国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

毛霉誘導(dǎo)臍橙產(chǎn)抗病物質(zhì)對(duì)指狀青霉和酸腐菌的抑制

2020-06-20 03:32:52楊書珍曹正清張美紅程運(yùn)江彭麗桃
關(guān)鍵詞:指狀幾丁質(zhì)細(xì)胞壁

熊 琪,楊書珍,曹正清,張美紅,程運(yùn)江,彭麗桃

毛霉誘導(dǎo)臍橙產(chǎn)抗病物質(zhì)對(duì)指狀青霉和酸腐菌的抑制

熊 琪1,楊書珍1,曹正清1,張美紅1,程運(yùn)江2,彭麗桃1※

(1. 華中農(nóng)業(yè)大學(xué)食品科技學(xué)院,武漢 430070;2. 華中農(nóng)業(yè)大學(xué)園藝林學(xué)學(xué)院,武漢 430070)

綠霉和酸腐是柑橘果實(shí)采后主要的病害,生產(chǎn)上迫切需要化學(xué)殺菌劑的替代方法。該研究對(duì)毛霉誘導(dǎo)臍橙果皮產(chǎn)生的具有抗病活性的紅色物質(zhì)(Citru Peel Red-substance Extract,CPRE)進(jìn)行部分分離純化,評(píng)價(jià)了CPRE對(duì)指狀青霉和酸腐菌的抑菌活性,分析活性成分對(duì)兩病原真菌菌絲細(xì)胞壁與膜功能的影響。結(jié)果表明,在50~200g/mL的質(zhì)量濃度下,CPRE對(duì)指狀青霉和酸腐菌的孢子萌發(fā),芽管伸長(zhǎng),菌絲生長(zhǎng)有強(qiáng)烈的抑制作用,并且呈現(xiàn)劑量效應(yīng),最低抑菌濃度均為200g/mL。進(jìn)一步研究表明,與空白對(duì)照比較,50、100g/mL抗菌活性成分處理明顯改變指狀青霉和酸腐菌菌絲細(xì)胞壁中幾丁質(zhì)分布,降低了細(xì)胞壁中幾丁質(zhì)含量、促進(jìn)了質(zhì)外體堿性磷酸酶的釋放,表明CPRE嚴(yán)重?fù)p傷兩致病真菌菌絲的細(xì)胞壁功能;CPRE處理還明顯損傷兩病菌菌絲的細(xì)胞膜通透性(<0.05),刺激菌絲膜外電導(dǎo)率顯著上升(<0.05),加劇細(xì)胞內(nèi)蛋白和核酸的丟失,降低了菌絲細(xì)胞膜總脂質(zhì)含量,影響了細(xì)胞膜的正常功能。上述結(jié)果表明,紅色抗菌成分在防控柑橘采后綠霉病和酸腐病中有潛在應(yīng)用前景。

菌;果皮紅色抗菌成分;指狀青霉;酸腐菌;抑菌;細(xì)胞膜;細(xì)胞壁

0 引 言

柑橘營養(yǎng)豐富,深受廣大消費(fèi)者喜愛,中國是柑橘產(chǎn)銷的大國[1],每年柑橘因綠霉病、酸腐病為主的采后損失嚴(yán)重[2]。目前,控制柑橘采后腐爛的方法以抑霉唑、嘧霉胺、咪鮮胺和咯菌腈等化學(xué)殺菌劑為主,對(duì)綠霉病有較好的抑制效果,但對(duì)酸腐病不理想,生產(chǎn)上不斷加大使用劑量,對(duì)人類健康、生態(tài)環(huán)境,病菌抗藥性造成了潛在的風(fēng)險(xiǎn)[3]。隨著國家、消費(fèi)者對(duì)食品安全問題的重視,農(nóng)藥殺菌劑的使用要求越來越嚴(yán)格,許多國家和地區(qū)已嚴(yán)格限制使用[4]。因此,尋找安全,高效,廣譜的采后防治技術(shù)具有重要意義,應(yīng)用植物免疫激發(fā)子激發(fā)植物自身防御體系,誘導(dǎo)抗病性,抵御病原菌侵染,更加高效和安全,已成為研究熱點(diǎn)[5]。

外源物質(zhì)的刺激或病原菌的侵染后,植物啟動(dòng)相應(yīng)的防御反應(yīng)系統(tǒng),刺激產(chǎn)生次生代謝物如植保素等,對(duì)入侵病原菌直接抑制[6]。瓜枝孢弱致病菌株誘導(dǎo)黃瓜產(chǎn)生的次生代謝物質(zhì),具有明顯的抑菌活性[7]。真菌、酵母菌、細(xì)菌、發(fā)酵液和菌絲中的多糖,誘導(dǎo)玉米生長(zhǎng)植保素的累積,植保素在玉米上噴施后,抗病性提高,產(chǎn)量增加7%~10%[8]。草本植物叉毛蓬里的活性物質(zhì)鼠李黃素對(duì)番茄瘡痂病菌和番茄早疫病菌有較強(qiáng)的抑制作用[9]。臍橙經(jīng)過紫外線照射后,果皮會(huì)產(chǎn)生并積累植保素濱蒿內(nèi)酯和東莨菪堿,可以抑制或延緩病原菌生長(zhǎng)[10]。柑橘產(chǎn)生的次生代謝產(chǎn)物與抗病密切相關(guān)。目前,酵母菌和芽孢桿菌主要誘導(dǎo)采后柑橘果實(shí)抗病性,對(duì)于毛霉誘導(dǎo)研究鮮見報(bào)道。課題組前期已發(fā)現(xiàn),臍橙經(jīng)扎孔接種毛霉后,傷口附近會(huì)產(chǎn)生環(huán)狀紅色物質(zhì),再接種意大利青霉,臍橙不發(fā)病[11]。并且紅色物質(zhì)抗病組分對(duì)意大利青霉生長(zhǎng)有明顯的抑制作用[12]。本文探究毛霉誘導(dǎo)臍橙產(chǎn)生紅色物質(zhì)對(duì)柑橘采后主要致病菌指狀青霉和酸腐菌的抑制作用,并探討其可能作用機(jī)制,為開發(fā)新型柑橘防腐保鮮技術(shù)提供思路。

1 材料與方法

1.1 材料與試劑

贛南臍橙()從華中農(nóng)業(yè)大學(xué)中百超市采購后運(yùn)送至實(shí)驗(yàn)室進(jìn)行相關(guān)處理。毛霉()由華中農(nóng)業(yè)大學(xué)食品科技學(xué)院實(shí)驗(yàn)中心提供,馬鈴薯葡萄糖瓊脂(Potato Dextrose Agar,PDA)培養(yǎng)基4 ℃保存?zhèn)溆?。指狀青霉(),酸腐菌()購自國家菌種保藏中心,PDA培養(yǎng)基4 ℃保存。

