池肇春,青島市市立醫(yī)院消化內(nèi)科 山東省青島市 266011
據(jù)世界衛(wèi)生組織統(tǒng)計(jì),心血管疾病(cardiovascular disease,CVD)仍然是世界范圍內(nèi)死亡的主要原因,每年約有1800萬(wàn)人死亡.然而,在過(guò)去的幾十年里,全球范圍內(nèi)的代謝性疾病,如2型糖尿病、肥胖癥和非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD),也被認(rèn)為是CVD的常見危險(xiǎn)因素.NAFLD約占慢性肝病的75%,已成為困擾世界的主要疾病之一,同時(shí)也是世界各國(guó)最常見的肝病病因.目前,NAFLD最常見的死亡原因仍然是CVD.通過(guò)多種機(jī)制,包括低級(jí)別的全身炎癥反應(yīng),氧化應(yīng)激,脂肪細(xì)胞因子,內(nèi)質(zhì)網(wǎng)應(yīng)激,脂毒性和微生物群失調(diào),也可能受其他因素,如遺傳和表觀遺傳變異的影響NAFLD與CVD.盡管有這些證據(jù),但NAFLD如何導(dǎo)致CVD的確切機(jī)制還沒有完全闡明,有很多方面還不清楚.此外,目前的文獻(xiàn)支持并有越來(lái)越多的證據(jù)表明NAFLD與一些心血管(cardiovascular,CV)不良事件相關(guān),包括冠狀動(dòng)脈疾病(coronary artery disease,CAD)、亞臨床動(dòng)脈粥樣硬化風(fēng)險(xiǎn)增加、結(jié)構(gòu)改變主要是左心室肥厚、心外膜脂肪厚度(epicardial fat thickness,EFT)增加,瓣膜鈣化包括主動(dòng)脈瓣硬化和二尖瓣環(huán)鈣化,功能性心臟改變主要是舒張功能障礙,此外還有房顫、室性心律失常等心律失常和房室傳導(dǎo)阻滯、束支傳導(dǎo)阻滯等傳導(dǎo)缺陷.因此,對(duì)NAFLD患者應(yīng)進(jìn)行相應(yīng)的評(píng)估和管理,以防止進(jìn)一步的并發(fā)癥發(fā)生.可能的治療方法包括非藥理學(xué)策略,包括生活方式改變、藥理學(xué)治療以及外科治療[1].
一些研究表明[2,3]NAFLD與CVD之間存在著直接的聯(lián)系,提出肝-心軸概念,NALFD應(yīng)被視為一個(gè)重要的獨(dú)立危險(xiǎn)因素,而傳統(tǒng)的CV危險(xiǎn)因素和亞臨床和臨床CVD與代謝綜合征(metabolic syndrome,MetS)則不相關(guān).
目前的文獻(xiàn)表明,NAFLD與CV并發(fā)癥如CAD、亞臨床動(dòng)脈粥樣硬化、心律失常以及傳導(dǎo)、結(jié)構(gòu)和功能改變有關(guān).與NAFLD相關(guān)的額外CVD可進(jìn)一步增加CV發(fā)病率和死亡率[4].與脂肪肝相關(guān)的致病因素是多因素的.其中包括炎癥、脂肪因子、腸道菌群失調(diào)、遺傳學(xué)、氧化應(yīng)激以及心理應(yīng)激,如焦慮和抑郁,這些都是CVD的標(biāo)志物.這表明需要進(jìn)一步的研究和采取措施,以減輕NAFLD造成的負(fù)擔(dān)和不良影響[5,6].
1.1 NAFLD引起CAD的流行病學(xué)研究 一些研究評(píng)估了脂肪肝(fatty liver disease,FLD)與CAD之間的關(guān)聯(lián),大多數(shù)研究結(jié)果顯示FLD的存在顯著增加了冠狀動(dòng)脈粥樣硬化的風(fēng)險(xiǎn).冠狀動(dòng)脈鈣化(coronary artery calcium,CAC)是不良CV事件的獨(dú)立標(biāo)志,導(dǎo)致血管順應(yīng)性降低、心肌灌注受損,導(dǎo)致冠心病(coronary heart disease,CHD)發(fā)病風(fēng)險(xiǎn)增加,以及血管運(yùn)動(dòng)異常反應(yīng)和長(zhǎng)期死亡率增加[7].當(dāng)前文獻(xiàn)中大多數(shù)已發(fā)表的研究使用多探測(cè)器計(jì)算機(jī)斷層掃描和計(jì)算CAC評(píng)分來(lái)評(píng)估CHD風(fēng)險(xiǎn),這是一種評(píng)估無(wú)癥狀的中等CV風(fēng)險(xiǎn)受試者的合適方法.另一方面,脂肪肝主要通過(guò)超聲或磁共振成像-質(zhì)子密度脂肪分?jǐn)?shù)(proton density fat fraction,PDFF)進(jìn)行診斷.
Chang等[7]最近進(jìn)行了一項(xiàng)橫斷面研究,評(píng)估了105328名受試者的酒精和非酒精病因的CAC評(píng)分與脂肪性肝病的相關(guān)性.研究表明,酒精性肝病和NAFLD與CAC評(píng)分升高有關(guān).此外,他們還發(fā)現(xiàn),即使在控制了傳統(tǒng)的CV危險(xiǎn)因素、MetS和C-反應(yīng)蛋白(C-reactive protein,CRP)后,胰島素抵抗(insulin resistance,IR)指數(shù)也被證明是一個(gè)穩(wěn)健和獨(dú)立的CAC評(píng)分預(yù)測(cè)因子.此外,Kim等[8]對(duì)來(lái)自Rancho Bernardo研究預(yù)期人群的250名受試者進(jìn)行了橫斷面研究,主要涉及南加州郊區(qū)的白人成年人.表明盡管NAFLD與CAC密切相關(guān),但它并不是絕經(jīng)后婦女冠狀動(dòng)脈粥樣硬化的獨(dú)立因素.
Wolff等[9]評(píng)估了基于人群的Rotterdam研究中的2351名受試者,并證明肝脂肪的比例增加與EFT (epicardial fat thicknee,心外膜脂肪厚度)和CAC的增加相關(guān),獨(dú)立于傳統(tǒng)的CV危險(xiǎn)因素.另一方面,Kim等[10]對(duì)2238名患者進(jìn)行了橫斷面研究,報(bào)告稱盡管CAC與EFT和肝脂肪的增加有關(guān),但與NAFLD相比,EFT與CAC的關(guān)系更為密切.
此外,一項(xiàng)橫斷面研究發(fā)現(xiàn),盡管老年受試者的NAFLD患病率較低,但他們?nèi)匀槐憩F(xiàn)出CAC評(píng)分和內(nèi)臟脂肪組織(visceral adipose tissue,VAT)增加.Lee等[11]研究21335名受試者參加了一個(gè)篩選項(xiàng)目,表明與腹部肥胖相比,NAFLD與CAC的關(guān)系更為顯著.
另一項(xiàng)Jung等[12]旨在研究1218名受試者肝脂肪和血清丙氨酸轉(zhuǎn)氨酶(alanine aminotransferase,ALT)與CAC的關(guān)系的橫斷面研究.結(jié)果提示同時(shí)伴有肝脂肪變性和ALT升高的受試者被發(fā)現(xiàn)與較高的CAC評(píng)分相關(guān).有報(bào)告稱,在NAFLD患者中,較高的CAC評(píng)分與使用瞬時(shí)彈性成像評(píng)估的肝硬度值獨(dú)立相關(guān).
NAFLD患者CAC、高血壓、主動(dòng)脈瓣硬化、舒張功能障礙、動(dòng)脈粥樣硬化斑塊和頸動(dòng)脈內(nèi)膜中層厚度(carotid intima-media thickness,CIMT)增加的發(fā)生率高于非NAFLD患者[13].越來(lái)越多的研究表明NAFLD與CHD之間存在關(guān)系[14].據(jù)估計(jì),癌癥和CVD是NAFLD患者死亡的主要原因.51%的輕度和不明顯冠狀動(dòng)脈狹窄患者和100%的三支受影響冠狀動(dòng)脈患者中觀察到NAFLD.Perera等[15]注意到46.7%的急性冠狀動(dòng)脈綜合征患者存在NAFLD.NAFLD患者鈣化和非鈣化冠狀動(dòng)脈斑塊的患病率明顯高于健康人,而與MetS的發(fā)病率無(wú)關(guān)[16].再次,冠狀動(dòng)脈血流儲(chǔ)備(coronary flow reserve,CFR)在NAFLD患者比健康受試者顯著降低[17].
1.2 NAFLD與頸動(dòng)脈疾病 CIMT與NAFLD、亞臨床動(dòng)脈粥樣硬化、心肌梗死和卒中獨(dú)立相關(guān)[18].CIMT測(cè)量和超聲斑塊負(fù)荷可用于篩查無(wú)癥狀個(gè)體,因?yàn)樗且环N有效且廣泛接受的預(yù)測(cè)CVD的篩查工具.
一項(xiàng)包括27項(xiàng)研究的薈萃分析得出結(jié)論[19],即使調(diào)整了年齡、性別、體重指數(shù)、吸煙、低密度脂蛋白(low-density lipoprotein,LDL)膽固醇、IR和MetS等傳統(tǒng)危險(xiǎn)因素,NAFLD仍與亞臨床動(dòng)脈粥樣硬化獨(dú)立相關(guān).此外,NAFLD患者頸動(dòng)脈斑塊的出現(xiàn)頻率更高.
此外,Kim等[20]研究了FLD中動(dòng)脈粥樣硬化疾病與性別差異的關(guān)系,得出結(jié)論:男性FLD、頸動(dòng)脈斑塊的患病率高于女性.Martínez-Alvarado Mdel等[21]提示IR可能是女性代謝異常和亞臨床動(dòng)脈粥樣硬化的介質(zhì).Li等[22]最近對(duì)1007名絕經(jīng)后婦女進(jìn)行了一項(xiàng)研究.據(jù)報(bào)道,NAFLD與絕經(jīng)后婦女動(dòng)脈僵硬風(fēng)險(xiǎn)增高相關(guān),而與是否存在MetS無(wú)關(guān).最近進(jìn)行的研究發(fā)現(xiàn)[23],NAFLD嚴(yán)重程度和肝功能增加試驗(yàn)顯示對(duì)動(dòng)脈粥樣硬化嚴(yán)重程度有影響.
NAFLD組織學(xué)特征的嚴(yán)重程度也與CIMT升高有關(guān).Bhatia等[24]使用磁共振波譜和肝壞死炎癥標(biāo)記物血清細(xì)胞角蛋白-18評(píng)估的NAFLD嚴(yán)重程度改善與CIMT進(jìn)展減少相關(guān).
1.3 NAFLD患者心臟結(jié)構(gòu)和功能的改變 目前大多數(shù)研究報(bào)告NAFLD與左室功能和結(jié)構(gòu)改變,即使在校正了常見的CV代謝危險(xiǎn)因素后仍有顯著相關(guān)性.在無(wú)病態(tài)肥胖、高血壓和糖尿病的NAFLD患者中,存在輕度改變的左室?guī)缀谓Y(jié)構(gòu)和左室舒張功能障礙的早期特征.無(wú)癥狀NAFLD患者也發(fā)現(xiàn)有亞臨床心功能不全,其因?yàn)樽笫夜δ懿蝗妥笫屹|(zhì)量與IR以及隨后的預(yù)后密切相關(guān).有報(bào)告稱肝脂肪的量與舒張功能障礙和IR之間存在強(qiáng)烈的正相關(guān),這是研究中發(fā)現(xiàn)的與NAFLD相關(guān)的唯一獨(dú)立參數(shù)[25].組織學(xué)評(píng)價(jià)的肝纖維化與超聲心動(dòng)圖評(píng)價(jià)的幾個(gè)心臟參數(shù)有關(guān).Petta等[26]對(duì)147例經(jīng)活檢證實(shí)的NAFLD患者進(jìn)行了評(píng)估肝纖維化和心臟并發(fā)癥嚴(yán)重程度的研究.報(bào)道了幾種心臟結(jié)構(gòu)的改變,如舒張后壁厚度、左室質(zhì)量、相對(duì)壁厚、左房容積以及左室舒張功能障礙、射血分?jǐn)?shù)、下側(cè)組織多普勒成像、舒張?jiān)缙诙獍戥h(huán)的速度峰值(E值)和重力血流峰值比率,由心房收縮引起的舒張?jiān)缙?E波)至舒張晚期(A波)的峰值流速(E/A比值)均與嚴(yán)重肝纖維化有關(guān).通過(guò)評(píng)價(jià)冠狀動(dòng)脈微血管循環(huán)的完整性.他們得出結(jié)論,與健康對(duì)照組相比,即使在校正了肥胖、傳統(tǒng)CV危險(xiǎn)因素和MetS之后NAFLD患者的CFR(coronary flow reserve,冠狀動(dòng)脈血流儲(chǔ)備)仍較低[27].
Mahfouz等[28]最近進(jìn)行的一項(xiàng)研究.有人認(rèn)為NAFLD患者的心房厚度和左房硬度指數(shù)的增加可以解釋房顫發(fā)病率增加的原因.
有幾篇文章描述了EFT與NAFLD之間的重要聯(lián)系.O?uz等[29]進(jìn)行橫斷面研究,得出結(jié)論:NAFLD患者的EFT和骨保護(hù)素水平升高,而使主動(dòng)脈血流傳播速度降低.另一項(xiàng)研究涉及868名受試者,來(lái)自Baragetti等[30]進(jìn)行的PLIC研究.據(jù)報(bào)道,肝脂肪變性和EFT與心外斑塊的發(fā)病率增加有關(guān).
1.4 NAFLD患者心律失常與傳導(dǎo)異常 NAFLD與心律失常風(fēng)險(xiǎn)以及相關(guān)傳導(dǎo)異常的關(guān)系最近引起了醫(yī)學(xué)界的興趣.多項(xiàng)研究評(píng)估了NAFLD與若干心電圖表現(xiàn)之間的關(guān)系,并證明房顫風(fēng)險(xiǎn)增加、QTc間期延長(zhǎng)、束支和房室傳導(dǎo)阻滯.此外,糖尿病合并NAFLD患者出現(xiàn)室性心律失常的風(fēng)險(xiǎn)也增加.
最常見的持續(xù)性心律失常是房顫,它是一個(gè)主要的健康問(wèn)題,因?yàn)榘l(fā)病率和死亡率增加.多項(xiàng)研究評(píng)估了NAFLD與房顫之間的關(guān)系.最近的一項(xiàng)薈萃分析評(píng)估了9項(xiàng)共364919名受試者的橫斷面和縱向研究[31],報(bào)告稱NAFLD與中老年受試者,尤其是2型糖尿病患者房顫風(fēng)險(xiǎn)增加相關(guān).一項(xiàng)橫斷面研究顯示患有NAFLD的老年受試者在調(diào)整年齡、性別、收縮壓、空腹血糖、GGT、高密度脂蛋白(high-density lipoprotein,HDL)膽固醇、三酰甘油、總膽固醇和白蛋白后仍有顯著的房顫患病率.另一方面,Markus等[32]對(duì)3090名受試者進(jìn)行了一項(xiàng)基于人群的博美尼亞健康研究,得出結(jié)論:超聲診斷的患者血清肝酶中度升高而與非肝脂肪變性患者相比,前者有較高的房顫患病率.他們認(rèn)為,這種相關(guān)性背后的一個(gè)可能的致病機(jī)制可能是因促炎、促凝血因子水平升高,以及血清肝酶水平升高相關(guān),導(dǎo)致心房結(jié)構(gòu)和電生理改變,從而導(dǎo)致更高的房顫風(fēng)險(xiǎn)發(fā)生,Mantovani[33]認(rèn)為高尿酸血癥可能在NAFLD和房顫之間的聯(lián)系中起著重要作用,有待進(jìn)一步研究.
