257-264.
[30]Huang Y,Deng X,Liang J.Modulation of hepatic stellate cells and reversibility of hepatic fibrosis[J].Experimental Cell Research,2017,352(2):420-426.
[31]Taura K,De Minicis S,Seki E,et al.Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis[J].Gastroenterology,2008(135):1729-1738.
[32]Liu T,Wang X,Karsdal MA,et al.Molecular serum markers of liver fibrosis[J].Biomark Insights,2012(7):105-117.
[33]Kuwahata M,Kubota H,Kanouchi H,et al.Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease[J].Nutr Res,2012,32(7):522-529.
[34]Liang B,Guo X L,Jin J,et al.Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury[J].World J Gastroenterol,2015,21(17):5271-5280.
[35]Hennessey ES,Drummond DR,Sparrow JC.Molecular genetics of actin function[J].Biochemical Journal,1993,291(3):657-671.
[36]曲東明,韓梅,溫進(jìn)坤.肌動(dòng)蛋白結(jié)合蛋白[J].細(xì)胞生物學(xué)雜志,2007(2):219-224.
[37]吳聰穎.微絲的基本性質(zhì)與細(xì)胞核肌動(dòng)蛋白[J].中國(guó)細(xì)胞生物學(xué)學(xué)報(bào),2019,41(3):381-386.
[38]Borkham-kamphorst E,Alexi P,Tihaa L,et al.Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities[J].Biochem Biophys Res Commun,2015,457(3):307-313.
[39]Gabbiani G,Hirschel BJ,Ryan GB,et al.Granulation tissue as a contractile organ[J].Journal of Experimental Medicine,1972,135(4):719-734.
[40]Hinz B,Phan SH,Thannickal VJ,et al.Recent developments in myofibroblast biology:paradigms for connective tissue remodeling[J].American Journal of Pathology,2012,180(4):1340-1355.
[41]Kisseleva T.The origin of fibrogenic myofibroblasts in fibrotic liver[J].Hepatology,2017,65(3):1039-1043.
[42]Postlethwaite AE,Shigemitsu H,Kanangat S.Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis[J].Current Opinion in Rheumatology,2004,16(6):733-738.
[43]Pardali E,Sanchez-Duffhues G,Gomez-Puerto MC,et al.TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases[J].Int J Mol Sci,2017,18(10):2157.
[44]Grinnell F.Fibroblasts,myofibroblasts,and wound contraction[J].J Cell Biol,1994,124(4):401-404.
[45]Zhou P,Pu WT.Recounting Cardiac Cellular Composition[J].Circ Res,2016,118(3):368-370.
[46]Shinde AV,Humeres C,F(xiàn)rangogiannis NG.The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling[J].Biochim Biophys Acta,2017,1863(1):298-309.
[47]Shao S,Cai W,Sheng J,et al.Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats[J].American Journal of Translational Research,2015,7(8):1345-1356.
[48]陳威,楊守京,劉彥仿,等.實(shí)驗(yàn)性慢性腎缺血模型腎小管-間質(zhì)細(xì)胞a-平滑肌肌動(dòng)蛋白的表達(dá)和意義[J].腎臟病與透析腎移植雜志,2004(1):30-34.
[49]Wang D,Wang W,Qiao L,et al.DHEA-induced ovarian hyperfibrosis is mediated by TGF-β signaling pathway[J].Journal of Ovarian Research,2018,11(1):6.
[50]Zhou F,Shi LB,Zhang SY.Ovarian Fibrosis:A Phenomenon of Concern[J].Chin Med J (Engl),2017,130(3):365-371.
[51]Xiao L,Xu J,Brenner D A,et al.Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts[J].Current Pathobiology Reports,2013,1(3):209-214.
[52]Sergio D,John B,Takehiro F,et al.Matrix metalloproteinases in liver injury,repair and fibrosis[J].Matrix Biology,2015(44-46):147-156.
[53]Bennett RG,Heimann DG,Singh S,et al.Relaxin Decreases the Severity of Established Hepatic Fibrosis in Mice[J].Liver International,2014,34(3):416-426.
[54]Ke B,F(xiàn)an C,Yang L,et al.Matrix Metalloproteinases-7 and Kidney Fibrosis[J].Front Physiol,2017(8):21.
[55]Pellicoro A,Aucott RL,Ramachandran P,et al.Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP‐12) during experimental liver fibrosis[J].Hepatology,2012,55(6):1965-1975.
[56]吳燦,黃亮,莫立乾,等.丹參多酚酸鹽通過(guò)TGF-β1/Smad和PI3K/AKT/mTOR信號(hào)通路抑制大鼠肝纖維化的進(jìn)展[J].中國(guó)醫(yī)院藥學(xué)雜志,2019,39(7):670-675.
[57]Chan MF,Li J,Bertrand A,et al.Protective effects of matrix metalloproteinase-12 following corneal injury[J].Journal of Cell Science,2013,126(17):3948-3960.
[58]Vincenti MP,Coon CI,Mengshol JA,et al.Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1(matrix metalloproteinase-1)[J].Biochem J,1998(331):341-346.
[59]Yang L,Kwon J,Popov Y,et al.Vascular endothelial growth factor promotes fibrosis resolution and repair in mice[J].Gastroenterology,2014(146):1339-1350.
[60]Fallowfield JA,Mizuno M,Kendall TJ,et al.Scar-Associated Macrophages Are a Major Source of Hepatic Matrix Metalloproteinase-13 and Facilitate the Resolution of Murine Hepatic Fibrosis[J].The Journal of Immunology,2007,178(8):5288-5295.