甲醇(色譜純)、二氯甲烷、石油醚、正庚烷、氯仿、濃硫酸、氫氧化鉀、次氯酸鈉溶液、無水乙醇購自國藥集團(tuán)化學(xué)試劑有限公司;磷酸香草醛、D-硫酸鹽葡糖胺等購自上海甄準(zhǔn)生物科技有限公司。

1.2 儀器與設(shè)備

旋轉(zhuǎn)蒸發(fā)儀(上海愛明儀器有限公司,R-1001-VN);光學(xué)顯顯微鏡(寧波舜宇儀器有限公司,EX-20);熒光顯微鏡(德國萊卡儀器公司,DM3000);恒溫光照培養(yǎng)箱(國華電器有限公司,HH-4);高效液相色譜儀(日本島津公司,LC-20A);真空冷凍干燥機(jī)(北京松源華興科技發(fā)展有限公司,LGJ-10)。

1.3 分析方法

1.3.1 抗病性紅色物質(zhì)的制備、分離及純化

參考彭洋等[12]的方法,臍橙用2%質(zhì)量分?jǐn)?shù)的次氯酸鈉溶液清洗后再用清水清洗兩次,晾干;用無菌移液槍槍頭在每個(gè)果實(shí)赤道等距離扎直徑2~3 mm,深度為1.5~2 mm的傷口,用移液槍注射20L濃度為1×107CFU/mL毛霉孢子懸浮液后,將果實(shí)置于26 ℃生化培養(yǎng)箱光照培養(yǎng)4~5 d。在傷口部位形成成肉眼可見的環(huán)狀紅色物質(zhì)時(shí),取紅色果皮,液氮研磨,冷凍保存?zhèn)溆谩?/p>

取樣品粉末,加入甲醇,超聲浸提,4 ℃、10 000 r/min離心20 min,收集上清液,重復(fù)提取2次。提取液濃縮后用石油醚除去脂溶性成分,再用二氯甲烷萃取,萃取相過C18柱后冷凍干燥得到果皮紅色抗菌成分(Citrus Peel Red-substance Extract,CPRE)。提取及分離純化過程中采用高效液相色譜檢測(cè)以確保所提物質(zhì)為CPRE。

1.3.2 指狀青霉和酸腐菌孢子萌發(fā)及芽管伸長(zhǎng)的測(cè)定

參考柳麗梅等[13]的方法,取紅色物質(zhì)溶液(體積分?jǐn)?shù)20%甲醇溶液溶解)與培養(yǎng)基混勻,使培養(yǎng)基中紅色物質(zhì)的最終質(zhì)量濃度分別為12.5、25、50、100、200g/mL,以無菌水作為空白對(duì)照(CK),將培養(yǎng)基涂于載玻片上,分別取20L指狀青霉和酸腐菌孢子懸浮液,滴于凝固的含紅色物質(zhì)的培養(yǎng)基上,放在26 ℃培養(yǎng)箱中培養(yǎng),指狀青霉在7~8 h,酸腐菌5~6 h后觀察孢子萌發(fā)情況,孢子芽管長(zhǎng)度大于孢子半徑視為萌發(fā),按下述公式計(jì)算孢子萌發(fā)率及抑制率。芽管伸長(zhǎng)試驗(yàn)操作步驟同上,在26 ℃培養(yǎng)12 h后在光學(xué)顯微鏡下結(jié)合電腦Vibao1.0U軟件測(cè)量芽管長(zhǎng)度。

1.3.3 指狀青霉和酸腐菌菌絲生長(zhǎng)量的測(cè)定

參考Yang等[14]的菌餅試驗(yàn)方法。取適量紅色物質(zhì)溶液與培養(yǎng)基混勻,使得培養(yǎng)基紅色物質(zhì)的質(zhì)量濃度分別為25、50、100、200g/mL,在馬鈴薯葡萄糖瓊脂(Potato Dextrose Agar,PDA)培養(yǎng)基上分別培養(yǎng)36和8 h的指狀青霉和酸腐菌用打孔器打出直徑5 mm的菌餅,將菌餅反貼在含紅色物質(zhì)的培養(yǎng)基上,每個(gè)培養(yǎng)皿貼3塊,26 ℃培養(yǎng),每24 h采用十字交叉法用直尺測(cè)量菌斑直徑。

1.3.4 CFW染色觀察幾丁質(zhì)轉(zhuǎn)移現(xiàn)象

參考Viragh等[15]的方法,進(jìn)行細(xì)胞壁鈣熒光白(Calcofluor White,CFW)染色,將指狀青霉和酸腐菌孢子懸浮液分別涂布于紅色物質(zhì)質(zhì)量濃度分別為50、100g/mL的25 mLPDA平板上,以無菌水作為空白對(duì)照(CK),斜插無菌蓋玻片后封口,26 ℃倒置培養(yǎng)24 h,取出長(zhǎng)有菌絲的蓋玻片,置于潔凈的載玻片上,滴加足量CFW染液和質(zhì)量分?jǐn)?shù)10 % KOH溶液混合液(現(xiàn)配現(xiàn)用)充分浸潤(rùn)菌絲,室溫染色1 min,蒸餾水洗去多余染液,免疫熒光顯微鏡(Immuno Flurorescence Microscopy,IFM)下觀察。病菌菌絲細(xì)胞壁中暴露的幾丁質(zhì)與CFW結(jié)合,受紫外光激發(fā),呈現(xiàn)藍(lán)色熒光,未暴露的幾丁質(zhì)不能與CFW結(jié)合,顯微鏡下觀察無藍(lán)色熒光。

1.3.5 幾丁質(zhì)含量的測(cè)定

參考Viragh等[15]和Stalhberger等[16]的方法。將指狀青霉和酸腐菌孢子懸浮液接種于馬鈴薯葡萄糖肉湯培養(yǎng)基(Potato Dextrose Broth,PDB)中,加入適量紅色物質(zhì)溶液,控制濃度分別為50、100g/mL,以無菌水作空白對(duì)照(CK),26 ℃、125 r/min振蕩培養(yǎng)24 h,過濾菌絲,0.1 mol/L pH值7.0磷酸鹽緩沖液(Phosphate Buffered Saline,PBS)沖洗2次,濾干。將菌絲除去蛋白質(zhì)、脂質(zhì)后冷凍干燥,取10 mg凍干粉末于10 mL離心管中,向各管中加2 mol/L濃硫酸0.5 mL,沸水浴4 h充分裂解。收集裂解產(chǎn)物,4 ℃、12 000 r/min離心5 min,上清液用2 mol/L KOH調(diào)pH值至3,取100L加1 mL乙酰丙酮,搖勻,沸水浴25 min,冷卻后加1.5 mL對(duì)二甲胺基苯甲醛溶液和3.0 mL無水乙醇,搖勻,60 ℃水浴1 h,測(cè)定各樣品在520 nm波長(zhǎng)處的吸光度,用D-硫酸鹽葡糖胺做標(biāo)準(zhǔn)計(jì)算幾丁質(zhì)含量。