1.5 NAFLD與亞臨床動(dòng)脈粥樣硬化 NAFLD加速動(dòng)脈粥樣硬化的發(fā)生和發(fā)展.已有研究表明NAFLD與亞臨床動(dòng)脈粥樣硬化之間存在關(guān)聯(lián).他們中的大多數(shù)人證明這種聯(lián)系獨(dú)立于MetS和傳統(tǒng)CV危險(xiǎn)因素.
CAC是動(dòng)脈粥樣硬化負(fù)荷的替代指標(biāo),也是CHD風(fēng)險(xiǎn)的獨(dú)立指標(biāo).一份研究[34]分析了10153名接受腹部超聲檢查評(píng)估脂肪肝和心臟CT CAC評(píng)分的職業(yè)人群的數(shù)據(jù).脂肪肝與CAC評(píng)分>0相關(guān),與所有MetS特征無(wú)關(guān)(OR=1.21;95%CI:1.01-1.45).對(duì)505名無(wú)糖尿病、無(wú)癥狀、無(wú)已知CHD的男性患者的評(píng)估顯示,超聲診斷的肝脂肪變性與電子束斷層掃描量化的CAC呈正相關(guān).肝脂肪變性患者中CAC的患病率較高(52%vs37%,P=0.001).
另一項(xiàng)研究[35]包括2424名年輕人冠狀動(dòng)脈風(fēng)險(xiǎn)發(fā)展研究的參與者.本研究使用CT來(lái)量化肝臟脂肪、CAC和腹主動(dòng)脈鈣化(calcification of abdominal aorta,AAC).NAFLD患者CAC(37.9%vs26.0%,P<0.001)和AAC(65.1%vs49.9%,P<0.001)的患病率增加.NAFLD與CAC和AAC的關(guān)系在人口統(tǒng)計(jì)學(xué)和健康行為調(diào)整后持續(xù)存在.然而,在調(diào)整VAT (visceral adipose tissue,內(nèi)臟脂肪組織)后,這種關(guān)聯(lián)并沒有達(dá)到統(tǒng)計(jì)學(xué)意義[35].最近的一項(xiàng)研究[36]涉及多民族與動(dòng)脈粥樣硬化相關(guān)性的研究,計(jì)3796名參與者的橫斷面分析.這項(xiàng)研究表明NAFLD與炎癥和CAC的增加有關(guān),而與傳統(tǒng)危險(xiǎn)因素、肥胖和MetS無(wú)關(guān).但NAFLD、肥胖和MetS與炎癥和CAC分級(jí)相關(guān).
超聲測(cè)量CIMT是亞臨床動(dòng)脈粥樣硬化的標(biāo)志.CIMT是預(yù)測(cè)未來(lái)血管事件的有力指標(biāo),與心肌梗死相比,它能更好地預(yù)測(cè)中風(fēng)風(fēng)險(xiǎn).印度人群的橫斷面研究顯示[37],NAFLD患者的平均和最大CIMT高于對(duì)照組.NAFLD的存在是調(diào)整肥胖、MetS、IR和血脂參數(shù)后,具有較高的平均CIMT和高的CIMT獨(dú)立預(yù)測(cè)因子.另一項(xiàng)病例對(duì)照研究[38]將50名從診所招募的患者與40名匹配的健康志愿者進(jìn)行對(duì)比,結(jié)果顯示,在非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)患者、單純性脂肪變性患者和對(duì)照組之間,CIMT存在統(tǒng)計(jì)學(xué)上的顯著差異.調(diào)整年齡、性別、穩(wěn)態(tài)模型評(píng)估IR評(píng)分和MetS后,各組間的差異具有統(tǒng)計(jì)學(xué)意義.
一項(xiàng)上海交通大學(xué)瑞金醫(yī)院的研究報(bào)告[34],針對(duì)8632名參與者的大規(guī)模橫斷面研究顯示,與未患NAFLD的人相比,NAFLD患者CIMT在統(tǒng)計(jì)學(xué)上顯著升高.Logistic回歸分析顯示,與常規(guī)危險(xiǎn)因素和MetS的存在無(wú)關(guān),NAFLD增加了35%的CIMT升高的幾率[39].更大的薈萃分析包括4項(xiàng)研究[40],1947名患者,35.1%的NAFLD患者存在病理性CIMT,而非NAFLD患者為21.8%(P<0.0001).
心踝血管指數(shù)(cardio ankle vascular index,CAVI)表示從主動(dòng)脈到足踝的整個(gè)動(dòng)脈段的硬度.CAVI反映動(dòng)脈硬化的進(jìn)展,與冠狀動(dòng)脈粥樣硬化的嚴(yán)重程度呈正相關(guān).CAVI也預(yù)測(cè)頸動(dòng)脈硬化和中風(fēng).在對(duì)2954名受試者的橫斷面分析中,NAFLD與動(dòng)脈硬化風(fēng)險(xiǎn)增加42%相關(guān).動(dòng)脈僵硬的風(fēng)險(xiǎn)隨著NAFLD的嚴(yán)重程度而增加.在校正了包括體重指數(shù)、腰圍、吸煙狀況、糖尿病和高血壓在內(nèi)的其他危險(xiǎn)因素后,這種相關(guān)性具有統(tǒng)計(jì)學(xué)意義[41].
動(dòng)脈硬度的另一個(gè)測(cè)量指標(biāo)是肱踝脈搏波速度(brachial-ankle pulse wave velocity,baPWV).一項(xiàng)前瞻性研究[42]包括728名無(wú)高血壓和糖尿病的男性和497名女性.隨訪5年.在研究期間,NAFLD組的baPWV變化明顯大于非NAFLD組.多元回歸分析[43]顯示NAFLD是baPWV變化的獨(dú)立且顯著的預(yù)測(cè)因子.另一項(xiàng)針對(duì)中國(guó)人群的橫斷面研究[43]包括1296名接受常規(guī)體檢的非肥胖、非高血壓和非糖尿病青壯年受試者.NAFLD組baPWV水平顯著高于對(duì)照組(1321 cm/s±158 cm/s,1244 cm/s±154 cm/s,P<0.001).baPWV升高組NAFLD患病率高于baPWV正常組(29.3%vs16.9%,P<0.001).多元線性Logistic回歸分析顯示NAFLD與baPWV呈正相關(guān)且獨(dú)立相關(guān)[43].另一項(xiàng)研究還表明[44],與未患NAFLD的受試者相比,患有NAFLD的受試者的baPWV高(1665 cm/s±424 cm/svs1558 cm/s±430 cm/s,P<0.0001).Logistic回歸顯示baPWV升高的幾率增加了30%,獨(dú)立于常規(guī)危險(xiǎn)因素和MetS的存在[44].
1.6 NAFLD與動(dòng)脈粥樣硬化性CVD 多項(xiàng)流行病學(xué)研究表明NAFLD與CVD風(fēng)險(xiǎn)增加有關(guān).NAFLD組動(dòng)脈粥樣硬化性CVD (CHD、缺血性卒中和腦出血)的發(fā)生率高于非NAFLD組.多變量分析表明,NAFLD是CVD的獨(dú)立預(yù)測(cè)因子.
一項(xiàng)對(duì)80名接受冠狀動(dòng)脈造影的MetS患者進(jìn)行的前瞻性研究[44]評(píng)估了NAFLD與CHD嚴(yán)重程度之間的關(guān)系.冠狀動(dòng)脈造影顯示NAFLD患者有更多的血管受累(2.5±0.9vs1.0±1.0,P<0.001)和更嚴(yán)重的CAD嚴(yán)重程度評(píng)分(Gensini評(píng)分,90.2±40.0vs36.4±28.9,P<0.001).在多元回歸分析中,NAFLD是影響CAD嚴(yán)重程度評(píng)分的唯一獨(dú)立因素[44].另一項(xiàng)研究[45]調(diào)查了355名接受冠狀動(dòng)脈造影的患者的橫斷面分析,得出了類似的結(jié)論.單因素分析顯示NAFLD的存在對(duì)CAD有獨(dú)立影響(OR=2.58;P<0.01),對(duì)Gensini評(píng)分也有獨(dú)立影響(OR=2.02;P<0.05)[45].Sun等[46]納入542名計(jì)劃接受冠狀動(dòng)脈造影的患者.冠狀動(dòng)脈造影前進(jìn)行腹部電腦斷層掃描(CT)檢查NAFLD.Logistic回歸分析顯示,NAFLD的存在獨(dú)立地增加了冠狀動(dòng)脈造影顯示CHD的風(fēng)險(xiǎn)(OR=7.585;95%CI:4.617-12.461).CHD嚴(yán)重程度的增加,在NAFLD在患者中更為常見.
Pisto等[47]1991/2009共有988名芬蘭參與者參與了調(diào)查.根據(jù)肝臟脂肪含量將患者分為三組.隨訪期間,13.5%的非脂肪肝患者、24.2%的中度脂肪肝患者和29.2%的重度脂肪肝患者發(fā)生CV事件(P<0.001).當(dāng)根據(jù)年齡、性別和研究組進(jìn)行調(diào)整時(shí),嚴(yán)重肝脂肪含量可預(yù)測(cè)未來(lái)CV事件的風(fēng)險(xiǎn)(HR=1.92;95%CI:1.32-2.80).在進(jìn)一步調(diào)整吸煙、飲酒、LDL膽固醇、體重指數(shù)和收縮壓后,風(fēng)險(xiǎn)仍具有統(tǒng)計(jì)學(xué)意義(HR=1.74,95%CI:1.16-2.63),但在進(jìn)一步調(diào)整定量胰島素敏感性檢查指數(shù)后風(fēng)險(xiǎn)消失.
NAFLD與較高的平均CIMT、最大CIMT和病理CIMT的存在相關(guān)[32,33].CIMT可預(yù)測(cè)包括中風(fēng)在內(nèi)的未來(lái)動(dòng)脈粥樣硬化性CVD的風(fēng)險(xiǎn).然而,有一些不確定的數(shù)據(jù)將NAFLD與中風(fēng)聯(lián)系起來(lái).一項(xiàng)橫斷面研究[48]研究了急性缺血性卒中與NAFLD生化標(biāo)志物的相關(guān)性.以ALT升高≥95%作為炎癥性NAFLD的生化指標(biāo).在校正年齡、性別、當(dāng)前吸煙、當(dāng)前大量飲酒、高血壓病史、房顫、LDL膽固醇、血糖和血清肌酐后,ALT升高患者中風(fēng)的比值比矯正前為3.5(95%CI:1.7-7.6),矯正后為3.3(95%CI:1.3-8.4)[48].調(diào)整年齡和性別后,NAFLD與缺血性卒中顯著相關(guān)(OR=2.15;95%CI:1.25-3.71).
綜上所述,大多數(shù)研究表明NAFLD與CVD有關(guān).NAFLD影響CVD的多個(gè)方面.NAFLD與亞臨床動(dòng)脈粥樣硬化和動(dòng)脈硬化有關(guān).過(guò)去人們普遍認(rèn)為這種聯(lián)系是由肥胖、MetS和糖尿病等共同危險(xiǎn)因素造成的.然而,多項(xiàng)研究已經(jīng)證明這種聯(lián)系獨(dú)立于MetS和傳統(tǒng)的CV危險(xiǎn)因素.一項(xiàng)前瞻性研究還表明[42],NAFLD獨(dú)立且顯著地預(yù)測(cè)了baPWV的變化.
此外,Chung等[41]的研究.也顯示了NAFLD與亞臨床動(dòng)脈粥樣硬化之間的關(guān)系,其嚴(yán)重程度依賴于NAFLD.多變量分析顯示,55歲以下年齡組的NAFLD與動(dòng)脈僵硬(中重度NAFLD:OR=1.97,95%CI:1.28-3.01,趨勢(shì)P=0.002)之間存在嚴(yán)重依賴關(guān)系.流行病學(xué)數(shù)據(jù)存在直接連接到NAFLD的CAD.這些研究表明,與未患NAFLD的受試者相比,患有NAFLD的受試者CHD的發(fā)病率更高,CHD的嚴(yán)重程度更高,未來(lái)CV事件的風(fēng)險(xiǎn)更高,動(dòng)脈粥樣硬化性CVD增加.目前的認(rèn)識(shí)是,IR是胰島素抗脂解作用抵抗的原因,并與NAFLD內(nèi)臟和病理異位脂肪堆積相結(jié)合,導(dǎo)致游離脂肪酸(free fatty acid,FFA)的可用性增加.持續(xù)的慢性亞臨床炎癥、氧化應(yīng)激增加和內(nèi)皮功能障礙增加了FFA的可利用性,從而促進(jìn)動(dòng)脈粥樣硬化和CV功能不良發(fā)生.
最近大量證據(jù)表明,NAFLD患者有患CVD的高風(fēng)險(xiǎn).更嚴(yán)重的肝病與致命和非致命CV事件的風(fēng)險(xiǎn)增加相關(guān)[49].盡管許多證據(jù)表明NAFLD與CVD密切相關(guān),通過(guò)治療NAFLD可減少CVD的發(fā)生,然而其發(fā)病機(jī)制目前知之甚少.
2.1 遺傳易感性 遺傳因素似乎在NAFLD的發(fā)展和嚴(yán)重程度中起著關(guān)鍵作用,在高加索人群中遺傳率約為27%.在拉美裔和非裔美國(guó)人中也觀察到類似的結(jié)果,盡管不同人群之間存在一些差異(33%的拉美裔和14%的非裔美國(guó)人)[50].patatin樣磷脂酶結(jié)構(gòu)域蛋白3(patatin-like phospholipase domain-containing protein 3,PNPLA3)基因的patatin樣磷脂酶結(jié)構(gòu)域多態(tài)性被認(rèn)為是NAFLD最相關(guān)的遺傳危險(xiǎn)因素[51].有趣的是,一些證據(jù)表明這種基因變異也可能在CV疾病的易感性中起作用.特別是,意大利的一項(xiàng)研究表明[52],在組織學(xué)診斷為NAFLD的年輕患者中,PNPLA3-GG多態(tài)性與頸動(dòng)脈斑塊和CIMT增厚的患病率高于CC/CG基因型(分別為53% vs 32%,P=0.02;62%vs28%,P<0.001),但在隨訪期間,CIMT增厚也有進(jìn)展.PNPLA3是一種在脂肪細(xì)胞和肝細(xì)胞中高表達(dá)的跨膜水解酶,參與三酰甘油的代謝,其遺傳變異可能促進(jìn)動(dòng)脈粥樣硬化斑塊的發(fā)生和發(fā)展.此外,其他PNPLA3多態(tài)性與內(nèi)皮細(xì)胞的炎癥活性增加有關(guān),特別是rs738409多態(tài)性似乎與內(nèi)皮源性炎癥分子(即細(xì)胞間黏附分子-1,又叫做CD54,屬于黏附分子中免疫球蛋白超家族中的成員,是介導(dǎo)黏附反應(yīng)重要的一個(gè)黏附分子)的異常循環(huán)水平有關(guān).其他基因也與NAFLD的發(fā)生有關(guān),如跨膜6超家族成員2(transmembrane 6 superfamily member 2,TM6SF2)的多態(tài)性,TM6SF2是一種編碼蛋白質(zhì)的基因,其整體功能尚不清楚,但可能與肝臟脂質(zhì)代謝有關(guān).然而,該基因的一些變異體似乎與對(duì)CV系統(tǒng)的不同影響有關(guān)[53,54].其他的遺傳多態(tài)性具有優(yōu)先的有害作用,例如谷氨酸-L-賴氨酸(TM6SF2基因上的一個(gè)異義突變的變異編碼)與較高的心肌梗死風(fēng)險(xiǎn)相關(guān)[55].最后,一些遺傳多態(tài)性NAFLD患者對(duì)CV疾病的高易感性相關(guān).編碼脂聯(lián)素或瘦素受體的基因變異與更嚴(yán)重的肝損傷有關(guān),但也與嚴(yán)重的血脂異常、糖尿病和肥胖有關(guān),證實(shí)NAFLD患者易發(fā)生共同的CV代謝并發(fā)癥[56].