[61]Zhu Y,Miao Z,Gong L,et al.Transplantation of mesenchymal stem cells expressing TIMP-1-shRNA improves hepatic fibrosis in CCl4-treated rats[J].International Journal of Clinical & Experimental Pathology,2015,8(8):8912-8920.
[62]Kang YM,Lee HM,Moon SH,et al.Relaxin Modulates the Expression of MMPs and TIMPs in Fibroblasts of Patients with Carpal Tunnel Syndrome[J].Yonsei Med J,2017,58(2):415-422.
[63]Uchinaka A,Kawaguchi N,Mori S,et al.Tissue inhibitor of metalloproteinase-1 and -3 improves cardiac function in an ischemic cardiomyopathy model rat[J].Tissue Engineering Part A,2014,20(21-22):3073-3084.
[64]Liang J,Zhang B,Shen RW,et al.Preventive effect of halofuginone on concanavalin A-induced liver fibrosis[J].PLoS One,2013,8(12):e82232.
[65]Cao YJ,Pu ZJ,Tang YP,et al.Advances in bio-active constituents,pharmacology and clinical applications of rhubarb[J].Chinese Medicine,2017,12(1):36.
[66]吳佳偉.基于腸道菌群以及腸道屏障完整性探討大黃酸治療結(jié)腸炎癥的作用機(jī)制[D].南京中醫(yī)藥大學(xué),2019.
[67]Sun H,Luo G,Chen D,et al.A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein,an Active Anthraquinone Ingredient[J].Front Pharmacol,2016(7):247.
[68]武超,曹紅燕,孫明瑜.大黃酸在肝病中的應(yīng)用研究[J].遼寧中醫(yī)雜志,2015,42(12):2382-2387.
[69]Huang CH,Chan WH.Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development[J].Int J Mol Sci,2017,18(9):2018.
[70]Mao Y,Zhang M,Yang J,et al.The UCP2-related mitochondrial pathway participates in rhein-induced apoptosis in HK-2 cells[J].Toxicol Res (Camb),2017,6(3):297-304.
[71]Ge H,Tang H,Liang Y,et al.Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo and in vitro[J].Drug Des Devel Ther,2017(11):1663-1671.
[72]Liu S,Wang J,Shao T,et al.The natural agent rhein induces β-catenin degradation and tumour growth arrest[J].J Cell Mol Med,2017,22(1):589-599.
[73]Cho JH,Chae JI,Shim JH.Rhein exhibits antitumorigenic effects by interfering with the interaction between prolyl isomerase Pin1 and c-Jun[J].Oncology Reports,2017,37(3):1865-1872.
[74]Tang N,Jian C,Lu HC,et al.Rhein induces apoptosis and autophagy in human and rat glioma cells and mediates cell differentiation by ERK inhibition[J].Microbial Pathogenesis,2017(113):168-175.
[75]陳衛(wèi)東,常保超,張燕,等.大黃酸增加2型糖尿病大鼠腎組織SIRT1的表達(dá)[J].細(xì)胞與分子免疫學(xué)雜志,2015,31(5):615-619.
[76]Wang S,Huang XF,Zhang P,et al.Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice[J].Journal of Nutritional Biochemistry,2016(36):42-50.
[77]Zeng CC,Liu X,Chen GR,et al.The molecular mechanism of rhein in diabetic nephropathy[J].Evidence-Based Complementray and Alternative Medicine,2014(2014):1-6.
[78]Tu Y,Gu L,Chen D,et al.Rhein Inhibits Autophagy in Rat Renal Tubular Cells by Regulation of AMPK/mTOR Signaling[J].Scientific Reports,2017(7):43790.
[79]Zhang Q,Yin S,Liu L,et al.Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice[J].Sci Rep,2016(6):34597.
[80]蘇健,殷立平,張?chǎng)?,?大黃酸對(duì)慢性移植腎腎病大鼠腎組織抗纖維化因子表達(dá)的影響[J].中國(guó)臨床藥理學(xué)與治療學(xué),2011,16(10):1114-1120.
[81]屈艷,張崇,賈巖龍,等.大黃酸通過(guò)抑制miR-21而干預(yù)TGF-β1/Smad通路并減輕博萊霉素所致大鼠肺纖維化[J].中國(guó)病理生理雜志,2017,33(1):149-153.
[82]Tsang SW,Zhang H,Lin C,et al.Rhein,a natural anthraquinone derivative,attenuates the activation of pancreatic stellate cells and ameliorates pancreatic fibrosis in mice with experimental chronic pancreatitis[J].PLoS One,2013,8(12):e82201.
[83]Guo MZ,Li XS,Xu HR,et al.Rhein inhibits liver fibrosis induced by carbon tetrachloride in rats[J].Acta Pharmacologica Sinica,2002,23(8):739-744.
[84]盧鳳美,林昔,劉東璞,等.中藥對(duì)大鼠肝纖維化MMP-13及α-SMA的影響[J].黑龍江醫(yī)藥科學(xué),2016,39(5):46-47,49.
[85]Latief U,Ahmad R.Herbal remedies for liver fibrosis:A review on the mode of action of fifty herbs[J].Journal of Traditional & Complementary Medicine,2018,8(3):352-360.
收稿日期:2020-04-13;修回日期:2020-04-26
編輯/杜帆