1.3.6 菌絲AKP滲出的測(cè)定

參考Shao等[17]的方法。0.1 mL1×107CFU/mL的指狀青霉和酸腐菌孢子懸浮液加入10 mL PDA培養(yǎng)1 d,加入紅色物質(zhì)使?jié)舛确謩e為50、100g/mL,對(duì)照組加無菌水,菌絲4 000×,離心10 min,取上清液,按檢測(cè)試劑盒說明(南京建成生物工程研究所)測(cè)定AKP酶活性,以37 ℃下與基質(zhì)反應(yīng)15 min釋放1 mg酚為1活性單位。

1.3.7 PI染色觀察菌絲體細(xì)胞膜的完整性

參考Ouyang等[18]的方法,菌絲培養(yǎng)同前。取出蓋玻片,置于長(zhǎng)有菌絲的潔凈載玻片上,滴幾滴50g/mL碘化丙啶(Propidium Iodide,PI)染色液(PBS配制),避光染色10 min,用蒸餾水洗去多余染色液,置于IFM下觀察。

1.3.8 總脂質(zhì)含量的測(cè)定

參考Ahmad等[19]的方法。培養(yǎng)的菌絲采用真空冷凍干燥方法,-18℃預(yù)凍2 h,真空度15 Pa,15℃冷凍干燥20 h,液氮研磨成干粉,4 ℃保存?zhèn)溆?。精確稱取0.10 g菌絲干粉于10 mL離心管中,依次加入0.8 mL蒸餾水、1 mL甲醇、2 mL氯仿,漩渦振蕩,65 ℃水浴30 min,6 000×離心,吸取全部氯仿相到另一離心管中,加入0.2 mL生理鹽水,漩渦振蕩后靜置分層,取氯仿相到玻璃試管中,加入500L濃硫酸,沸水浴10 min后加入3 mL磷酸香草醛,以無菌水作空白對(duì)照(CK)。測(cè)定520 nm波長(zhǎng)處吸光度,用膽固醇做標(biāo)準(zhǔn)曲線,計(jì)算總脂質(zhì)含量。

1.3.9 菌絲膜外電導(dǎo)率的測(cè)定

參考Tao等[20]的方法。菌絲培養(yǎng)方法同前。稱取2.00 g濕菌絲于50 mL潔凈離心管中,用20 mL雙蒸水重懸,加入適量CPRE,控制最終質(zhì)量濃度為50、100g/mL,以無菌水作空白對(duì)照(CK),用DDS-11A電導(dǎo)率儀測(cè)定加入紅色物質(zhì)后0~48 h內(nèi)溶液的電導(dǎo)率。

1.3.10 菌絲蛋白質(zhì)、核酸滲出的測(cè)定

參考Paul等[21],Aligiannis 等[22]方法,菌絲培養(yǎng)方法同前,收集菌絲,0.1 mol/L pH值 7.0磷酸鹽緩沖液沖洗2次,再重懸浮于20 mL磷酸緩沖液中,分別加入CPRE使其濃度為50、100g/mL,以不加紅色物質(zhì)作對(duì)照,每個(gè)濃度3個(gè)平行。取上清液12 000×離心10 min后,用紫外分光光度計(jì)測(cè)定0~48 h內(nèi),260、280 nm波長(zhǎng)下溶液的吸光度值(260nm,280nm)。280 nm、260 nm分別是蛋白質(zhì)和核酸的最高吸收峰的吸收波長(zhǎng),測(cè)定溶液中對(duì)應(yīng)波長(zhǎng)的光吸收,反映菌絲蛋白和核酸滲漏情況。

1.4 數(shù)據(jù)處理與分析

所有試驗(yàn)設(shè)置3次平行、重復(fù)3次。數(shù)據(jù)用SPSS18.0軟件進(jìn)行單因素方差分析及Excel繪圖。

2 結(jié)果與分析

2.1 CPRE對(duì)指狀青霉和酸腐菌的孢子萌發(fā)和芽管伸長(zhǎng)的影響

紅色物質(zhì)可以抑制2種供試菌孢子萌發(fā)和芽管伸長(zhǎng)(表1)。隨著加入CPRE的濃度增加,指狀青霉和酸腐菌孢子萌發(fā)率逐漸降低。當(dāng)CPRE為25g/mL時(shí),指狀青霉和酸腐菌的萌發(fā)率僅(50.61%±0.06)%、(61.35%±0.06)%,相比于對(duì)照組下降了46.79%、33.49%。

各濃度處理下的芽管長(zhǎng)度明顯低于指狀青霉和酸腐菌對(duì)照組(26.29±1.87)m、(15.59±1.81)m,200g/mL濃度下,指狀青霉和酸腐菌未見芽管生長(zhǎng),與孢子萌發(fā)結(jié)果相印證。

表1 CPRE對(duì)指狀青霉和酸腐菌孢子萌發(fā)和芽管伸長(zhǎng)的影響

注:同列標(biāo)小寫字母不同表示差異顯著(<0.05),下同。

Note: Different letters in the same column mean significant differences(<0.05), the same as below.