2.1.1 脂肪組織與血脂異常,NAFLD與CVD的聯(lián)系點(diǎn):考慮到MetS、肥胖等代謝性疾病與NAFLD發(fā)生的密切關(guān)系,脂肪組織擴(kuò)張和功能障礙可能是肝臟疾病與CV代謝性并發(fā)癥最重要的共同點(diǎn).事實(shí)上,過(guò)量飲食和卡路里攝入通常是MetS、NAFLD發(fā)病機(jī)制和CV表現(xiàn)的主要決定因素,導(dǎo)致血清FFA水平升高,超過(guò)脂肪組織的儲(chǔ)存能力,從而導(dǎo)致脂肪團(tuán)增大、內(nèi)臟和異位脂肪沉積,也包括肝臟.脂肪組織的異常擴(kuò)張導(dǎo)致脂肪細(xì)胞功能障礙,持續(xù)產(chǎn)生脂肪源性細(xì)胞因子[白細(xì)胞介素(interleukin,IL)-6,腫瘤壞死因子(tumor necrosis factor,TNF)-α]和CRP.持續(xù)性炎癥的存在不僅與IR的發(fā)展有關(guān),還與CVD的直接發(fā)病有關(guān)[57].
此外,由于脂肪團(tuán)增大,脂肪生成增加,導(dǎo)致高循環(huán)水平的FFA、超低密度脂蛋白(very low-density lipoprotein,VLDL)過(guò)多產(chǎn)生,以及進(jìn)一步的脂質(zhì)代謝異常,從而導(dǎo)致顯著的動(dòng)脈粥樣硬化性血脂異常.NAFLD患者的血脂異??赡芫哂懈鼑?yán)重的致動(dòng)脈粥樣硬化潛能,此外,NAFLD患者的脂質(zhì)參數(shù)與肝損傷和炎癥的組織學(xué)嚴(yán)重程度之間存在正相關(guān)[58],證實(shí)了這兩種情況之間的密切關(guān)系.
2.1.2 NAFLD患者微血管損傷、內(nèi)皮功能障礙與CV風(fēng)險(xiǎn):系統(tǒng)性微血管損傷的存在,以及持續(xù)性炎癥引起的內(nèi)皮功能障礙和氧化應(yīng)激可能是增加NAFLD人群CV風(fēng)險(xiǎn)的主要機(jī)制[59].除了脂肪生成增加的直接影響外,動(dòng)脈僵硬的增加還可以增加NAFLD患者的CV風(fēng)險(xiǎn)[60].
此外,有證據(jù)表明[61],不吸煙患者中NAFLD的患病率較高,同時(shí)也有證據(jù)表明[62],NAFLD的嚴(yán)重程度似乎與該人群中動(dòng)脈高血壓的發(fā)病率同時(shí)增加,這支持了一種強(qiáng)烈的雙重關(guān)系.
2.1.3 肝特異性異常與CV系統(tǒng):如上所述,除了動(dòng)脈粥樣硬化性血脂異常、肥胖和動(dòng)脈高壓等對(duì)CV系統(tǒng)的直接影響外,肝病似乎顯著的且可直接地促進(jìn)CV風(fēng)險(xiǎn).肝內(nèi)血管功能受損(竇性變形或微血管形成丟失)和纖維化的存在,本身可導(dǎo)致內(nèi)皮功能障礙,并增加血栓前分子和血管生成因子的產(chǎn)生,這可能涉及系統(tǒng)血管.肝臟中的巨噬細(xì)胞數(shù)量最多,大量細(xì)胞因子(尤其是TNF-α、IL-6、CRP)可慢性釋放到全身循環(huán)中,促進(jìn)慢性炎癥和血栓易感性[63].
NAFLD患者可能有重要的肝血管重塑,可能導(dǎo)致動(dòng)脈功能障礙和CV風(fēng)險(xiǎn).與對(duì)照組相比,NAFLD患者的血清血管內(nèi)皮生長(zhǎng)因子水平升高.血栓前因子的大量產(chǎn)生,特別是因子VIII、IX、XI和XII,與肝脂肪含量呈正相關(guān),因此可能與這些患者的CV風(fēng)險(xiǎn)增加相關(guān).纖溶酶原激活物抑制物-1的釋放增加,通過(guò)抑制組織纖溶酶原激活物與血栓前風(fēng)險(xiǎn)相關(guān),可進(jìn)一步增加CV事件的風(fēng)險(xiǎn)[64].
最近,也有研究表明肝臟組織特異性分子在系統(tǒng)中起作用,它似乎影響多種代謝途徑.這些分子,也被稱為“肝細(xì)胞因子”,可能在NAFLD患者CV并發(fā)癥的發(fā)生中起相關(guān)作用.成纖維細(xì)胞生長(zhǎng)因子-21(fibroblast growth factor-21,FGF-21)是肝臟分泌的一種多肽,參與人體的穩(wěn)態(tài)過(guò)程.它在CV系統(tǒng)中的作用還不完全清楚,但一些研究表明它對(duì)CV系統(tǒng)有負(fù)面影響.血清FGF-21水平的升高與頸動(dòng)脈CIMT增厚、動(dòng)脈粥樣硬化和CAD有關(guān).胎球蛋白-A是由肝臟合成的一種分子,似乎參與胰島素信號(hào)傳導(dǎo).在胎球蛋白A水平較高的糖尿病患者中觀察到對(duì)CV系統(tǒng)的負(fù)面影響,而在非糖尿病患者中觀察到相反的影響[65].
在NAFLD和CV疾病中,如心肌梗死和中風(fēng),人類腸道微生物的狀態(tài)都發(fā)生了改變[66,67].實(shí)驗(yàn)研究表明[68],腸道微生物的變化可能會(huì)影響自然穩(wěn)態(tài),特別是通過(guò)降低能量消耗和胰島素敏感性.在人類中,食物的不正常攝入與肥胖、糖尿病和NAFLD的發(fā)生有關(guān),并影響腸道微生物組成.三聚氰胺N-氧化物是一種由腸道微生物轉(zhuǎn)化為膳食磷脂酰膽堿的分子,與動(dòng)脈粥樣硬化疾病的發(fā)展有關(guān).此外,在動(dòng)脈粥樣硬化斑塊中發(fā)現(xiàn)了大量腸桿菌DNA,如細(xì)菌蛋白[69].這些發(fā)現(xiàn)表明,腸道失調(diào)在飲食、代謝疾病、NAFLD和CV事件的十字路口起著重要作用.圖1顯示了NAFLD與CVD之間的多種聯(lián)系機(jī)制.
2.2 NAFLD作為CVD的危險(xiǎn)因素 肝脂肪堆積可能是NAFLD與動(dòng)脈粥樣硬化關(guān)系的重要決定因素.最近,有人提出脂肪肝本身不是動(dòng)脈粥樣硬化的危險(xiǎn)因素,除非它與代謝紊亂有關(guān).有人認(rèn)為[70],脂肪肝可能有兩種不同的形式:一種主要與代謝異常有關(guān),另一種主要由遺傳因素引起,其特征是有更高的進(jìn)行性肝損傷風(fēng)險(xiǎn).
NAFLD與不良代謝和動(dòng)脈粥樣硬化風(fēng)險(xiǎn)狀況相關(guān).從代謝角度來(lái)看,NAFLD相關(guān)動(dòng)脈粥樣硬化形成的生物學(xué)機(jī)制可能是VAT、腸道、肌肉組織和肝臟之間的串?dāng)_[71].事實(shí)上,擴(kuò)張和炎癥的VAT釋放的分子,如脂肪因子、IL-6和TNF-α,可能參與IR和CVD的發(fā)展[72].此外,飲食中的乳糜微粒和從頭脂肪生成有助于增加肝臟FFA池以及NAFLD的發(fā)生[73].
肝臟中的脂質(zhì)積聚導(dǎo)致亞急性炎癥,隨后通過(guò)核因子κB(nuclear factor-kappa B,NF-κB)途徑產(chǎn)生細(xì)胞因子.尤其是,NF-κB的激活導(dǎo)致一些促炎癥基因的轉(zhuǎn)錄增加,這些基因介導(dǎo)全身和低級(jí)別炎癥的進(jìn)展.脂肪組織的增加和慢性炎癥也會(huì)導(dǎo)致脂肪因子分泌的不平衡,特別是脂聯(lián)素的減少.脂聯(lián)素已被證明具有抗炎和抗纖維化能力(DI Maira等[74],2018),其低水平分別與高脂肪含量和從脂肪變性及CVD到NASH與CV動(dòng)脈粥樣硬化的進(jìn)展有關(guān)[75].NASH通過(guò)系統(tǒng)釋放促動(dòng)脈粥樣硬化介質(zhì)(CRP、IL-6和TNF-α)和纖維蛋白原、因子VII和纖溶酶原激活物抑制物-1介導(dǎo)的高凝和低纖溶可誘導(dǎo)參與動(dòng)脈粥樣硬化形成,通過(guò)這種方式,肝臟成為促動(dòng)脈粥樣硬化分子的來(lái)源,從而放大動(dòng)脈損傷.越來(lái)越多的證據(jù)表明動(dòng)脈粥樣硬化與肝損傷的嚴(yán)重程度成正比[76](圖2).
圖1 非酒精性脂肪性肝病相關(guān)心血管風(fēng)險(xiǎn)的發(fā)病機(jī)制.NAFLD通過(guò)致動(dòng)脈粥樣硬化性血脂異常、肝臟/系統(tǒng)性IR和幾種促炎癥和促凝血介質(zhì)的分泌增加,導(dǎo)致動(dòng)脈粥樣硬化血栓形成的風(fēng)險(xiǎn)更高.FFA:游離脂肪酸;PNPLA3:patatin樣磷脂酶結(jié)構(gòu)域蛋白3;TM6SF2:跨膜6超家族成員2;Glu-L-67Lys:谷氨酸-L-賴氨酸.
圖2 非酒精性脂肪性肝病相關(guān)動(dòng)脈粥樣硬化的關(guān)鍵機(jī)制示意圖.非酒精性脂肪性肝病通過(guò)致動(dòng)脈粥樣硬化性血脂異常、肝臟/系統(tǒng)性胰島素抵抗和幾種促炎癥和促凝血介質(zhì)的分泌增加,導(dǎo)致動(dòng)脈粥樣硬化血栓形成的風(fēng)險(xiǎn)更高.NAFLD:非酒精性脂肪性肝病;FFA:游離脂肪酸;LDL:低密度脂蛋白.
MerTK顯示出清除凋亡小體的顯著能力.已經(jīng)證明M2c極化與MerTK上調(diào)密切相關(guān),檢測(cè)M2c受體可預(yù)測(cè)MerTK的表達(dá)[77].此外,M2c巨噬細(xì)胞能夠釋放Gas-6,而Gas-6又可以通過(guò)MerTK信號(hào)以自分泌方式放大IL-10的分泌[77].
2.3 MerTK在動(dòng)脈粥樣硬化過(guò)程中的作用機(jī)制 MerTK是巨噬細(xì)胞表面的一類蛋白質(zhì),它能夠調(diào)節(jié)炎癥修復(fù),效應(yīng)細(xì)胞增生.通過(guò)與凋亡細(xì)胞表面翻轉(zhuǎn)的磷酯酰絲氨酸結(jié)合,能夠發(fā)生吞噬作用.此外,巨噬細(xì)胞還能夠抑制NF-κB信號(hào)通路.有研究表明[70],MerTK信號(hào)能夠促進(jìn)SPM(炎癥損傷修復(fù)過(guò)程依賴于特定的調(diào)節(jié)因子)的合成.MerTKGIP 還可調(diào)節(jié)巨噬細(xì)胞活化,促進(jìn)凋亡細(xì)胞的吞噬,幫助血小板聚集,并維持體內(nèi)血塊的穩(wěn)定.MerTK是酪氨酸-3、Axl和Mer(TAM)受體酪氨酸激酶家族的第二個(gè)成員.這些受體的特征是細(xì)胞外區(qū)域的黏附分子樣結(jié)構(gòu)域,模擬了細(xì)胞-細(xì)胞接觸中重要的神經(jīng)細(xì)胞黏附分子的結(jié)構(gòu),其中包含五個(gè)Ig結(jié)構(gòu)域和兩個(gè)纖維連接蛋白Ⅲ型結(jié)構(gòu)域,研究最多的MerTK配體是Vit-K修飾的Gas-6和蛋白S.
MerTK通常在單核細(xì)胞/巨噬細(xì)胞、樹突狀細(xì)胞、自然殺傷細(xì)胞、自然殺傷T細(xì)胞、肝星狀細(xì)胞(hepatic stellate cell,HSC)、巨核細(xì)胞、血小板、上皮組織和生殖組織中表達(dá)[78].M2c巨噬細(xì)胞高水平表達(dá).巨噬細(xì)胞極化是調(diào)節(jié)炎癥反應(yīng)的重要機(jī)制,它受核受體超家族成員過(guò)氧化物酶體增殖物激活受體(peroxisome proliferatorsactivated receptors,PPAR) (α,β,δ,γ等位型)和肝X受體(liver X receptor,LXRs) (LXRα和LXRβ)的控制[79].這些轉(zhuǎn)錄因子與維甲酸X受體(α和β等型)形成異二聚體,在結(jié)合脂質(zhì)或合成配體時(shí),通過(guò)反式激活介導(dǎo)基因表達(dá).核受體在巨噬細(xì)胞功能的調(diào)節(jié)中起著重要作用.它們的配體影響調(diào)節(jié)脂質(zhì)穩(wěn)態(tài)、促炎癥細(xì)胞因子產(chǎn)生、炎癥分解和促進(jìn)組織愈合的介質(zhì)合成的基因轉(zhuǎn)錄[80].PPARγ激活通過(guò)清道夫受體CD36引起脂質(zhì)攝取,脂肪酸β氧化與巨噬細(xì)胞極化成M2a細(xì)胞有關(guān).PPARγ和LXR (肝X受體α和β)活性是相互協(xié)調(diào)的,PPARγ實(shí)際上能激活LXRs,但在一定條件下,PPARγ和LXRS發(fā)揮相反的作用.在M2a巨噬細(xì)胞中,IL-4刺激PPARγ表達(dá)和LXR-α下調(diào)[81].