2.2 CPRE對(duì)指狀青霉和酸腐菌菌絲生長(zhǎng)的影響

PDA中加入CPRE可抑制指狀青霉和酸腐菌菌絲的生長(zhǎng)(圖1)。指狀青霉在培養(yǎng)48 h后,紅色物質(zhì)濃度50、100、200g/mL與空白組有顯著差異(<0.05),培養(yǎng)96 h時(shí),100、200g/mL高濃度下,指狀青霉菌餅幾乎沒有生長(zhǎng)(0.62±0.07)cm、(0.55±0.06)cm,顯著低于空白對(duì)照組(2.61±0.06)cm(<0.05)。培養(yǎng)的整個(gè)過程中,酸腐菌在100、200g/mL濃度下生長(zhǎng)明顯低于其他處理組和空白組(<0.05)。200g/mL下培養(yǎng)至96 h,CPRE可完全抑制指狀青霉和酸腐菌生長(zhǎng)。

2.3 CPRE對(duì)菌絲幾丁質(zhì)分布和含量的影響

CFW與真菌細(xì)胞壁幾丁質(zhì)結(jié)合,生成亮藍(lán)色熒光[23]。圖2可以看出,藍(lán)色熒光隨著CPRE濃度增加而增強(qiáng),明場(chǎng)下對(duì)照組中指狀青霉、酸腐菌菌絲形態(tài)完整,暗場(chǎng)下幾乎沒有藍(lán)色熒光,而處理組明顯分支較多,生成分生孢子梗,100g/mL處理下里菌絲呈現(xiàn)強(qiáng)藍(lán)色熒光。酸腐菌表現(xiàn)出相似的量效關(guān)系,50g/mL濃度下,有微弱的藍(lán)色熒光,100g/mL時(shí),強(qiáng)烈藍(lán)色熒光。表明CPRE處理,改變了細(xì)胞壁組成和幾丁質(zhì)分布。

圖1 CPRE處理對(duì)指狀青霉和酸腐菌菌絲生長(zhǎng)的影響

進(jìn)一步分析菌絲細(xì)胞璧幾丁質(zhì)含量發(fā)現(xiàn)(圖2c),CPRE處理24 h后,2種病原菌菌絲的細(xì)胞壁幾丁質(zhì)含量下降。在100g/mL濃度下,指狀青霉、酸腐菌幾丁質(zhì)質(zhì)量分?jǐn)?shù)(21.9±0.69)g/mg、(5.12±0.46)g/mg比對(duì)照組(31.41±0.31)g/mg、(10.81±0.91)g/mg,分別下降了30.29%,52.64%。這表明,CPRE處理造成病原菌菌絲細(xì)胞壁主要成分缺失,使細(xì)胞壁完整結(jié)構(gòu)破壞,與CFW熒光觀察的結(jié)果一致。

注:下標(biāo)1~3為明場(chǎng)下CK和50、100 μg·mL-1處理組菌絲,4~6為暗場(chǎng)下CK和50、100μg·mL-1處理組菌絲,圖a、b、c均是處理24 h的結(jié)果。下同。

2.4 CPRE對(duì)細(xì)胞壁AKP泄露的影響

堿性磷酸酶(Alkaline Phosphatase,AKP),由細(xì)胞質(zhì)產(chǎn)生,分泌在細(xì)胞壁內(nèi)的周質(zhì)空間。當(dāng)細(xì)胞壁破裂后,AKP可由壁膜間隙釋放到細(xì)胞外[24]。因此,可通過測(cè)定細(xì)胞外AKP變化反映細(xì)胞壁的完整性。如圖3所示,CPRE處理指狀青霉和酸腐菌,在12 h內(nèi)胞外AKP活性上升緩慢,12~48 h迅速增加。CPRE處理指狀青霉24 h時(shí),100g/mL處理組顯著高于50g/mL處理組和對(duì)照組(<0.05);酸腐菌中50g/mL處理組變化趨勢(shì)與對(duì)照組相似,顯著低于100g/mL處理組(<0.05)。說明CPRE處理24 h后,指狀青霉和酸腐菌細(xì)胞壁完整性明顯破壞,造成了AKP大量泄漏。

2.5 CPRE對(duì)菌絲PI染色和總脂質(zhì)的影響

PI是一種在細(xì)胞膜受損后,能進(jìn)入細(xì)胞中對(duì)DNA染色的細(xì)胞核染色試劑,可直觀反映細(xì)胞膜完整性[18]。由圖4可以看出:明場(chǎng)中指狀青霉和酸腐菌菌絲有完整結(jié)構(gòu),菌絲光滑,邊緣整齊(圖4A1,B1);而處理組菌絲多分生孢子,菌絲內(nèi)部多隔膜,多分枝(圖A3、B3)。暗場(chǎng)中對(duì)照組幾乎無熒光(圖A4、B4),50g/mL處理組有微弱紅色熒光(圖A5、B5),而100g/mL處理組呈明顯紅色熒光(圖A6、B6),且強(qiáng)度遠(yuǎn)遠(yuǎn)高于50g/mL處理組。說明CPRE能夠破壞膜完整性且具有濃度效應(yīng)。

圖3 CPRE對(duì)指狀青霉和酸腐菌菌絲細(xì)胞壁AKP泄露影響

如圖4c,空白組指狀青霉的總脂質(zhì)質(zhì)量分?jǐn)?shù)(267.59±5.69)mg/g,50、100g/mL CPRE處理組總脂質(zhì)質(zhì)量分?jǐn)?shù)為(203.51±2.51)mg/g,(164.21±4.16)mg/g,分別下降23.69%、38.69%。酸腐菌對(duì)照組總脂質(zhì)質(zhì)量分?jǐn)?shù)(146.21±2.61)mg/g,50、100g/mL處理組總脂質(zhì)下降17.16%、23.49%。這表明CPRE處理造成指狀青霉和酸腐菌的細(xì)胞膜主要成分總脂質(zhì)降低,影響了細(xì)胞膜正常功能。

2.6 CPRE對(duì)菌絲膜外電導(dǎo)率的影響

由圖5可知,在CPRE處理12 h后,50、100g/mL處理組菌絲膜外電導(dǎo)率與對(duì)照組差異顯著(<0.05)。尤其是指狀青霉,急劇上升。48 h后,100g/mL處理組指狀青霉、酸腐菌的膜外電導(dǎo)率(472.6±0.5)、(124.7±0.9)S/cm是對(duì)照組(80.4±1.1)、(74.6±0.4)S/cm的5.8、1.7倍。說明CPRE損傷了2種菌細(xì)胞膜通透性,增加了細(xì)胞內(nèi)金屬離子Na+,K+等的滲出[20]。