巨噬細(xì)胞中過(guò)量脂蛋白衍生膽固醇的積累激活LXR,進(jìn)而觸發(fā)ABC轉(zhuǎn)運(yùn)體的誘導(dǎo),介導(dǎo)膽固醇外流以及小鼠(A-Gonzalez)和人類[77]中MerTK的上調(diào).證明指出,吞噬凋亡細(xì)胞激活LXRs,可能是通過(guò)膜源性膽固醇的積累.LXRs反過(guò)來(lái)激活MerTK的轉(zhuǎn)錄,產(chǎn)生正反饋以促進(jìn)進(jìn)一步的傳出細(xì)胞,該過(guò)程介導(dǎo)ABC轉(zhuǎn)運(yùn)體基因(如ABCA-1和ABCG-1)的增加表達(dá),參與過(guò)量膽固醇的流出和免疫抑制.這些結(jié)果表明,MerTK的LXR依賴性調(diào)節(jié)對(duì)正常的免疫內(nèi)穩(wěn)態(tài)具有重要意義.MerTK-/-和LXRs-DKO小鼠具有一系列特征,包括炎癥反應(yīng)增強(qiáng)和對(duì)自身免疫和動(dòng)脈粥樣硬化的易感性增加[82].
MerTK通過(guò)不同的機(jī)制,包括效應(yīng)細(xì)胞作用,維持中樞和外周耐受.事實(shí)上,在全基因組相關(guān)研究中,有報(bào)道稱[83],MerTK位點(diǎn)rs4374383 G>A與肝臟MerTK表達(dá)減少相關(guān),從而保護(hù)慢性丙型肝炎和NAFLD患者免受肝纖維化的影響.同樣的G>A變異被發(fā)現(xiàn)與心臟代謝紊亂和營(yíng)養(yǎng)性炎癥有關(guān),并可能以這種方式導(dǎo)致肝臟和心臟代謝疾病[83].此外,研究表明[78],在人類NAFLD標(biāo)本中,MerTK主要在巨噬細(xì)胞和炎癥灶內(nèi)松散聚集的HSC中表達(dá).
動(dòng)脈粥樣硬化病變?cè)谂R床上是無(wú)癥狀的,急性CV事件可能是由壞死斑塊演變而來(lái).首先,凋亡細(xì)胞被鄰近的巨噬細(xì)胞有效清除,以限制整個(gè)損傷細(xì)胞的數(shù)量.在這里,傳出細(xì)胞增生迅速,沒有炎癥.在生理?xiàng)l件下,凋亡細(xì)胞在吞噬體中被吞噬和降解,巨噬細(xì)胞被大分子成分和膽固醇超載.在晚期動(dòng)脈粥樣硬化中,慢性炎癥刺激的持續(xù)存在促進(jìn)了病變的不穩(wěn)定性和對(duì)心臟病發(fā)作和中風(fēng)的易感性.炎癥在促進(jìn)動(dòng)脈粥樣硬化中的作用已被充分證明.在晚期斑塊中,由慢性內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的凋亡泡沫細(xì)胞引起炎癥反應(yīng)[84].此外,內(nèi)質(zhì)網(wǎng)應(yīng)激與斑塊破裂密切相關(guān).兩個(gè)過(guò)程有助于凋亡后壞死和有缺陷的傳出細(xì)胞增多,并損害了炎癥反應(yīng)的解決.在最后一個(gè)階段,傳出細(xì)胞功能受損,有缺陷的MerTK至少部分地促進(jìn)壞死斑塊的擴(kuò)張.在這方面,有證據(jù)表明缺乏MerTK的小鼠表現(xiàn)出了有效細(xì)胞增生的缺陷,這與斑塊內(nèi)炎癥和壞死的增加有關(guān).此外,人類動(dòng)脈粥樣硬化壞死核心附近的巨噬細(xì)胞顯示,MerTK表達(dá)低于周圍病變[85].最后,在晚期動(dòng)脈粥樣硬化中,脂質(zhì)和ROS的積累增加了氧化磷脂的水平.這些脂質(zhì)可與清道夫受體結(jié)合,并可能競(jìng)爭(zhēng)凋亡細(xì)胞識(shí)別,損害有效細(xì)胞增生機(jī)制.最近的一項(xiàng)研究表明[86],在病變中,死亡細(xì)胞攝取的預(yù)防是通過(guò)一些凋亡細(xì)胞介導(dǎo)的,這些細(xì)胞顯示一種叫做CD47的分子,這種分子通常在凋亡過(guò)程中丟失.
在某些炎癥條件下,MerTK的失活可能會(huì)損害傳出細(xì)胞.氧化LDL可誘導(dǎo)Toll樣受體(Toll-like receptor,TLR)4的表達(dá),增加TNF-α和IL-1β等促動(dòng)脈粥樣硬化細(xì)胞因子的分泌,減少TGF-β和IL-10的分泌[87].這種促炎性環(huán)境損害了巨噬細(xì)胞的傳出細(xì)胞,促進(jìn)了脂質(zhì)攝取的增加,從而增強(qiáng)了吞噬作用,降低了巨噬細(xì)胞表面的MerTK表達(dá)水平.MerTK表達(dá)的減少與解除整合素金屬蛋白酶17 (Disintegrin metalloproteinase 17,ADAM17)的裂解有關(guān).在人類動(dòng)脈粥樣硬化中,壞死核心附近的巨噬細(xì)胞比周圍病變中的巨噬細(xì)胞具有更高的ADAM17[85].多種動(dòng)脈粥樣硬化炎性刺激,如氧化應(yīng)激、缺氧和氧化配體,能夠促進(jìn)ADAM17活性[88].通過(guò)破壞受體和產(chǎn)生可溶性Mer (sol-Mer,溶膠聚合GAS-6物),抑制競(jìng)爭(zhēng)性細(xì)胞增多癥,其競(jìng)爭(zhēng)結(jié)合分子Gas-6和蛋白S.有趣的是,氧化LDLs促進(jìn)MerTK裂解和有缺陷的吞噬細(xì)胞增多,可以激活高級(jí)斑塊內(nèi)的壞死通路.有利于壞死核的發(fā)育[88].在最近的研究中[89],已經(jīng)證明,氧化LDL能夠增加sol-Mer水平并降低野生型巨噬細(xì)胞表面的MerTK表達(dá).
CVD是全世界,特別是發(fā)達(dá)國(guó)家的主要死因,包括動(dòng)脈粥樣硬化、高血壓、中風(fēng)和心力衰竭等多種疾病[90].越來(lái)越多證據(jù)表明NAFLD 時(shí)有菌群失調(diào),引起細(xì)菌易位、內(nèi)毒素血癥、腸道屏障功能障礙和繼發(fā)先天和適應(yīng)性免疫異常等是CVD發(fā)生的主要危險(xiǎn)因素.Wang等[91]報(bào)告了CVD的腸道微生物依賴機(jī)制,強(qiáng)調(diào)了腸道微生物與CVD之間錯(cuò)綜復(fù)雜的關(guān)系.最近,腸道微生物失調(diào)被認(rèn)為是導(dǎo)致動(dòng)脈粥樣硬化和高血壓發(fā)展的重要因素,動(dòng)脈粥樣硬化和高血壓是CVD的兩個(gè)主要危險(xiǎn)因素[92].
3.1 腸道菌群與動(dòng)脈粥樣硬化 動(dòng)脈粥樣硬化是CVD的主要危險(xiǎn)因素,其特征是膽固醇積聚和巨噬細(xì)胞進(jìn)入動(dòng)脈壁,從而導(dǎo)致動(dòng)脈粥樣硬化斑塊的形成.最近的研究表明[93],腸道菌群失調(diào)也有助于動(dòng)脈粥樣硬化的發(fā)展.通過(guò)對(duì)有或無(wú)動(dòng)脈粥樣硬化癥狀的患者的腸道基因組進(jìn)行測(cè)序發(fā)現(xiàn),與健康對(duì)照組相比,動(dòng)脈粥樣硬化患者的羅氏菌屬和真細(xì)菌的相對(duì)豐度較低,而柯林斯氏菌較高.此外,研究發(fā)現(xiàn)[94],艾克曼菌能夠改善腸道屏障功能,并對(duì)動(dòng)脈粥樣硬化起到保護(hù)作用.盡管薈萃分析顯示,抗生素治療對(duì)CHD患者沒有明顯的益處,但是,越來(lái)越多的證據(jù)表明,腸道微生物群通過(guò)調(diào)節(jié)炎癥和微生物代謝產(chǎn)物的產(chǎn)生在動(dòng)脈粥樣硬化中起到了病因作用[95].
3.1.1 動(dòng)脈粥樣硬化中的腸道微生物失調(diào)和炎癥:炎癥通常與許多疾病有關(guān),包括動(dòng)脈粥樣硬化,這是一種典型的慢性炎癥疾病.腸道上皮是宿主的第一道屏障,可防止病原體入侵.鑒于其在防止腸道內(nèi)容物(主要是細(xì)菌成分)易位方面的關(guān)鍵作用,腸道屏障的完整性對(duì)于維持宿主的健康至關(guān)重要.腸道通透性與緊密連接蛋白(包括胞質(zhì)小帶閉塞蛋白1、緊密連接蛋白和閉塞蛋白的表達(dá)減少以及腸上皮細(xì)胞死亡和再生之間的不平衡有關(guān)[96].如果腸上皮屏障受損,病原體相關(guān)分子模式(pathogenic molecular model,PAMPs)的入侵會(huì)驅(qū)動(dòng)免疫反應(yīng),并導(dǎo)致全身和組織特異性炎癥.因此,由腸道微生物失調(diào)引起的腸道屏障完整性損害被認(rèn)為是各種疾病慢性炎癥的危險(xiǎn)因素.值得注意的是,脂多糖(lipopolysacchride,LPS)和肽聚糖(peptidoglycan,PG)是公認(rèn)的CVD危險(xiǎn)因素.
LPS是革蘭陰性細(xì)菌的細(xì)胞壁成分,因其是參與CVD風(fēng)險(xiǎn)的PAMPs之一而被廣泛研究.在一項(xiàng)研究中得出結(jié)論,循環(huán)內(nèi)毒素血癥水平在CVD負(fù)擔(dān)最高的患者中最為顯著.Cani等[97]發(fā)現(xiàn)腸道微生物失調(diào)抑制緊密連接蛋白的表達(dá),導(dǎo)致腸道通透性增加,隨后LPS轉(zhuǎn)移到血液中.腸道菌群失調(diào)衍生的LPS可能通過(guò)調(diào)節(jié)TLR及其下游靶點(diǎn)發(fā)揮重要作用[98].作為模式識(shí)別受體家族的一部分,TLRs可以識(shí)別細(xì)菌產(chǎn)物并調(diào)節(jié)宿主免疫系統(tǒng).采用TLR4和LDL受體雙基因敲除小鼠,Ding等[99]發(fā)現(xiàn)TLR4缺乏可減少動(dòng)脈粥樣硬化,但對(duì)炎癥無(wú)影響.一直以來(lái),臨床研究表明,TLRs的上調(diào)與人類動(dòng)脈粥樣硬化的炎癥激活有關(guān),并促進(jìn)動(dòng)脈粥樣硬化.然而,2012年Zhang等[100]的薈萃分析表明Asp299Gly (TLR4基因),一種TLR4多態(tài)性,在動(dòng)脈粥樣硬化的發(fā)展中沒有明顯的作用.此外,LPS與TLR4的結(jié)合激活了其下游途徑,包括MyD88和NF-κB,促進(jìn)了促炎性細(xì)胞因子如IL-6、IL-1、IL-27和TNF-α的產(chǎn)生,從而增加了發(fā)生CVD的風(fēng)險(xiǎn)[101],缺乏MyD88可通過(guò)減少巨噬細(xì)胞募集而減少動(dòng)脈粥樣硬化.腸道微生物群與炎癥之間的主要相互作用如圖3所示.
此外,另一種細(xì)菌PAMP,PG(peptidoglycan,肽聚糖)也被發(fā)現(xiàn)通過(guò)損害腸上皮屏障與CVD風(fēng)險(xiǎn)相關(guān).PG是革蘭陰性細(xì)菌的一個(gè)次要細(xì)胞壁成分,但也是革蘭陽(yáng)性細(xì)菌的一個(gè)主要成分.利用亞基因組測(cè)序發(fā)現(xiàn)動(dòng)脈粥樣硬化患者富含編碼PG合成的基因[102].事實(shí)上,在動(dòng)脈粥樣硬化動(dòng)脈中觀察到促炎性細(xì)菌PG,并與易損斑塊相關(guān).通過(guò)PG識(shí)別,核苷酸結(jié)合寡聚結(jié)構(gòu)域(nucleotide binding oligomeric domain,NOD)蛋白NOD1和NOD2通過(guò)涉及NF-κB和絲裂原活化蛋白激酶信號(hào)途徑的程序.促進(jìn)細(xì)胞內(nèi)細(xì)菌清除[103].對(duì)NOD2缺陷小鼠的研究表明,NOD2是腸道細(xì)菌免疫的關(guān)鍵調(diào)節(jié)因子,有助于維持腸道屏障的完整性.近年來(lái),科學(xué)家利用NOD1基因敲除小鼠研究了NOD1在動(dòng)脈粥樣硬化中的潛在作用.數(shù)據(jù)顯示,小鼠載脂蛋白E和NOD1基因敲除顯著減少動(dòng)脈粥樣硬化病變的發(fā)展[104].此外,還有其他PAMP可以通過(guò)參與宿主模式識(shí)別受體來(lái)促進(jìn)炎癥過(guò)程,如CpG(胞嘧啶-鳥嘧啶二核苷酸)寡核苷酸鞭毛蛋白、脂肽等[105].
3.1.2 TMAO與動(dòng)脈粥樣硬化:膳食磷脂酰膽堿或左旋肉堿在腸道內(nèi)由腸道微生物群代謝為三甲胺(trimethylamine,TMA).它是氧化三甲胺(trimethylamine oxide,TMAO)的前體,TMA被轉(zhuǎn)運(yùn)到肝臟并被含黃素單氧化酶(flavin-containing monooxygenase 3,FMO)3氧化,這是肝臟FMO酶家族的一個(gè)成員,導(dǎo)致TMAO的產(chǎn)生[106].使用反義寡核苷酸的小鼠肝臟中FMO3的敲除通過(guò)刺激基礎(chǔ)代謝和激活巨噬細(xì)胞反向膽固醇轉(zhuǎn)運(yùn)降低了循環(huán)TMAO水平并減輕動(dòng)脈粥樣硬化[107].同時(shí)Chen等[108]還發(fā)現(xiàn),腸道微生物膳食磷脂酰膽堿代謝物的血漿水平和產(chǎn)生相關(guān)分子(左旋肉堿和γ-丁基甜菜堿)的TMAO水平與CVD風(fēng)險(xiǎn)相關(guān).血漿TMAO水平的升高與動(dòng)脈粥樣硬化形成和動(dòng)脈粥樣硬化斑塊面積的范圍相關(guān).對(duì)有或無(wú)慢性心力衰竭患者的前瞻性和觀察性臨床研究表明[109],血漿TMAO水平與慢性心力衰竭風(fēng)險(xiǎn)呈正相關(guān).提示循環(huán)中TMAO水平是CVD發(fā)病的重要危險(xiǎn)因素.
為了探討TMAO促進(jìn)動(dòng)脈粥樣硬化的可能機(jī)制,Ma等[93]給ApoE-/-小鼠補(bǔ)充了一種膳食膽堿,測(cè)定了與動(dòng)脈粥樣硬化有關(guān)的兩種巨噬細(xì)胞清除劑受體CD36(脂肪酸轉(zhuǎn)運(yùn)蛋白,屬于B類清道夫受體家族)和類固醇受體核糖核酸激活劑A1類清道夫受體(scavenger receptor class A1,SR-A1)的表達(dá).結(jié)果顯示,與正常對(duì)照組相比,TMAO治療小鼠的巨噬細(xì)胞中CD36和SR-A1水平升高.TMAO可通過(guò)抑制RCT和調(diào)節(jié)巨噬細(xì)胞中膽固醇轉(zhuǎn)運(yùn)蛋白的活性而導(dǎo)致動(dòng)脈粥樣硬化.此外,TMAO可抑制肝膽汁酸(bile acid,BA)合成酶(Cyp7a1和Cyp27a1)和BA轉(zhuǎn)運(yùn)蛋白(Oatp1、Oatp4、Mrp2和Ntcp)的水平,導(dǎo)致BA相關(guān)通路和動(dòng)脈粥樣硬化的發(fā)生[110],提示TMAO促進(jìn)動(dòng)脈粥樣硬化的作用也與BA代謝的變化有關(guān).法尼酯衍生物X受體(famesoid X receptor,FXR)是控制BA代謝的重要核受體,它還可以調(diào)節(jié)肝臟FMO3的表達(dá),從而改變TMAO的產(chǎn)生.FXR激動(dòng)劑抑制ApoE-/-小鼠中的CYP7A1和CYP8B1的表達(dá),并保護(hù)小鼠免受動(dòng)脈粥樣硬化[107].最近,發(fā)現(xiàn)TMAO上調(diào)血管細(xì)胞黏附分子-1、活化蛋白激酶C和NF-κB的表達(dá)[93],提示TMAO可能通過(guò)誘導(dǎo)內(nèi)皮細(xì)胞功能障礙和增加單核細(xì)胞黏附而加速動(dòng)脈粥樣硬化的發(fā)展.此外,血小板直接暴露于TMAO可通過(guò)提高細(xì)胞內(nèi)存儲(chǔ)的Ca2+釋放,增加刺激依賴性血小板激活,從而增加血栓形成和斑塊不穩(wěn)定的風(fēng)險(xiǎn)[111].總的來(lái)說(shuō),TMAO通過(guò)促進(jìn)膽固醇內(nèi)流、抑制膽固醇外流、阻斷BA途徑和/或引起血小板過(guò)度激活來(lái)加速動(dòng)脈粥樣硬化的發(fā)展.所有這些發(fā)現(xiàn)都證實(shí)TMAO是CVD風(fēng)險(xiǎn)的生物標(biāo)記物和動(dòng)脈粥樣硬化疾病的啟動(dòng)子[112].TMAO被認(rèn)為是最有前途的代謝產(chǎn)物之一,在大量實(shí)驗(yàn)和臨床資料的基礎(chǔ)上,TMAO不僅可能是CVD的獨(dú)立危險(xiǎn)因素,而且可能是CVD的潛在治療靶點(diǎn).然而,也觀察到不一致的結(jié)果.值得注意的是,由不同國(guó)家進(jìn)行的幾項(xiàng)大規(guī)模人群研究表明[113,114],飲食中膽堿和甜菜堿的攝入與CVD的發(fā)病無(wú)關(guān).因此,需要更多的研究來(lái)證實(shí)TMAO在動(dòng)脈粥樣硬化中的確切作用,以及通過(guò)靶向TMAO產(chǎn)生菌或酶來(lái)驗(yàn)證其治療潛力.
圖3 腸道菌群和脂多糖誘導(dǎo)動(dòng)脈粥樣硬化炎癥反應(yīng).LPS:脂多糖;ZO-1:小帶閉塞蛋白-1;CD14:單核細(xì)胞分化抗原;TLR:Toll樣受體;LXR:肝X受體;MyD88:髓樣分化初級(jí)反應(yīng)基因88;NF-κB:核因子kappa B;IL:白細(xì)胞介素;TNF-α:腫瘤壞死因子α;PG:肽聚糖;NODs:核苷酸結(jié)合寡聚結(jié)構(gòu)域蛋白.
3.1.3 BA與動(dòng)脈粥樣硬化:BA是另一組與各種代謝疾病有關(guān)的腸道微生物衍生代謝物,這些代謝物儲(chǔ)存在膽囊中并釋放到腸道中,以促進(jìn)膳食脂質(zhì)和脂溶性維生素的吸收.Zheng等[115]研究發(fā)現(xiàn),抑制肝BA生物合成可抑制HFD誘導(dǎo)的腸道微生物群改變,這凸顯了肝-腸-腸道微生物群落代謝軸.因此,腸道微生物群與BA代謝之間存在雙向關(guān)系.
BA也是調(diào)節(jié)宿主代謝和能量消耗過(guò)程的重要信號(hào)分子[116].膽汁鹽可以通過(guò)腸道微生物群在富含膽汁鹽的微環(huán)境中生存,從而分化為具有生物活性的物種.腸道微生物群介導(dǎo)的腦血管病中的BA代謝最近受到廣泛關(guān)注[117].然而,到目前為止,BAs在CVD發(fā)展中的作用仍不清楚.眾所周知,BAs主要通過(guò)膽鹽水解酶(bile salt hydrolase,BSH)和BA受體促進(jìn)動(dòng)脈粥樣硬化的發(fā)展.細(xì)菌介導(dǎo)的BSH活性可通過(guò)增加膽固醇積聚、泡沫細(xì)胞形成和動(dòng)脈粥樣硬化斑塊的大小而影響動(dòng)脈粥樣硬化發(fā)病的潛在過(guò)程.BSH存在于多種細(xì)菌中,如甲烷桿菌、梭菌、腸球菌等[118].
除BA自身外,FXR是一種最重要且研究得很好的BA受體,通過(guò)影響參與初級(jí)BA合成的基因轉(zhuǎn)錄來(lái)調(diào)節(jié)葡萄糖和脂質(zhì)代謝[119].與野生型小鼠相比,FXR-/-小鼠血漿HDL膽固醇、非HDL膽固醇和三酰甘油水平升高,說(shuō)明FXR在調(diào)節(jié)膽固醇代謝中的關(guān)鍵作用.在先前的一項(xiàng)研究中[120],載脂蛋白E缺乏(ApoE-/-)小鼠(動(dòng)脈粥樣硬化小鼠模型)的功能性FXR缺失可導(dǎo)致更嚴(yán)重的脂質(zhì)代謝缺陷和主動(dòng)脈斑塊形成增強(qiáng).此外,FXR缺乏可導(dǎo)致血漿LDL膽固醇和巨噬細(xì)胞CD36表達(dá)減少,導(dǎo)致LDLR基因敲除(LDLR-/-)小鼠動(dòng)脈粥樣硬化風(fēng)險(xiǎn)降低.另一方面,研究表明在LDLR-/-和ApoE-/-小鼠中,用激動(dòng)劑激活FXR可以保護(hù)動(dòng)脈粥樣硬化,這可能與抑制參與BAs合成的基因有關(guān).G蛋白偶聯(lián)的膽汁酸受體(G proteincoupled bile receptor,TGR)5,是另一種對(duì)BAs敏感的重要宿主BA受體.最近的研究表明[121],激活TGR5可以抑制動(dòng)脈粥樣硬化的形成,TGR5的激活也有助于提高能量消耗和改善血糖控制.孕烷X受體(pregnane X-receptor,PXR)是另一種核激素受體,調(diào)節(jié)參與BAs生物合成、運(yùn)輸和代謝的基因表達(dá),也可被石膽酸(lithocholic acid,LCA)等次級(jí)BAs激活.PXR的缺失會(huì)減弱PXR和apoE雙基因敲除(PXR-/-和apoE-/-)小鼠動(dòng)脈粥樣硬化的發(fā)展,這可能與減少巨噬細(xì)胞CD36表達(dá)和脂質(zhì)攝取有關(guān).據(jù)報(bào)道[122],PXR激動(dòng)劑激活PXR可增加致動(dòng)脈粥樣硬化脂蛋白VLDL和LDL的水平,PXR激活可加速ApoE-/-小鼠的動(dòng)脈粥樣硬化.此外,維生素D3受體(Vitamin D3 receptor,VDR3)是細(xì)菌誘導(dǎo)的BA的傳感器,它比其他核受體對(duì)LCA及其代謝物(3-oxo-LCA)更敏感.已經(jīng)發(fā)現(xiàn)巨噬細(xì)胞VDR3信號(hào)通過(guò)抑制局部腎素-血管緊張素系統(tǒng)部分地減輕小鼠動(dòng)脈粥樣硬化.最后,鞘氨醇-1-磷酸酯受體2 (sphingosine-1-phosphatereceptor 2,S1PR2)可被各種結(jié)合的BAs激活,然后通過(guò)調(diào)節(jié)巨噬細(xì)胞滯留和炎性細(xì)胞因子分泌促進(jìn)動(dòng)脈粥樣硬化,而S1PR2基因敲除可減輕ApoE-/-小鼠的動(dòng)脈粥樣硬化[123].
總之,腸道菌群衍生的次級(jí)BAs通過(guò)調(diào)節(jié)各種BA受體,如FXR、PXR、TGR5、VDR和S1PR2在動(dòng)脈粥樣硬化的發(fā)生發(fā)展中發(fā)揮重要作用.這一發(fā)現(xiàn)凸顯了以腸道微生物群為靶點(diǎn)的新型動(dòng)脈粥樣硬化治療的巨大潛力.
3.2 腸道菌群與高血壓 高血壓是遺傳易感性和環(huán)境因素共同誘發(fā)的CVD的另一個(gè)重要風(fēng)險(xiǎn).鑒于人們?cè)絹?lái)越認(rèn)識(shí)到腸道菌群在代謝性疾病中的作用[124],近年來(lái)也對(duì)腸道菌群與高血壓的關(guān)系進(jìn)行了評(píng)估.在自發(fā)性高血壓大鼠中,Yang等[125]發(fā)現(xiàn)微生物豐度和多樣性顯著降低,硬壁菌/類桿菌比例增加.在另一項(xiàng)研究中,與常規(guī)飼養(yǎng)小鼠相比,注射血管緊張素2 (angiot6ensin II,AngII)的小鼠顯示,對(duì)AngII的血壓升高反應(yīng)減弱,表明腸道微生物群促進(jìn)了AngII誘導(dǎo)的血管功能障礙和高血壓.因此,腸道微生物群可能與高血壓的發(fā)生有關(guān).雖然腸道菌群和高血壓的關(guān)系和機(jī)制尚未完全闡明,現(xiàn)有的證據(jù)突出了臨界脂肪酸和氧化LDL (OX-LDL)在高血壓中的關(guān)鍵作用.
3.2.1 短鏈脂肪酸與高血壓:來(lái)自膳食纖維(主要是多糖)的短鏈脂肪酸(如乙酸、丙酸和丁酸)在維持腸道微生物群的穩(wěn)態(tài)和宿主免疫方面發(fā)揮著關(guān)鍵作用[126].有趣的是,將多糖代謝成不同類型短鏈脂肪酸(short-chain fatty acids,SCFAs)的細(xì)菌是特殊的.例如,主要的產(chǎn)醋酸細(xì)菌是鏈球菌屬、普雷沃菌屬、雙歧桿菌屬、梭菌屬、嗜粘桿菌屬等[127].丙酸鹽是由擬桿菌屬、沙門氏菌屬、二烯鏈球菌屬、維氏菌屬、菊苣苔蘚菌屬、卡氏黃連菌屬、闌尾菌屬等的碳水化合物發(fā)酵產(chǎn)生的[128],而丁酸鹽則是由藍(lán)螺旋菌科、瘤胃球菌科和酸性氨基球菌科產(chǎn)生的.最近的一項(xiàng)研究發(fā)現(xiàn)[129],補(bǔ)充纖維和醋酸鹽改善了腸道菌群失調(diào),與嗜酸類桿菌增多有關(guān),這可能在高血壓小鼠的高血壓和心力衰竭中起到保護(hù)作用.
迄今為止,至少有三個(gè)宿主G蛋白偶聯(lián)受體受SCFA監(jiān)管,包括G蛋白偶聯(lián)受體(G protein-coupled receptors,GPR) 41、GPR43和GPR109A.SCFAs可以刺激宿主GPCRs調(diào)節(jié)的途徑,導(dǎo)致腎素分泌,從而影響血壓,SCFAs通過(guò)調(diào)節(jié)內(nèi)皮細(xì)胞GPR41來(lái)降低血壓[130].嗅覺受體78 (olfactory receptor 78,Olfr78)是另一種在腎臟中表達(dá)的GPCR,它也可以被SCFAs如醋酸鹽和丙酸鹽調(diào)節(jié).此外,Olfr78和GPR41均在小阻力血管的平滑肌細(xì)胞中表達(dá).丙酸鹽可通過(guò)調(diào)節(jié)Olfr78和GPR41活性誘導(dǎo)小鼠血管舒張并產(chǎn)生急性低血壓反應(yīng)[131].另一方面,刺激GPR41可導(dǎo)致低血壓反應(yīng)降低,而刺激Olfr78可對(duì)抗這種效應(yīng)[132].總之,雖然所有這些發(fā)現(xiàn)都揭示了腸道微生物群可能通過(guò)產(chǎn)生微生物SCFAs在調(diào)節(jié)宿主血壓方面發(fā)揮重要作用,但SCFAs作為CVD治療靶點(diǎn)的潛力需要在未來(lái)的進(jìn)一步研究中得到證實(shí).
3.2.2 OX-LDL與高血壓:一般來(lái)說(shuō),血壓的調(diào)節(jié)除了各種受體的調(diào)節(jié)外,腸道疾病也通過(guò)氧化LDL介導(dǎo)的血管收縮參與高血壓的發(fā)生.腸道微生物失調(diào)可以促進(jìn)促炎性細(xì)胞因子的表達(dá),并誘導(dǎo)氧化應(yīng)激,這可以刺激OXLDL,較高水平的OX-LDL通過(guò)抑制NO和內(nèi)皮素的產(chǎn)生而有助于高血壓.NO是通過(guò)NO合成酶氧化L-精氨酸而產(chǎn)生的良好的血管擴(kuò)張劑.OX-LDL降低NO的生成,降低血管舒張的程度.此外,內(nèi)皮素-1在維持基本血管張力和CV系統(tǒng)穩(wěn)態(tài)方面起著關(guān)鍵作用.內(nèi)皮素-1通過(guò)激活內(nèi)皮受體B和促進(jìn)NO的產(chǎn)生,在低濃度時(shí)產(chǎn)生血管舒張作用,但在高濃度時(shí)通過(guò)增加斑塊中OX-LDL的產(chǎn)生和激活內(nèi)皮受體A[93].