2.7 CPRE對(duì)膜外核酸和蛋白質(zhì)的影響

為進(jìn)一步評(píng)價(jià)CPRE處理對(duì)細(xì)胞膜功能的影響,檢測(cè)了細(xì)胞內(nèi)主要大分子,蛋白質(zhì)和核酸的滲漏情況。結(jié)果表明(圖6),指狀青霉、酸腐菌經(jīng)CPRE處理后,隨時(shí)間延長(zhǎng),處理組細(xì)胞內(nèi)蛋白質(zhì)和核酸的滲出顯著高于對(duì)照組組(<0.05)。指狀青霉中,100g/mLCPRE處理6 h時(shí),胞外溶液中蛋白(280),核酸(260)的光吸收分別為(0.469±0.008),(0.567±0.014),48 h時(shí)急劇增加到(1.37±0.012),(1.513±0.022),分別增加了191%、167%。酸腐菌中,100g/mL處理組胞外溶液中蛋白質(zhì),核酸光吸收在12~48 h內(nèi)分別增加了0.301、0.894。這些結(jié)果表明,CPRE處理前6 h內(nèi),指狀青霉和酸腐菌的膜內(nèi)蛋白質(zhì)和核酸泄露較少,6~48 h膜內(nèi)重要大分子物質(zhì)大量流失,與膜外電導(dǎo)率6 h后開始急劇增加相互驗(yàn)證,說明CPRE對(duì)細(xì)胞膜完整性造成嚴(yán)重傷害。

圖4 CPRE對(duì)指狀青霉和酸腐菌PI染色觀察細(xì)胞膜完整性及對(duì)細(xì)胞總脂質(zhì)含量的影響

圖5 CPRE處理對(duì)指狀青霉和酸腐菌菌絲膜外電導(dǎo)率的影響

圖6 CPRE處理對(duì)指狀青霉和酸腐菌菌絲蛋白質(zhì)與核酸滲漏的影響

3 討 論

近年來,植物源提取物質(zhì)抑菌活性的研究已有很多報(bào)道[25]。CPRE作為一種臍橙果皮提取物,對(duì)指狀青霉和酸腐菌的抑菌濃度在12.5~200g/mL具有明顯的濃度效應(yīng),200g/mL時(shí)可以完全抑制指狀青霉和酸腐菌的孢子萌發(fā)和芽管伸長(zhǎng)。遠(yuǎn)遠(yuǎn)低于常見的化學(xué)殺菌劑如500 mg/L抑霉唑或咪鮮胺[26]。CPRE的抑菌活性,與其他天然植物提取物相似,如紫蘇葉中紫蘇醛對(duì)黑曲霉的最低抑菌濃度和最低殺真菌濃度分別為0.25和1L/mL[27];25 mg/mL的川芎提取液抑制指狀青霉和意大利青霉菌落生長(zhǎng),并顯著降低臍橙腐爛率,保持營養(yǎng)品質(zhì)[28];經(jīng)1.25%殼聚糖石榴皮提取物復(fù)合溶液處理可延長(zhǎng)草莓保鮮2 d[29]。目前國內(nèi)外柑橘對(duì)酸腐病防治手段比較單一,主要采用雙胍鹽類殺菌劑進(jìn)行處理[30],CPRE對(duì)柑橘主要采后病原菌指狀青霉、酸腐菌、意大利青霉[12]強(qiáng)烈的抑菌活性,顯示了其潛在的應(yīng)用開發(fā)價(jià)值。

真菌細(xì)胞壁為細(xì)胞提供保護(hù),對(duì)真菌的通透性非常關(guān)鍵[31],抗菌物質(zhì)如茶樹精油、肉桂醛、抗菌肽、多聚賴氨酸等嚴(yán)重影響細(xì)胞壁結(jié)構(gòu)與功能[32-34]。本試驗(yàn)結(jié)果顯示,紅色抗菌物質(zhì)改變了2種菌細(xì)胞壁中幾丁質(zhì)的分布,顯著增強(qiáng)了CFW的染色強(qiáng)度(圖2),表明該處理改變了細(xì)胞壁的結(jié)構(gòu),與香蕉中分離的Thaumatin蛋白對(duì)擴(kuò)展青霉菌絲細(xì)胞壁結(jié)果一致[31]。AKP酶是細(xì)胞質(zhì)中產(chǎn)生的,正常情況下存在于周質(zhì)空間,在紅色物質(zhì)處理后,AKP釋放到培養(yǎng)介質(zhì)中,表明細(xì)胞壁的完整性受到影響,與CFW染色結(jié)果一致。茶樹油處理灰霉菌菌絲也促進(jìn)AKP釋放,破壞細(xì)胞壁結(jié)構(gòu)[16]與本文結(jié)果相似。紅色抗菌物質(zhì)處理24 h后指狀青霉和酸腐菌幾丁質(zhì)含量比對(duì)照減少30.29%、52.64%(圖2c),再次印證紅色抗菌物質(zhì)對(duì)細(xì)胞壁結(jié)構(gòu)造成嚴(yán)重?fù)p傷。茴香精油活性組分茴香腦主要通過抑制幾丁質(zhì)合成酶影響毛霉細(xì)胞壁幾丁質(zhì)的合成[35],轉(zhuǎn)錄組分析發(fā)現(xiàn)抑制芒果炭疽菌的抗菌成分二甲基三硫可抑制菌絲幾丁質(zhì)和葡聚糖相關(guān)基因的表達(dá)[36]。這些結(jié)果表明,抑制細(xì)胞壁合成,影響細(xì)胞壁功能是活性成分重要的作用機(jī)制。

細(xì)胞膜完整性在維持細(xì)胞活性所需胞內(nèi)物質(zhì)水平方面有十分關(guān)鍵的作用,細(xì)胞膜完整性的破壞打亂了各種代謝平衡,最終引起細(xì)胞死亡[37]。PI是核熒光染料,可以進(jìn)入膜受損細(xì)胞并結(jié)合核酸產(chǎn)生紅色熒光[18],染色結(jié)果顯示,抗菌紅色物質(zhì)破壞細(xì)胞膜完整性,并表現(xiàn)濃度劑量效應(yīng)(圖4)。與過氧化氫對(duì)構(gòu)巢曲霉氧化傷害與細(xì)胞膜損傷相似[38]。膜結(jié)構(gòu)的破壞必然導(dǎo)致胞內(nèi)離子和大分子物質(zhì)的滲漏,本研究檢測(cè)結(jié)果表明,抗菌物質(zhì)處理6 h,膜外電導(dǎo)率顯著上升(圖5)(<0.05),說明細(xì)胞內(nèi)外離子平衡被破壞,影響膜功能;同時(shí)大分子物質(zhì)蛋白質(zhì)和核酸也在處理6 h后大量滲漏(圖6),加劇細(xì)胞代謝失調(diào),最終導(dǎo)致菌絲死亡。Cui等研究表明鼠尾草精油影響大腸桿菌膜結(jié)構(gòu)和功能[39]。Hajime等發(fā)現(xiàn)表兒茶素沒食子酸酯破壞細(xì)菌細(xì)胞膜,誘導(dǎo)小分子從內(nèi)膜中流出[40]。細(xì)胞膜組分總脂質(zhì)檢測(cè)表明,經(jīng)抗菌物質(zhì)處理24 h后,指狀青霉和酸腐菌的總脂質(zhì)含量降低(圖4C),表明抗菌物質(zhì)也通過損傷細(xì)胞膜結(jié)構(gòu)和功能發(fā)揮抑菌作用。