盡管腸道菌群失調(diào)與高血壓之間的因果關(guān)系已經(jīng)得到證實(shí)[104,133],但腸道菌群在介導(dǎo)高血壓中的確切作用仍需進(jìn)一步廣泛研究.與腸道微生物群和高血壓相關(guān)的主要機(jī)制如圖4.
大量臨床證據(jù)表明NAFLD可能先于和/或促進(jìn)T2D、高血壓和動(dòng)脈粥樣硬化/CVD的發(fā)展.發(fā)生這些CV代謝疾病的風(fēng)險(xiǎn)與NAFLD的潛在嚴(yán)重程度相似[134].越來(lái)越多的證據(jù)表明NAFLD的存在和嚴(yán)重程度與T2D和高血壓的發(fā)病風(fēng)險(xiǎn)增加有關(guān),就其相關(guān)機(jī)制、臨床的聯(lián)系和治療的探索有待進(jìn)一步作深入的研究,通過(guò)不懈的努力,提供治療的新策略,為改善NAFLD和CVD的預(yù)后提供新途徑,是今后幾年研究的中心環(huán)節(jié).
圖4 腸道菌群與高血壓的主要機(jī)制. SCFAs:短鏈脂肪酸;GPRs;G-蛋白偶聯(lián)受體;Olfr78:嗅覺受體78;ox-LDL:氧化低密度脂蛋白;ETA:內(nèi)皮素受體A;L-arginine:L-精氨酸.
1 Ismaiel A,Dumitra?cu DL.Cardiovascular Risk in Fatty Liver Disease:The Liver-Heart Axis-Literature Review.Front Med (Lausanne)2019;6:202 [PMID:31616668 DOI:10.3389/fmed.2019.00202]
2 S?derberg C,St?l P,Askling J,Glaumann H,Lindberg G,Marmur J,Hultcrantz R.Decreased survival of subjects with elevated liver function tests during a 28-year follow-up.Hepatology2010;51:595-602 [PMID:20014114 DOI:10.1002/hep.23314]
3 Ekstedt M,Hagstr?m H,Nasr P,Fredrikson M,St?l P,Kechagias S,Hultcrantz R.Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up.Hepatology2015;61:1547-1554 [PMID:25125077 DOI:10.1002/hep.27368]
4 Sporea I,Popescu A,Dumitra?cu D,Brisc C,Nedelcu L,Trifan A,Gheorghe L,Fierbin?eanu Braticevici C.Nonalcoholic Fatty Liver Disease:Status Quo.J Gastrointestin Liver Dis2018;27:439-448 [PMID:30574627 DOI:10.15403/jgld.2014.1121.274.quo]
5 Dumitrascu DL,Neuman MG.Non-alcoholic fatty liver disease:an update on diagnosis.Clujul Med2018;91:147-150[PMID:29785151 DOI:10.15386/cjmed-993]
6 Macavei B,Baban A,Dumitrascu DL.Psychological factors associated with NAFLD/NASH:a systematic review.Eur Rev Med Pharmacol Sci2016;20:5081-5097 [PMID:28051263]
7 Chang Y,Ryu S,Sung KC,Cho YK,Sung E,Kim HN,Jung HS,Yun KE,Ahn J,Shin H,Wild SH,Byrne CD.Alcoholic and non-alcoholic fatty liver disease and associations with coronary artery calcification:evidence from the Kangbuk Samsung Health Study.Gut2019;68:1667-1675 [PMID:30472683 DOI:10.1136/gutjnl-2018-317666]
8 Kim MK,Ahn CW,Nam JS,Kang S,Park JS,Kim KR.Association between nonalcoholic fatty liver disease and coronary artery calcification in postmenopausal women.Menopause2015;22:1323-1327 [PMID:26154274 DOI:10.1097/GME.0000000000000503]
9 Wolff L,Bos D,Murad SD,Franco OH,Krestin GP,Hofman A,Vernooij MW,van der Lugt A.Liver fat is related to cardiovascular risk factors and subclinical vascular disease:the Rotterdam Study.Eur Heart J Cardiovasc Imaging2016;17:1361-1367 [PMID:27550661 DOI:10.1093/ehjci/jew174]
10 Kim BJ,Cheong ES,Kang JG,Kim BS,Kang JH.Relationship of epicardial fat thickness and nonalcoholic fatty liver disease to coronary artery calcification:From the CAESAR study.J Clin Lipidol2016;10:619-626.e1 [PMID:27206950 DOI:10.1016/j.jacl.2016.01.008]
11 Lee MK,Park HJ,Jeon WS,Park SE,Park CY,Lee WY,Oh KW,Park SW,Rhee EJ.Higher association of coronary artery calcification with non-alcoholic fatty liver disease than with abdominal obesity in middle-aged Korean men:the Kangbuk Samsung Health Study.Cardiovasc Diabetol2015;14:88 [PMID:26169265 DOI:10.1186/s12933-015-0253-9]
12 Jung DH,Lee YJ,Ahn HY,Shim JY,Lee HR.Relationship of hepatic steatosis and alanine aminotransferase with coronary calcification.Clin Chem Lab Med2010;48:1829-1834 [PMID:20961204 DOI:10.1515/CCLM.2010.349]
13 Wójcik-Cichy K,Ko?lińska-Berkan E,Piekarska A.The influence of NAFLD on the risk of atherosclerosis and cardiovascular diseases.Clin Exp Hepatol2018;4:1-6 [PMID:29594192 DOI:10.5114/ceh.2018.73155]
14 Baharvand-Ahmadi B,Sharifi K,Namdari M.Prevalence of non-alcoholic fatty liver disease in patients with coronary artery disease.ARYA Atheroscler2016;12:201-205 [PMID:28149317]
15 Perera N,Indrakumar J,Abeysinghe WV,Fernando V,Samaraweera WM,Lawrence JS.Non alcoholic fatty liver disease increases the mortality from acute coronary syndrome:an observational study from Sri Lanka.BMC Cardiovasc Disord2016;16:37 [PMID:26869052 DOI:10.1186/s12872-016-0212-8]
16 Assy N,Djibre A,Farah R,Grosovski M,Marmor A.Presence of coronary plaques in patients with nonalcoholic fatty liver disease.Radiology2010;254:393-400 [PMID:20093511 DOI:10.1148/radiol.09090769]
17 Pinarba?i B,Dem?r K,Oflaz H,Ahishali E,Akyüz F,El?tok A,??men AO,G?lcük E,Güllüo?lu M,??sever H,Be?i?ik F,Kaymako?lu S,?kten A.Measurement of the coronary flow velocity reserve in patients with non-alcoholic fatty liver disease.Turk J Gastroenterol2012;23:720-726 [PMID:23794311 DOI:10.4318/tjg.2012.0489]
18 Cobble M,Bale B.Carotid intima-media thickness:knowledge and application to everyday practice.Postgrad Med2010;122:10-18 [PMID:20107284 DOI:10.3810/pgm.2010.01.2091]
19 Oni ET,Agatston AS,Blaha MJ,Fialkow J,Cury R,Sposito A,Erbel R,Blankstein R,Feldman T,Al-Mallah MH,Santos RD,Budoff MJ,Nasir K.A systematic review:burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver;should we care?Atherosclerosis2013;230:258-267 [PMID:24075754 DOI:10.1016/j.atherosclerosis.2013.07.052]
20 Kim HJ,Lim CW,Lee JH,Park HB,Suh Y,Cho YH,Choi TY,Hwang ES,Cho DK.Gender-based differences in the relationship between fatty liver disease and atherosclerosis.Cardiovasc J Afr2016;27:281-286 [PMID:26972662 DOI:10.5830/CVJA-2016-014]
21 Martínez-Alvarado Mdel R,Juárez-Rojas JG,Medina-Urrutia AX,Cardoso-Salda?a GC,González-Salazar Mdel C,Posadas-Sánchez R,Jorge-Galarza E,Mendoza-Pérez E,Vargas-Alarcón G,Posadas-Romero C.Association of fatty liver with cardiovascular risk factors and subclinical atherosclerosis in a Mexican population.Rev Invest Clin2014;66:407-414 [PMID:25695383]
22 Li X,Shi H,Wang Z,Chang L,Zhang M,Dong X.Arterial stiffness is increased in nondiabetic,nonhypertensive postmenopausal women with nonalcoholic fatty liver disease.J Hypertens2017;35:1226-1234 [PMID:28441694 DOI:10.1097/HJH.0000000000001285]
23 Nahandi MZ,Khoshbaten M,Ramazanzadeh E,Abbaszadeh L,Javadrashid R,Shirazi KM,Gholami N.Effect of nonalcoholic fatty liver disease on carotid artery intima-media thickness as a risk factor for atherosclerosis.Gastroenterol Hepatol Bed Bench2014;7:55-62 [PMID:25436098]
24 Bhatia L,Scorletti E,Curzen N,Clough GF,Calder PC,Byrne CD.Improvement in non-alcoholic fatty liver disease severity is associated with a reduction in carotid intima-media thickness progression.Atherosclerosis2016;246:13-20 [PMID:26748347 DOI:10.1016/j.atherosclerosis.2015.12.028]
25 Azzam H,Malnick S.Non-alcoholic fatty liver disease -the heart of the matter.World J Hepatol2015;7:1369-1376 [PMID:26052382 DOI:10.4254/wjh.v7.i10.1369]
26 Petta S,Argano C,Colomba D,Cammà C,Di Marco V,Cabibi D,Tuttolomondo A,Marchesini G,Pinto A,Licata G,Craxì A.Epicardial fat,cardiac geometry and cardiac function in patients with non-alcoholic fatty liver disease:association with the severity of liver disease.J Hepatol2015;62:928-933[PMID:25445395 DOI:10.1016/j.jhep.2014.11.030]
27 Yilmaz Y,Kurt R,Yonal O,Polat N,Celikel CA,Gurdal A,Oflaz H,Ozdogan O,Imeryuz N,Kalayci C,Avsar E.Coronary flow reserve is impaired in patients with nonalcoholic fatty liver disease:association with liver fibrosis.Atherosclerosis2010;211:182-186 [PMID:20181335 DOI:10.1016/j.atherosclerosis.2010.01.049]
28 Mahfouz RA,Gouda M,Galal I,Ghareb MS.Interatrial septal fat thickness and left atrial stiffness are mechanistic links between nonalcoholic fatty liver disease and incident atrial fibrillation.Echocardiography2019;36:249-256 [PMID:30548700 DOI:10.1111/echo.14229]
29 O?uz D,ünal Hü,Ero?lu H,Gülmez ?,?evik H,Altun A.Aortic flow propagation velocity,epicardial fat thickness,and osteoprotegerin level to predict subclinical atherosclerosis in patients with nonalcoholic fatty liver disease.Anatol JCardiol2016;16:974-979 [PMID:27025201 DOI:10.14744/AnatolJCardiol.2016.6706]
30 Baragetti A,Pisano G,Bertelli C,Garlaschelli K,Grigore L,Fracanzani AL,Fargion S,Norata GD,Catapano AL.Subclinical atherosclerosis is associated with Epicardial Fat Thickness and hepatic steatosis in the general population.Nutr Metab Cardiovasc Dis2016;26:141-153 [PMID:26777475 DOI:10.1016/j.numecd.2015.10.013]
31 Mantovani A,Dauriz M,Sandri D,Bonapace S,Zoppini G,Tilg H,Byrne CD,Targher G.Association between nonalcoholic fatty liver disease and risk of atrial fibrillation in adult individuals:An updated meta-analysis.Liver Int2019;39:758-769 [PMID:30657626 DOI:10.1111/liv.14044]
32 Markus MR,Meffert PJ,Baumeister SE,Lieb W,Siewert U,Schipf S,Koch M,Kors JA,Felix SB,D?rr M,Targher G,V?lzke H.Association between hepatic steatosis and serum liver enzyme levels with atrial fibrillation in the general population:The Study of Health in Pomerania (SHIP).Atherosclerosis2016;245:123-131 [PMID:26722832 DOI:10.1016/j.atherosclerosis.2015.12.023]
33 Mantovani A.NAFLD and risk of cardiac arrhythmias:Is hyperuricemia a neglected pathogenic mechanism?Dig Liver Dis2018;50:518-520 [PMID:29477348 DOI:10.1016/j.dld.2018.02.002]
34 Sao R,Aronow WS.Association of non-alcoholic fatty liver disease with cardiovascular disease and subclinical atherosclerosis.Arch Med Sci2018;14:1233-1244 [PMID:30393477 DOI:10.5114/aoms.2017.68821]
35 VanWagner LB,Ning H,Lewis CE,Shay CM,Wilkins J,Carr JJ,Terry JG,Lloyd-Jones DM,Jacobs DR Jr,Carnethon MR.Associations between nonalcoholic fatty liver disease and subclinical atherosclerosis in middle-aged adults:the Coronary Artery Risk Development in Young Adults Study.Atherosclerosis2014;235:599-605 [PMID:24956534 DOI:10.1016/j.atherosclerosis.2014.05.962]
36 Al Rifai M,Silverman MG,Nasir K,Budoff MJ,Blankstein R,Szklo M,Katz R,Blumenthal RS,Blaha MJ.The association of nonalcoholic fatty liver disease,obesity,and metabolic syndrome,with systemic inflammation and subclinical atherosclerosis:the Multi-Ethnic Study of Atherosclerosis(MESA).Atherosclerosis2015;239:629-633 [PMID:25683387 DOI:10.1016/j.atherosclerosis.2015.02.011]
37 Thakur ML,Sharma S,Kumar A,Bhatt SP,Luthra K,Guleria R,Pandey RM,Vikram NK.Nonalcoholic fatty liver disease is associated with subclinical atherosclerosis independent of obesity and metabolic syndrome in Asian Indians.Atherosclerosis2012;223:507-511 [PMID:22748277 DOI:10.1016/j.atherosclerosis.2012.06.005]
38 Targher G,Bertolini L,Padovani R,Zoppini G,Zenari L,Falezza G.Associations between liver histology and carotid intima-media thickness in patients with nonalcoholic fatty liver disease.Arterioscler Thromb Vasc Biol2005;25:2687-2688[PMID:16306438 DOI:10.1161/01.ATV.0000189299.61568.79]
39 Huang Y,Bi Y,Xu M,Ma Z,Xu Y,Wang T,Li M,Liu Y,Lu J,Chen Y,Huang F,Xu B,Zhang J,Wang W,Li X,Ning G.Nonalcoholic fatty liver disease is associated with atherosclerosis in middle-aged and elderly Chinese.Arterioscler Thromb Vasc Biol2012;32:2321-2326 [PMID:22814750 DOI:10.1161/ATVBAHA.112.252957]
40 Kang JH,Cho KI,Kim SM,Lee JY,Kim JJ,Goo JJ,Kim KN,Jhi JH,Kim DJ,Lee HG,Kim TI.Relationship between Nonalcoholic Fatty Liver Disease and Carotid Artery Atherosclerosis Beyond Metabolic Disorders in Non-Diabetic Patients.J Cardiovasc Ultrasound2012;20:126-133 [PMID:23185655 DOI:10.4250/jcu.2012.20.3.126]
41 Chung GE,Choi SY,Kim D,Kwak MS,Park HE,Kim MK,Yim JY.Nonalcoholic fatty liver disease as a risk factor of arterial stiffness measured by the cardioankle vascular index.Medicine (Baltimore)2015;94:e654 [PMID:25816034 DOI:10.1097/MD.0000000000000654]
42 Li N,Zhang GW,Zhang JR,Jin D,Li Y,Liu T,Wang RT.Nonalcoholic fatty liver disease is associated with progression of arterial stiffness.Nutr Metab Cardiovasc Dis2015;25:218-223[PMID:25456154 DOI:10.1016/j.numecd.2014.10.002]
43 Yu XY,Zhao Y,Song XX,Song ZY.Association between non-alcoholic fatty liver disease and arterial stiffness in the non-obese,non-hypertensive,and non-diabetic young and middle-aged Chinese population.J Zhejiang Univ Sci B2014;15:879-887 [PMID:25294377 DOI:10.1631/jzus.B1400028]
44 Alper AT,Hasdemir H,Sahin S,Ontürk E,Akyol A,Nurkalem Z,Cakmak N,Erdinler I,Gürkan K.The relationship between nonalcoholic fatty liver disease and the severity of coronary artery disease in patients with metabolic syndrome.Turk Kardiyol Dern Ars2008;36:376-381 [PMID:19155640]
45 A?ikel M,Sunay S,Koplay M,Gündo?du F,Karakelleo?lu S.Evaluation of ultrasonographic fatty liver and severity of coronary atherosclerosis,and obesity in patients undergoing coronary angiography.Anadolu Kardiyol Derg2009;9:273-279[PMID:19666428]
46 Sun L,Lü SZ.Association between non-alcoholic fatty liver disease and coronary artery disease severity.Chin Med J (Engl)2011;124:867-872 [PMID:21518594]
47 Pisto P,Santaniemi M,Bloigu R,Ukkola O,Kes?niemi YA.Fatty liver predicts the risk for cardiovascular events in middle-aged population:a population-based cohort study.BMJ Open2014;4:e004973 [PMID:24650811 DOI:10.1136/bmjopen-2014-004973]
48 Ying I,Saposnik G,Vermeulen MJ,Leung A,Ray JG.Nonalcoholic fatty liver disease and acute ischemic stroke.Epidemiology2011;22:129-130 [PMID:21150361 DOI:10.1097/EDE.0b013e3181feb50a]
49 Tana C,Ballestri S,Ricci F,Di Vincenzo A,Ticinesi A,Gallina S,Giamberardino MA,Cipollone F,Sutton R,Vettor R,Fedorowski A,Meschi T.Cardiovascular Risk in Non-Alcoholic Fatty Liver Disease:Mechanisms and Therapeutic Implications.Int J Environ Res Public Health2019;16 [PMID:31455011 DOI:10.3390/ijerph16173104]
50 Palmer ND,Musani SK,Yerges-Armstrong LM,Feitosa MF,Bielak LF,Hernaez R,Kahali B,Carr JJ,Harris TB,Jhun MA,Kardia SL,Langefeld CD,Mosley TH Jr,Norris JM,Smith AV,Taylor HA,Wagenknecht LE,Liu J,Borecki IB,Peyser PA,Speliotes EK.Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent.Hepatology2013;58:966-975 [PMID:23564467 DOI:10.1002/hep.26440]
51 Sookoian S,Pirola CJ.Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease.Hepatology2011;53:1883-1894 [PMID:21381068 DOI:10.1002/hep.24283]]
52 Paré G,Ridker PM,Rose L,Barbalic M,Dupuis J,Dehghan A,Bis JC,Benjamin EJ,Shiffman D,Parker AN,Chasman DI.Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK,PNPLA3,RELA,and SH2B3 loci.PLoS Genet2011;7:e1001374[PMID:21533024 DOI:10.1371/journal.pgen.1001374]]
53 Kozlitina J,Smagris E,Stender S,Nordestgaard BG,Zhou HH,Tybj?rg-Hansen A,Vogt TF,Hobbs HH,Cohen JC.Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease.Nat Genet2014;46:352-356 [PMID:24531328 DOI:10.1038/ng.2901]
54 Dongiovanni P,Petta S,Maglio C,Fracanzani AL,Pipitone R,Mozzi E,Motta BM,Kaminska D,Rametta R,Grimaudo S,Pelusi S,Montalcini T,Alisi A,Maggioni M,K?rj? V,Borén J,K?kel? P,Di Marco V,Xing C,Nobili V,Dallapiccola B,Craxi A,Pihlajam?ki J,Fargion S,Sj?str?m L,Carlsson LM,Romeo S,Valenti L.Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease.Hepatology2015;61:506-514 [PMID:25251399 DOI:10.1002/hep.27490]
55 Holmen OL,Zhang H,Fan Y,Hovelson DH,Schmidt EM,Zhou W,Guo Y,Zhang J,Langhammer A,L?chen ML,Ganesh SK,Vatten L,Skorpen F,Dalen H,Zhang J,Pennathur S,Chen J,Platou C,Mathiesen EB,Wilsgaard T,Nj?lstad I,Boehnke M,Chen YE,Abecasis GR,Hveem K,Willer CJ.Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk.Nat Genet2014;46:345-351 [PMID:24633158 DOI:10.1038/ng.2926]
56 Kailasapathy K,Chin J.Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp.Immunol Cell Biol2000;78:80-88 [PMID:10651933 DOI:10.1046/j.1440-1711.2000.00886.x]
57 Loria P,Marchesini G,Nascimbeni F,Ballestri S,Maurantonio M,Carubbi F,Ratziu V,Lonardo A.Cardiovascular risk,lipidemic phenotype and steatosis.A comparative analysis of cirrhotic and non-cirrhotic liver disease due to varying etiology.Atherosclerosis2014;232:99-109 [PMID:24401223 DOI:10.1016/j.atherosclerosis.2013.10.030]
58 Kamo T,Akazawa H,Suda W,Saga-Kamo A,Shimizu Y,Yagi H,Liu Q,Nomura S,Naito AT,Takeda N,Harada M,Toko H,Kumagai H,Ikeda Y,Takimoto E,Suzuki JI,Honda K,Morita H,Hattori M,Komuro I.Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure.PLoS One2017;12:e0174099 [PMID:28328981 DOI:10.1371/journal.pone.0174099]
59 Pereira ENGDS,Silvares RR,Flores EEI,Rodrigues KL,Ramos IP,da Silva IJ,Machado MP,Miranda RA,Pazos-Moura CC,Gon?alves-de-Albuquerque CF,Faria-Neto HCC,Tibiri?a E,Daliry A.Hepatic microvascular dysfunction and increased advanced glycation end products are components of nonalcoholic fatty liver disease.PLoS One2017;12:e0179654[PMID:28628674 DOI:10.1371/journal.pone.0179654]
60 Karbach SH,Sch?nfelder T,Brand?o I,Wilms E,H?rmann N,J?ckel S,Schüler R,Finger S,Knorr M,Lagrange J,Brandt M,Waisman A,Kossmann S,Sch?fer K,Münzel T,Reinhardt C,Wenzel P.Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction.J Am Heart Assoc2016;5 [PMID:27577581 DOI:10.1161/jaha.116.003698]
61 Latea L,Negrea S,Bolboaca S.Primary non-alcoholic fatty liver disease in hypertensive patients.Australas Med J2013;6:325-330 [PMID:23837080 DOI:10.4066/AMJ.2013.1648]
62 Ryoo JH,Suh YJ,Shin HC,Cho YK,Choi JM,Park SK.Clinical association between non-alcoholic fatty liver disease and the development of hypertension.J Gastroenterol Hepatol2014;29:1926-1931 [PMID:24910023 DOI:10.1111/jgh.12643]
63 Vonghia L,Magrone T,Verrijken A,Michielsen P,Van Gaal L,Jirillo E,Francque S.Peripheral and Hepatic Vein Cytokine Levels in Correlation with Non-Alcoholic Fatty Liver Disease (NAFLD)-Related Metabolic,Histological,and Haemodynamic Features.PLoS One2015;10:e0143380 [PMID:26599575 DOI:10.1371/journal.pone.0143380]
64 Verrijken A,Francque S,Mertens I,Prawitt J,Caron S,Hubens G,Van Marck E,Staels B,Michielsen P,Van Gaal L.Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.Hepatology2014;59:121-129 [PMID:24375485 DOI:10.1002/hep.26510]
65 Jensen MK,Bartz TM,Mukamal KJ,Djoussé L,Kizer JR,Tracy RP,Zieman SJ,Rimm EB,Siscovick DS,Shlipak M,Ix JH.Fetuin-A,type 2 diabetes,and risk of cardiovascular disease in older adults:the cardiovascular health study.Diabetes Care2013;36:1222-1228 [PMID:23250801 DOI:10.2337/dc12-1591]
66 Ticinesi A,Tana C,Nouvenne A.The intestinal microbiome and its relevance for functionality in older persons.Curr Opin Clin Nutr Metab Care2019;22:4-12 [PMID:30489399 DOI:10.1097/MCO.0000000000000521]
67 Ticinesi A,Nouvenne A,Tana C,Prati B,Cerundolo N,Miraglia C,De’ Angelis GL,Di Mario F,Meschi T.The impact of intestinal microbiota on bio-medical research:definitions,techniques and physiology of a “new frontier”.Acta Biomed2018;89:52-59 [PMID:30561396 DOI:10.23750/abm.v89i9-S.7906]
68 Nouvenne A,Ticinesi A,Tana C,Prati B,Catania P,Miraglia C,De’ Angelis GL,Di Mario F,Meschi T.Digestive disorders and Intestinal microbiota.Acta Biomed2018;89:47-51 [PMID:30561395 DOI:10.23750/abm.v89i9-S.7912]
69 Koren O,Spor A,Felin J,F?k F,Stombaugh J,Tremaroli V,Behre CJ,Knight R,Fagerberg B,Ley RE,B?ckhed F.Human oral,gut,and plaque microbiota in patients with atherosclerosis.Proc Natl Acad Sci USA2011;108 Suppl 1:4592-4598 [PMID:20937873 DOI:10.1073/pnas.1011383107]
70 Pastore M,Grimaudo S,Pipitone RM,Lori G,Raggi C,Petta S,Marra F.Role of Myeloid-Epithelial-Reproductive Tyrosine Kinase and Macrophage Polarization in the Progression of Atherosclerotic Lesions Associated With Nonalcoholic Fatty Liver Disease.Front Pharmacol2019;10:604 [PMID:31191323 DOI:10.3389/fphar.2019.00604]
71 Tilg H,Moschen AR.Evolution of inflammation in nonalcoholic fatty liver disease:the multiple parallel hits hypothesis.Hepatology2010;52:1836-1846 [PMID:21038418 DOI:10.1002/hep.24001]
72 Fargion S,Porzio M,Fracanzani AL.Nonalcoholic fatty liver disease and vascular disease:state-of-the-art.World J Gastroenterol2014;20:13306-13324 [PMID:25309067 DOI:10.3748/wjg.v20.i37.13306]
73 Kleiner DE,Brunt EM.Nonalcoholic fatty liver disease:pathologic patterns and biopsy evaluation in clinical research.Semin Liver Dis2012;32:3-13 [PMID:22418883 DOI:10.1055/s-0032-1306421]
74 DI Maira G,Pastore M,Marra F.Liver fibrosis in the context of nonalcoholic steatohepatitis:the role of adipokines.Minerva Gastroenterol Dietol2018;64:39-50 [PMID:28875689 DOI:10.23736/S1121-421X.17.02427-8]
75 Matsuzawa Y,Funahashi T,Kihara S,Shimomura I.Adiponectin and metabolic syndrome.Arterioscler Thromb Vasc Biol2004;24:29-33 [PMID:14551151 DOI:10.1161/01.ATV.0000099786.99623.EF]
76 Alkhouri N,Tamimi TA,Yerian L,Lopez R,Zein NN,Feldstein AE.The inflamed liver and atherosclerosis:a link between histologic severity of nonalcoholic fatty liver disease and increased cardiovascular risk.Dig Dis Sci2010;55:2644-2650 [PMID:19960252 DOI:10.1007/s10620-009-1075-y]
77 Zizzo G,Cohen PL.The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis:a key role for PPAR-γ in human macrophage polarization.J Inflamm (Lond)2015;12:36 [PMID:25972766 DOI:10.1186/s12950-015-0081-4]
78 Petta S,Valenti L,Marra F,Grimaudo S,Tripodo C,Bugianesi E,Cammà C,Cappon A,Di Marco V,Di Maira G,Dongiovanni P,Rametta R,Gulino A,Mozzi E,Orlando E,Maggioni M,Pipitone RM,Fargion S,Craxì A.MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease.J Hepatol2016;64:682-690[PMID:26596542 DOI:10.1016/j.jhep.2015.10.016]
79 Rigamonti E,Chinetti-Gbaguidi G,Staels B.Regulation of macrophage functions by PPAR-alpha,PPAR-gamma,and LXRs in mice and men.Arterioscler Thromb Vasc Biol2008;28:1050-1059 [PMID:18323516 DOI:10.1161/ATVBAHA.107.158998]
80 R?szer T,Menéndez-Gutiérrez MP,Cedenilla M,Ricote M.Retinoid X receptors in macrophage biology.Trends Endocrinol Metab2013;24:460-468 [PMID:23701753 DOI:10.1016/j.tem.2013.04.004]
81 Chinetti-Gbaguidi G,Baron M,Bouhlel MA,Vanhoutte J,Copin C,Sebti Y,Derudas B,Mayi T,Bories G,Tailleux A,Haulon S,Zawadzki C,Jude B,Staels B.Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways.Circ Res2011;108:985-995 [PMID:21350215 DOI:10.1161/CIRCRESAHA.110.233775]
82 Ait-Oufella H,Pouresmail V,Simon T,Blanc-Brude O,Kinugawa K,Merval R,Offenstadt G,Lesèche G,Cohen PL,Tedgui A,Mallat Z.Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis.Arterioscler Thromb Vasc Biol2008;28:1429-1431 [PMID:18467644 DOI:10.1161/ATVBAHA.108.169078]
83 Musso G,Cassader M,De Michieli F,Paschetta E,Pinach S,Saba F,Bongiovanni D,Framarin L,Berrutti M,Leone N,Corvisieri S,Parente R,Molinaro F,Sircana A,Bo S,Gambino R.MERTK rs4374383 variant predicts incident nonalcoholic fatty liver disease and diabetes:role of mononuclear cell activation and adipokine response to dietary fat.Hum Mol Genet2017;26:1785 [PMID:28398481 DOI:10.1093/hmg/ddx126]
84 Li Y,Dalli J,Chiang N,Baron RM,Quintana C,Serhan CN.Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators.Immunity2013;39:885-898 [PMID:24238341 DOI:10.1016/j.immuni.2013.10.011]
85 Garbin U,Baggio E,Stranieri C,Pasini A,Manfro S,Mozzini C,Vallerio P,Lipari G,Merigo F,Guidi G,Cominacini L,Fratta Pasini A.Expansion of necrotic core and shedding of Mertk receptor in human carotid plaques:a role for oxidized polyunsaturated fatty acids?Cardiovasc Res2013;97:125-133[PMID:22997156 DOI:10.1093/cvr/cvs301]
86 Kojima Y,Volkmer JP,McKenna K,Civelek M,Lusis AJ,Miller CL,Direnzo D,Nanda V,Ye J,Connolly AJ,Schadt EE,Quertermous T,Betancur P,Maegdefessel L,Matic LP,Hedin U,Weissman IL,Leeper NJ.CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis.Nature2016;536:86-90 [PMID:27437576 DOI:10.1038/nature18935]