4 結(jié) 論

1)通過孢子萌發(fā)、芽管伸長(zhǎng)、菌餅生長(zhǎng)等試驗(yàn),證實(shí)毛霉誘導(dǎo)的臍橙果皮紅色抗菌成分(Citrus Peel Red-substance Extract,CPRE)對(duì)指狀青霉和酸腐菌具有良好的抑制作用,呈現(xiàn)劑量效應(yīng),對(duì)2種致病菌的最低抑菌濃度均是200g/mL。

2)CPRE處理會(huì)造成指狀青霉、酸腐菌病菌菌絲細(xì)胞膜總脂質(zhì)顯著下降(<0.05),細(xì)胞膜結(jié)構(gòu)受損,蛋白質(zhì)、核酸嚴(yán)重泄露,通透性增加;并改變菌絲細(xì)胞壁中幾丁質(zhì)分布,降低細(xì)胞壁幾丁質(zhì)含量,增加細(xì)胞壁通透性,嚴(yán)重影響了細(xì)胞膜和細(xì)胞壁的功能,從而有效抑制了2種病原真菌的生長(zhǎng)。

研究結(jié)果表明CPRE抗菌物質(zhì)對(duì)柑橘果實(shí)采后主要病害綠霉、青霉和酸腐病原菌有強(qiáng)烈的抑制作用,顯示其在采后柑橘保鮮中高的應(yīng)用開發(fā)價(jià)值。后續(xù)將進(jìn)一步分離鑒定其功能成分,并探究毛霉誘導(dǎo)柑橘誘導(dǎo)產(chǎn)生紅色物質(zhì),對(duì)果實(shí)品質(zhì)和生理生化的影響,為柑橘采后病害的安全、高效防治提供理論依據(jù)和基礎(chǔ)。

[1] 李世忠,黃建國,李治玲,等. 柑橘皮渣降解菌的篩選及特性[J]. 食品科學(xué),2014,35(23):188-192. Li Shizhong, Huang Jianguo, Li Zhiling, et al. Screening of two bacterial strains capable of degrading citrus pomace and their characteristics[J]. Food Science, 2014, 35(23): 188-192. (in Chinese with English abstract)

[2] 李鴻筠,姚廷山,王聯(lián)英,等. 5種藥劑對(duì)柑橘貯藏病害的防控效果評(píng)價(jià)[J]. 食品工業(yè)科技,2014,35(11):319-323. Li Hongyun, Yao Tingshan, Wang Lianying, et al. Evaluation on the control effect of 5 fungicides against citrus storage diseases[J]. Science and Technology of Food Industry, 2014, 35(11): 319-323. (in Chinese with English abstract)

[3] 趙一潔,唐毅,王威浩,等. 蜜橘酸腐病病原菌的分離鑒定以及不同抑菌劑處理對(duì)其控制效果[J]. 食品科學(xué),2017,38(7):230-237. Zhao Yijie, Tang Yi, Wang Weihao, et al. Isolation and identification of sour rot pathogen of satsuma mandarin and inhibitory effects of three antifungal substances on it[J]. Food Science, 2017, 38(7): 230-237. (in Chinese with English abstract)

[4] Hao W N, Li H, Hu M Y, et al. Integrated control of citrus green and blue mold and sour rot byin combination with teas aponin[J]. Postharvest Biology & Technology, 2011, 59(3): 316-323.

[5] 張杰,董莎萌,王偉,等. 植物免疫研究與抗病蟲綠色防控:進(jìn)展、機(jī)遇與挑戰(zhàn)[J]. 中國科學(xué):生命科學(xué),2019,49(11):1479-1507. Zhang Jie, Dong Shameng, Wang Wei, et al. Plant immunity and sustainable control of pests in China: Advances, opportunities and challenges[J]. Scientia Sinica (Vitae), 2019, 49(11): 1479-1507. (in Chinese with English abstract)

[6] 陳東菊,安敏敏,李麗蘭,等. 植保素及其在增強(qiáng)作物抗性中的作用[J]. 分子植物育種. 2017,15(2):774-780. Chen Dongju, An Minmin, Li Lilan, et al. The mechanism of phytoalexin enhancing crop disease resistance[J]. Molecular Plant Breeding, 2017, 15(2): 774-780. (in Chinese with English abstract)

[7] 石延霞,關(guān)愛民,李寶聚. 瓜枝孢弱致病菌誘導(dǎo)黃瓜植保素的積累及抑菌活性[J]. 園藝學(xué)報(bào),2007,34(2):361-365. Shi Yanxia, Guan Aimin, Li Baoju. Accumulation and activity of phytoalexins in cucumber induced by pathogenicity-imparired strain of[J]. Acta Horticulturae Sinica, 2007, 34(2): 361-365. (in Chinese with English abstract)

[8] 李珂,馬良,杜鵬飛,等. 玉米萜類植保素代謝關(guān)鍵基因?qū)π“卟∏秩镜姆烙憫?yīng)分析[J]. 西北植物學(xué)報(bào),2015,35(9):1776-1780. Li Ke, Ma Liang, Du Pengfei, et al. Gene expression of maize terpenoid phytoalexin metabolism in response to southern leaf blight[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1776-1780. (in Chinese with English abstract)

[9] 王瑩,孫文,張靜晗,等. 叉毛蓬化學(xué)成分的體外抗菌及抗氧化活性研究[J]. 天然產(chǎn)物研究與開發(fā),2015,27(2):251-254. Wang Ying, Sun Wen, Zhang Jinghan, et al. Antibacterial and antioxidant properties of compounds extracted fromL[J]. Natural Product Research and Development, 2015, 27(2): 251-254. (in Chinese with English abstract)

[10] Arras G, Cicco V D, Arru S, et al. Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of[J]. The Journal of Horticultural Science and Biotechnology, 1998, 73(3): 413-418.

[11] 蔣丹丹. 不同真菌誘導(dǎo)柑橘抗病性研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2015:42-43. Jiang Dandan. Study on the Resistance of Citrus Induced by Different Fungi[D]. Wuhan: Huazhong Agricultural University, 2015: 42-43. (in Chinese with English abstract)

[12] 彭洋,楊書珍,張美紅,等. 橙子果皮誘導(dǎo)抗病組分對(duì)意大利青霉的抑菌活性及作用機(jī)制[J]. 食品科學(xué),2019,40(9):1-6. Peng Yang, Yang Shuzhen, Zhang Meihong, et al. Antifungal activity and possible mode of action of induced disease-resistant components in orange peels against[J]. Food Science, 2019, 40(9): 1-6. (in Chinese with English abstract)

[13] 柳麗梅,張強(qiáng),楊書珍,等. 碳酸銨和碳酸氫銨對(duì)柑橘青霉病的抑制作用[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,33(2):65-69. Liu Limei, Zhang Qiang, Yang Shuzhen, et al. Inhibitory effect of ammonium carbonate and ammonium hydrogen carbonate on blue mold of citrus fruits[J]. Journal of Huazhong Agricultural University, 2014, 33(2): 65-69. (in Chinese with English abstract)

[14] Yang S Z, Liu L M, Li D M, et al. Use of active extracts of poplar buds againstand possible modes of action[J]. Food Chemistry, 2016, 196: 610-618.

[15] Viragh M, Marton A, Vizler C, et al. Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein[J]. Protein & Cell, 2015, 6(7): 518-528.

[16] Stalhberger T, Simenel C, Clavaud C, et al. Chemical organization of the cell wall polysaccharide core of Malassezia restricta[J]. Journal of Biological Chemistry, 2014, 289(18): 12647-12656.

[17] Shao X, Cheng S, Wang H, et al. The possible mechanism of antifungual action of tea tree oil on Botrytis cinereal[J]. Journal of Applied Microbiology, 2013, 114(6): 1642-1649.

[18] Ouyang Q, Tao N, Zhang M. A damaged oxidative phosphorylation mechanism is involved in the antifungal activity of citral against[J]. Frontiers in Microbiology, 2018, 9: 1-8.

[19] Ahmad A, Khan A, Kumar P, et al. Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida[J]. Yeast, 2011, 28(8): 611-617.

[20] Tao N G, Ouyang Q L, Jia L. Citral inhibits mycelial growth ofby a membrane damage mechanism[J]. Food Control, 2014, 41(2): 116-121.

[21] Paul S, Dubey R C, Maheswari D K, et al.Lfruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-bornepathogens[J]. Food Control, 2011, 22(5): 725-731.

[22] Aligiannis N, Kalpoutzakis E, Mitaku S, et al. Composition and antimicrobial activity of the essential oils of two Origanum species[J]. Journal of Agricultural and Food Chemistry, 2001, 49(9): 4168-4170.

[23] 張陽,王智群,鄧世靖,等. 涂片真菌熒光染色法對(duì)真菌性角膜炎診斷價(jià)值的研究[J]. 中華眼科雜志,2019,51(8):601-608. Zhang Yang, Wang Zhiqun, Deng Shijing, et al. Diagnostic value of fungal fluorescence staining on corneal scrapings for fubgal keratitis[J]. Chinese Journal of Ophthalmology, 2019, 51(8): 601-608. (in Chinese with English abstract)

[24] 趙志剛,王學(xué)軍,康殿民,等. 溴氰菊酯對(duì)德國小蠊堿性磷酸酶抑制效應(yīng)[J]. 中國公共衛(wèi)生,2018,34(11):1520-1522. Zhao Zhigang, Wang Xuejun, Kang Dianmin, et al. Inhibitory effect of deltamethrin on alkaline phosphatase in Blattella germanica[J]. Chinese Journal of Public Health, 2018, 34(11): 1520-1522. (in Chinese with English abstract)

[25] 關(guān)文強(qiáng),李淑芬. 天然植物提取物在果蔬保鮮中應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):200-204. Guan Wenqiang, Li Shufen. Research advances in applicatlon of natural plant extracts to postharvest preservation of fruits and vegetables[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 200-204. (in Chinese with English abstract).

[26] Dou S, Liu S, Xu X, et al. Octanal inhibits spore germination ofinvolving membrane peroxidation[J]. Protoplasma, 2017, 254(4): 1539-1545

[27] Tian J, Wang Y Z, Zeng H, et al. Efficacy and possible mechanisms of perillaldehyde in control ofcausing grapedecay[J]. International Journal of Food Microbiology, 2015, 202: 27-34

[28] 鄧?yán)?,劉可,冷飛凡,等. 川芎提取液對(duì)臍橙的防腐保鮮效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):296-302. Deng Lizhen, Liu Ke, Leng Feifan, et al. Effect of Ligusticum chuanxiong hort extract for antisepsis and preservation of navel orange[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 296-302. (in Chinese with English abstract)

[29] 張立華,張?jiān)芑?,? 石榴皮提取液對(duì)草莓的保鮮效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):361-365. Zhang Lihua, Zhang Yuanhu, Cao Hui. Effects of pomegranate peel extract on keep-freshing of strawberry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 361-365. (in Chinese with English abstract)

[30] Liu S, Wang W J, Deng L L, et al. Control of sour rot in citrus fruit by three insect antimicrobial peptides[J]. Postharvest Biology and Technology, 2019, 149: 200-208.

[31] Klis F M. Review: Cell wall assembly in yeast[J]. Yeast, 1994, 10(7): 851-869.

[32] Jiao W X, Li X X, Zhao H D, et al. Antifungal activity of an abundant thaumatin-like protein from banana agaisntand its possible mechanism of action[J]. Molecules, 2018, 23(6): 1442-1457.

[33] Puig M, Concepció M, Lídia R, et al. Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear[J]. Fungal Biology, 2015, 120(1): 61-71.

[34] Wei M L, Ge Y H, Li C Y, et al. Antifungal activity of epsilon-poly-L-lysine on Trichothecium roseum in vitro and its mechanisms[J]. Physiological and Molecular Plant Pathology, 2018, 103: 23-27.

[35] Hashimoto Y, Akira O, Toshio T, et al. Involvement of inhibition of chitin synthase activity in anethole-induced morphological changes of filamentous fungus[J]. Journal of Biotechnology, 2008, 136: S739.

[36] Xu X, Lei H, Ma X, et al. Antifungal activity of 1-methylcyclopropene (1-MCP) against anthracnose () in postharvest mango fruit and its possible mechanisms of action[J]. International Journal of Food Microbiology, 2017, 241(16): 1-6.

[37] Regnier T, Combrinck S, Veldman W, et al. Application of essential oils as multi-target fungicides for the control ofand other postharvest pathogens of citrus[J]. Industrial Crops and Products, 2014, 61: 151-159.

[38] Li Y, Chang W, Zhang M, et al. Diorcinol d exerts fungicidal action against candida albicans through cytoplasm membrane destruction and ROS accumulation[J]. Plos One, 2015, 10(6): e0128693.