87 Bae YS,Lee JH,Choi SH,Kim S,Almazan F,Witztum JL,Miller YI.Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein:toll-like receptor 4-and spleen tyrosine kinase-dependent activation of NADPH oxidase 2.Circ Res2009;104:210-218,21p following 218 [PMID:19096031 DOI:10.1161/CIRCRESAHA.108.181040]
88 Karunakaran D,Geoffrion M,Wei L,Gan W,Richards L,Shangari P,DeKemp EM,Beanlands RA,Perisic L,Maegdefessel L,Hedin U,Sad S,Guo L,Kolodgie FD,Virmani R,Ruddy T,Rayner KJ.Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis.Sci Adv2016;2:e1600224 [PMID:27532042 DOI:10.1126/sciadv.1600224]
89 Cai B,Thorp EB,Doran AC,Subramanian M,Sansbury BE,Lin CS,Spite M,Fredman G,Tabas I.MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation.Proc Natl Acad Sci USA2016;113:6526-6531[PMID:27199481 DOI:10.1073/pnas.1524292113]
90 Mozaffarian D,Benjamin EJ,Go AS,Arnett DK,Blaha MJ,Cushman M,de Ferranti S,Després JP,Fullerton HJ,Howard VJ,Huffman MD,Judd SE,Kissela BM,Lackland DT,Lichtman JH,Lisabeth LD,Liu S,Mackey RH,Matchar DB,McGuire DK,Mohler ER 3rd,Moy CS,Muntner P,Mussolino ME,Nasir K,Neumar RW,Nichol G,Palaniappan L,Pandey DK,Reeves MJ,Rodriguez CJ,Sorlie PD,Stein J,Towfighi A,Turan TN,Virani SS,Willey JZ,Woo D,Yeh RW,Turner MB;American Heart Association Statistics Committee and Stroke Statistics Subcommittee.Heart disease and stroke statistics--2015 update:a report from the American Heart Association.Circulation2015;131:e29-322 [PMID:25520374 DOI:10.1161/CIR.0000000000000152]
91 Wang Z,Klipfell E,Bennett BJ,Koeth R,Levison BS,Dugar B,Feldstein AE,Britt EB,Fu X,Chung YM,Wu Y,Schauer P,Smith JD,Allayee H,Tang WH,DiDonato JA,Lusis AJ,Hazen SL.Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature2011;472:57-63[PMID:21475195 DOI:10.1038/nature09922]
92 Lau K,Srivatsav V,Rizwan A,Nashed A,Liu R,Shen R,Akhtar M.Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases.Nutrients2017;9 [PMID:28796176 DOI:10.3390/nu9080859]
93 Ma J,Li H.The Role of Gut Microbiota in Atherosclerosis and Hypertension.Front Pharmacol2018;9:1082 [PMID:30319417 DOI:10.3389/fphar.2018.01082]
94 Li J,Lin S,Vanhoutte PM,Woo CW,Xu A.Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/-Mice.Circulation2016;133:2434-2446 [PMID:27143680 DOI:10.1161/CIRCULATIONAHA.115.019645]
95 Kasahara K,Tanoue T,Yamashita T,Yodoi K,Matsumoto T,Emoto T,Mizoguchi T,Hayashi T,Kitano N,Sasaki N,Atarashi K,Honda K,Hirata KI.Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis.J Lipid Res2017;58:519-528[PMID:28130274 DOI:10.1194/jlr.M072165]
96 Chen WY,Wang M,Zhang J,Barve SS,McClain CJ,Joshi-Barve S.Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.Am J Pathol2017;187:2686-2697 [PMID:28935573 DOI:10.1016/j.ajpath.2017.08.015]
97 Cani PD,Amar J,Iglesias MA,Poggi M,Knauf C,Bastelica D,Neyrinck AM,Fava F,Tuohy KM,Chabo C,Waget A,Delmée E,Cousin B,Sulpice T,Chamontin B,Ferrières J,Tanti JF,Gibson GR,Casteilla L,Delzenne NM,Alessi MC,Burcelin R.Metabolic endotoxemia initiates obesity and insulin resistance.Diabetes2007;56:1761-1772 [PMID:17456850 DOI:10.2337/db06-1491]
98 Chacón MR,Lozano-Bartolomé J,Portero-Otín M,Rodríguez MM,Xifra G,Puig J,Blasco G,Ricart W,Chaves FJ,Fernández-Real JM.The gut mycobiome composition is linked to carotid atherosclerosis.Benef Microbes2018;9:185-198 [PMID:29124969 DOI:10.3920/BM2017.0029]
99 Ding Y,Subramanian S,Montes VN,Goodspeed L,Wang S,Han C,Teresa AS 3rd,Kim J,O’Brien KD,Chait A.Tolllike receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice.Arterioscler Thromb Vasc Biol2012;32:1596-1604 [PMID:22580897 DOI:10.1161/ATVBAHA.112.249847]
100 Zhang K,Zhang L,Zhou B,Wang Y,Song Y,Rao L,Zhang L.Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis:evidence from meta-analysis.Thromb Res2012;130:e203-e208 [PMID:22857799 DOI:10.1016/j.thromres.2012.07.008]
101 Guzzo C,Ayer A,Basta S,Banfield BW,Gee K.IL-27 enhances LPS-induced proinflammatory cytokine production via upregulation of TLR4 expression and signaling in human monocytes.J Immunol2012;188:864-873 [PMID:22156348 DOI:10.4049/jimmunol.1101912]
102 Karlsson FH,F?k F,Nookaew I,Tremaroli V,Fagerberg B,Petranovic D,B?ckhed F,Nielsen J.Symptomatic atherosclerosis is associated with an altered gut metagenome.Nat Commun2012;3:1245 [PMID:23212374 DOI:10.1038/ncomms2266]
103 Philpott DJ,Sorbara MT,Robertson SJ,Croitoru K,Girardin SE.NOD proteins:regulators of inflammation in health and disease.Nat Rev Immunol2014;14:9-23 [PMID:24336102 DOI:10.1038/nri3565]
104 Kanno S,Nishio H,Tanaka T,Motomura Y,Murata K,Ihara K,Onimaru M,Yamasaki S,Kono H,Sueishi K,Hara T.Activation of an innate immune receptor,Nod1,accelerates atherogenesis in Apoe-/-mice.J Immunol2015;194:773-780[PMID:25488987 DOI:10.4049/jimmunol.1302841]
105 Kholy KE,Genco RJ,Van Dyke TE.Oral infections and cardiovascular disease.Trends Endocrinol Metab2015;26:315-321 [PMID:25892452 DOI:10.1016/j.tem.2015.03.001]
106 Wang Z,Tang WH,Buffa JA,Fu X,Britt EB,Koeth RA,Levison BS,Fan Y,Wu Y,Hazen SL.Prognostic value of choline and betaine depends on intestinal microbiotagenerated metabolite trimethylamine-N-oxide.Eur Heart J2014;35:904-910 [PMID:24497336 DOI:10.1093/eurheartj/ehu002]
107 Miao J,Ling AV,Manthena PV,Gearing ME,Graham MJ,Crooke RM,Croce KJ,Esquejo RM,Clish CB;Morbid Obesity Study Group,Vicent D,Biddinger SB.Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis.Nat Commun2015;6:6498 [PMID:25849138 DOI:10.1038/ncomms7498]
108 Chen K,Zheng X,Feng M,Li D,Zhang H.Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice.Front Physiol2017;8:139 [PMID:28377725 DOI:10.3389/fphys.2017.00139]
109 Tr?seid M,Ueland T,Hov JR,Svardal A,Gregersen I,Dahl CP,Aakhus S,Gude E,Bj?rndal B,Halvorsen B,Karlsen TH,Aukrust P,Gullestad L,Berge RK,Yndestad A.Microbiotadependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure.J Intern Med2015;277:717-726 [PMID:25382824 DOI:10.1111/joim.12328]
110 Koeth RA,Wang Z,Levison BS,Buffa JA,Org E,Sheehy BT,Britt EB,Fu X,Wu Y,Li L,Smith JD,DiDonato JA,Chen J,Li H,Wu GD,Lewis JD,Warrier M,Brown JM,Krauss RM,Tang WH,Bushman FD,Lusis AJ,Hazen SL.Intestinal microbiota metabolism of L-carnitine,a nutrient in red meat,promotes atherosclerosis.Nat Med2013;19:576-585 [PMID:23563705 DOI:10.1038/nm.3145]
111 Zhu W,Gregory JC,Org E,Buffa JA,Gupta N,Wang Z,Li L,Fu X,Wu Y,Mehrabian M,Sartor RB,McIntyre TM,Silverstein RL,Tang WHW,DiDonato JA,Brown JM,Lusis AJ,Hazen SL.Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk.Cell2016;165:111-124 [PMID:26972052 DOI:10.1016/j.cell.2016.02.011]
112 Zheng Y,Li Y,Rimm EB,Hu FB,Albert CM,Rexrode KM,Manson JE,Qi L.Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men.Am J Clin Nutr2016;104:173-180 [PMID:27281307 DOI:10.3945/ajcn.116.131771]
113 Bidulescu A,Chambless LE,Siega-Riz AM,Zeisel SH,Heiss G.Usual choline and betaine dietary intake and incident coronary heart disease:the Atherosclerosis Risk in Communities (ARIC) study.BMC Cardiovasc Disord2007;7:20[PMID:17629908 DOI:10.1186/1471-2261-7-20]
114 Dalmeijer GW,Olthof MR,Verhoef P,Bots ML,van der Schouw YT.Prospective study on dietary intakes of folate,betaine,and choline and cardiovascular disease risk in women.Eur J Clin Nutr2008;62:386-394 [PMID:17375117 DOI:10.1038/sj.ejcn.1602725]
115 Zheng X,Huang F,Zhao A,Lei S,Zhang Y,Xie G,Chen T,Qu C,Rajani C,Dong B,Li D,Jia W.Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice.BMC Biol2017;15:120 [PMID:29241453 DOI:10.1186/s12915-017-0462-7]
116 Joyce SA,Gahan CG.Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota.Dig Dis2017;35:169-177 [PMID:28249284 DOI:10.1159/000450907]
117 Brown JM,Hazen SL.Microbial modulation of cardiovascular disease.Nat Rev Microbiol2018;16:171-181 [PMID:29307889 DOI:10.1038/nrmicro.2017.149]
118 Tremaroli V,B?ckhed F.Functional interactions between the gut microbiota and host metabolism.Nature2012;489:242-249[PMID:22972297 DOI:10.1038/nature11552]
119 Wahlstr?m A,Sayin SI,Marschall HU,B?ckhed F.Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.Cell Metab2016;24:41-50 [PMID:27320064 DOI:10.1016/j.cmet.2016.05.005]
120 Li T,Chiang JY.Bile acids as metabolic regulators.Curr Opin Gastroenterol2015;31:159-165 [PMID:25584736 DOI:10.1097/MOG.0000000000000156]
121 Sui Y,Xu J,Rios-Pilier J,Zhou C.Deficiency of PXR decreases atherosclerosis in apoE-deficient mice.J Lipid Res2011;52:1652-1659 [PMID:21685500 DOI:10.1194/jlr.M017376]
122 Szeto FL,Reardon CA,Yoon D,Wang Y,Wong KE,Chen Y,Kong J,Liu SQ,Thadhani R,Getz GS,Li YC.Vitamin D receptor signaling inhibits atherosclerosis in mice.Mol Endocrinol2012;26:1091-1101 [PMID:22638071 DOI:10.1210/me.2011-1329]
123 Skoura A,Michaud J,Im DS,Thangada S,Xiong Y,Smith JD,Hla T.Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis.Arterioscler Thromb Vasc Biol2011;31:81-85[PMID:20947824 DOI:10.1161/ATVBAHA.110.213496]
124 Yamashiro K,Tanaka R,Urabe T,Ueno Y,Yamashiro Y,Nomoto K,Takahashi T,Tsuji H,Asahara T,Hattori N.Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke.PLoS One2017;12:e0171521 [PMID:28166278 DOI:10.1371/journal.pone.0171521]
125 Yang T,Santisteban MM,Rodriguez V,Li E,Ahmari N,Carvajal JM,Zadeh M,Gong M,Qi Y,Zubcevic J,Sahay B,Pepine CJ,Raizada MK,Mohamadzadeh M.Gut dysbiosis is linked to hypertension.Hypertension2015;65:1331-1340 [PMID:25870193 DOI:10.1161/HYPERTENSIONAHA.115.05315]
126 Koh A,De Vadder F,Kovatcheva-Datchary P,B?ckhed F.From Dietary Fiber to Host Physiology:Short-Chain Fatty Acids as Key Bacterial Metabolites.Cell2016;165:1332-1345[PMID:27259147 DOI:10.1016/j.cell.2016.05.041]
127 Rey FE,Faith JJ,Bain J,Muehlbauer MJ,Stevens RD,Newgard CB,Gordon JI.Dissecting the in vivo metabolic potential of two human gut acetogens.J Biol Chem2010;285:22082-22090[PMID:20444704 DOI:10.1074/jbc.M110.117713]
128 Louis P,Flint HJ.Formation of propionate and butyrate by the human colonic microbiota.Environ Microbiol2017;19:29-41 [PMID:27928878 DOI:10.1111/1462-2920.13589]
129 Marques FZ,Nelson E,Chu PY,Horlock D,Fiedler A,Ziemann M,Tan JK,Kuruppu S,Rajapakse NW,El-Osta A,Mackay CR,Kaye DM.High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice.Circulation2017;135:964-977 [PMID:27927713 DOI:10.1161/CIRCULATIONAHA.116.024545]
130 Natarajan N,Hori D,Flavahan S,Steppan J,Flavahan NA,Berkowitz DE,Pluznick JL.Microbial short chain fatty acid metabolites lower blood pressure via endothelial G proteincoupled receptor 41.Physiol Genomics2016;48:826-834 [PMID:27664183 DOI:10.1152/physiolgenomics.00089.2016]
131 Miyamoto J,Kasubuchi M,Nakajima A,Irie J,Itoh H,Kimura I.The role of short-chain fatty acid on blood pressure regulation.Curr Opin Nephrol Hypertens2016;25:379-383[PMID:27490782 DOI:10.1097/MNH.0000000000000246]
132 Pluznick JL.Renal and cardiovascular sensory receptors and blood pressure regulation.Am J Physiol Renal Physiol2013;305:F439-F444 [PMID:23761671 DOI:10.1152/ajprenal.00252.2013]
133 Santisteban MM,Qi Y,Zubcevic J,Kim S,Yang T,Shenoy V,Cole-Jeffrey CT,Lobaton GO,Stewart DC,Rubiano A,Simmons CS,Garcia-Pereira F,Johnson RD,Pepine CJ,Raizada MK.Hypertension-Linked Pathophysiological Alterations in the Gut.Circ Res2017;120:312-323 [PMID:27799253 DOI:10.1161/CIRCRESAHA.116.309006]
134 Shao C,Ye J,Li F,Lin Y,Wu T,Wang W,Feng S,Zhong B.Early Predictors of Cardiovascular Disease Risk in Nonalcoholic Fatty Liver Disease:Non-obese Versus Obese Patients.Dig Dis Sci2019 [PMID:31724099 DOI:10.1007/s10620-019-05926-7]