[39] Cui H Y, Zhang X J, Zhou H, et al. Antimicrobial activity and mechanisms of salvia “sclarea” essential oil[J]. Botanical Studies, 2015, 56(1): 1-8.

[40] Hajime I, Taiji N, Yukihiko H, et al. Bactericidal catechins damage the lipid bilayer[J]. Biochimica et Biophysica Acta, 1993, 1147(1): 132-136.

Inhibition of induced citrus peel disease-resistant components againstand

Xiong Qi1, Yang Shuzhen1, Cao Zhengqing1, Zhang Meihong1, Cheng Yunjiang2, Peng Litao1※

(1. College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070; 2. College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China)

Citrus are popular worldwide fruits due to the high nutritional value and special flavor, but they are easy to decay during storage and transportation, particularly on green mold, blue mold and sour rot. Alternatively, disease controlling methods are also necessary to protect from the bandage of synthetic chemical fungicides due to the health and environmental concerns. In a previous study, the fruits cannot decay when red pigment substances were accumulated in the fruit peels around wounding sites after inoculation with Actinomucor elegan, indicating the Citrus Peel Red-substances Extract (CPRE) has strong antifungal activity against Penicillium italicum. Here, this study aims to assess antifungal effects of the partially purified CPRE on Penicillium digitatum and Geotrichum citri-aurantii, the casual agents for green mold and sour rot, respectively. To further explore the possible inhibition mechanism of the substance against the pathogens, the damage on cell wall was evaluated by chitin content and distribution, and leakage of alkaline phosphatase, while the interferences on cell membrane were investigated to assess membrane integrity, release of proteins and nucleic acids, extracellular electronic conductivities and contents of lipids in the hyphae cells of both paghogens. The results showed that at the concentration of 50 to 200 μg/mL, CPRE exhibited strong inhibitory effects on spore germinations, elongations of germ tubes, and mycelia growth of P.digitatum and G. citri-aurantii, in a concentration dependent manner, with the Minimal Inhibitory Concentration (MIC) at 200 μg/mL for both pathogens. Calcofluor white staining, an agent which specifically binds to chitin exposed, revealed that the chitin distribution and cell wall integrities of the hyphae of both pathogens were markedly interfered when incubated with CDPC at 1/2 MIC for 24 hours. CPRE treatments also made chitin contents decrease by 30.29%, 52.64%, and accelerate the release of alkaline phosphatase in the mycelia of both pathogens, indicating that cell wall structures and functions were disturbed by the active components in CPRE. Furthermore, membranes of the hyphae cells of both pathogens can be deteriorated after CPRE treatments at the concentration of 100g/mL, as indicated by propidium iodide staining, which emits red fluorescence when entered into dead cells and bind with nucleic acids. The extracellular electronic conductive of the hyphae cells of both pathogens increased significantly after 6 hours of incubation with CPRE within the concentrations tested, indicating that the metal ion balance was disrupted in the treated cells. There were significant differences in leakages of soluble proteins and nucleic acids from hyphae cells with CPRE treatments, showing a consistence with that of extracellular conductivity assays. Moreover, CPRE treatments reduced the total contents of cell lipid in hyphae of both pathogens. These results demonstrated that CPRE can effectively inhibit both pathogens by damaging or interfering with the cell membranes and cell walls of the hyphae. The powerful antifuangal effects of CPRE against P. digitatumand G. citri-aurantii can offer the great potential application prospects in control of postharvest decay of citrus fruits, and futher provide a theoretical basis for the development of natural products with antifungal effects.

bacteria; Citru Peel Red-substance Extract(CPRE);Penicillium digitatum;Geotrichum citri-aurantii; antifungal; cell membrane; cell wall

熊琪,楊書珍,曹正清,等. 毛霉誘導(dǎo)臍橙產(chǎn)抗病物質(zhì)對(duì)指狀青霉和酸腐菌的抑制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):315-322.doi:10.11975/j.issn.1002-6819.2020.09.036 http://www.tcsae.org

Xiong Qi, Yang Shuzhen, Cao Zhengqing, et al. Inhibition of induced citrus peel disease-resistant components againstand[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 315-322. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.036 http://www.tcsae.org

2020-01-13

2020-04-17

國家自然科學(xué)基金資助項(xiàng)目(31871850)

熊琪,從事果蔬貯藏與保鮮方面研究。Email:2428316399@qq.com

彭麗桃,博士,教授,博士生導(dǎo)師,主要從事果蔬貯藏與保鮮工作。Email:penglt12@mail.hzau.edu.cn

10.11975/j.issn.1002-6819.2020.09.036

S609+.3; S666.4

A

1002-6819(2020)-09-0315-08

猜你喜歡
指狀幾丁質(zhì)細(xì)胞壁
轉(zhuǎn)錄因子PDIDSM_85260對(duì)指狀青霉生物學(xué)特性的影響
獲得性指狀纖維角皮瘤驗(yàn)案
產(chǎn)幾丁質(zhì)酶的無色桿菌ZWW8的發(fā)酵產(chǎn)酶及酶學(xué)性質(zhì)研究
淺水三角洲前緣指狀砂壩構(gòu)型特征
——以渤海灣盆地渤海BZ25油田新近系明化鎮(zhèn)組下段為例
紅花醇提物特異性抑制釀酒酵母細(xì)胞壁合成研究
微生物幾丁質(zhì)酶的研究進(jìn)展及應(yīng)用現(xiàn)狀
中國釀造(2017年8期)2017-09-03 06:20:01
茄科尖孢鐮刀菌3 個(gè)專化型細(xì)胞壁降解酶的比較
酶法破碎乳酸菌細(xì)胞壁提取菌體蛋白的研究
過量表達(dá)URO基因抑制擬南芥次生細(xì)胞壁開關(guān)基因表達(dá)
幾丁質(zhì)酶及其在農(nóng)業(yè)生產(chǎn)中的應(yīng)用
浙江柑橘(2013年2期)2013-01-22 01:34:29
神池县| 榆树市| 揭阳市| 红原县| 进贤县| 介休市| 宁强县| 灵璧县| 区。| 潮安县| 万全县| 孝昌县| 且末县| 青浦区| 丹阳市| 德清县| 西峡县| 正阳县| 德昌县| 彭阳县| 和政县| 莎车县| 湄潭县| 许昌市| 松溪县| 伊春市| 黄大仙区| 赤水市| 安义县| 华亭县| 南昌市| 图们市| 佛教| 梅河口市| 白银市| 濉溪县| 西和县| 潼关县| 贵定县| 内江市| 东阳市|