王曉雯 晏振 陳夙 袁良杰 陳文芳
[摘要] 目的 探討胰島素樣生長因子-1(IGF-1)對6-羥基多巴胺(6-OHDA)誘導(dǎo)的人神經(jīng)母細(xì)胞瘤細(xì)胞(SK-N-SH細(xì)胞)神經(jīng)毒性反應(yīng)的抑制作用。方法 將SK-N-SH細(xì)胞種于96孔板,首先用不同濃度的IGF-1(6.25、12.50、25.00、50.00 μg/L)預(yù)處理細(xì)胞24 h,然后與6-OHDA(100 μmol/L)共同孵育細(xì)胞24 h,采用MTT法檢測細(xì)胞活力。再將SK-N-SH細(xì)胞分為對照組(細(xì)胞不處理)、6-OHDA組(用100 μmol/L 6-OHDA處理細(xì)胞24 h)、6-OHDA+IGF-1組(細(xì)胞先用6.25 μg/L IGF-1預(yù)處理24 h,再與100 μmol/L 6-OHDA共同作用24 h),應(yīng)用Western blot方法檢測Bcl-2及Bax蛋白表達(dá)。結(jié)果 6.25~50.00 μg/L IGF-1均能夠明顯對抗6-OHDA誘導(dǎo)的神經(jīng)毒性作用,提高細(xì)胞的存活率(F=11.53,q=4.795~5.556,P<0.05)。與對照組相比較,6-OHDA組Bcl-2蛋白的表達(dá)水平明顯降低,而Bax蛋白的表達(dá)水平明顯升高,差異有顯著性(F=22.92、35.80,q=8.223、8.727,P<0.01);6.25 μg/L IGF-1能夠明顯對抗6-OHDA誘導(dǎo)的Bcl-2蛋白表達(dá)的下調(diào)和Bax蛋白表達(dá)的上調(diào)(q=8.361、11.450,P<0.01)。結(jié)論 IGF-1可對抗神經(jīng)毒素6-OHDA誘導(dǎo)的SK-N-SH細(xì)胞凋亡相關(guān)蛋白Bcl-2及Bax的蛋白表達(dá)變化,發(fā)揮神經(jīng)保護(hù)作用。
[關(guān)鍵詞] 胰島素樣生長因子1;細(xì)胞凋亡;帕金森病;神經(jīng)母細(xì)胞瘤
[中圖分類號] R742.5;R338 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號] 2096-5532(2020)02-0161-04
doi:10.11712/jms.2096-5532.2020.56.090 [開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200519.1433.007.html;2020-05-19 17:24
[ABSTRACT] Objective To investigate the inhibitory effect of insulin-like growth factor-1 (IGF-1) on the neurotoxic response of SK-N-SH human neuroblastoma cells induced by 6-hydroxydopamine (6-OHDA). ?Methods SK-N-SH cells were ino-culated into 96-well plates and pretreated with different concentrations of IGF-1 (6.25,12.50,25.00, and 50.00 μg/L) for 24 h. After that, the cells were co-incubated with 6-OHDA (100 μmol/L) for another 24 h. MTT assay was performed to determine the cell viability. In order to explore the protective mechanisms of IGF-1 on dopaminergic neurons, SK-N-SH cells were divided into control group (cells were left untreated), 6-OHDA group (cells were treated with 100 μmol/L 6-OHDA for 24 h), and 6-OHDA+IGF-1 group (cells were pre-treated with 6.25 μg/L IGF-1 for 24 h and then co-incubated with 100 μmol/L 6-OHDA for 24 h). Western blot was used to measure the expression of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in the SK-N-SH cells. Results Compared with the 6-OHDA group, 6.25-50.00 μg/L IGF-1 could significantly protect against the neurotoxic effects of 6-OHDA and improve the survival rate of SK-N-SH cells (F=11.53,q=4.795-5.556,P<0.05). Compared with the control group, the 6-OHDA group had significantly down-regulated protein expression of Bcl-2 and significantly up-regulated protein expression of Bax (F=22.92,35.80;q=8.223,8.727;P<0.01); 6.25 μg/L IGF-1 could significantly protect against 6-OHDA-induced down-regulation of Bcl-2 protein expression and up-regulation of Bax protein expression (q=8.361,11.450;P<0.01). Conclusion IGF-1 can protect against the neurotoxin 6-OHDA-induced apoptosis-related Bcl-2 and Bax protein expression changes in SK-N-SH cells, and exert a neuroprotective effect.
[KEY WORDS] insulin-like growth factorⅠ; apoptosis; Parkinson disease; neuroblastoma
帕金森?。≒D)又名震顫麻痹,是一種中樞神經(jīng)系統(tǒng)退行性疾病[1]。PD的主要臨床表現(xiàn)為運(yùn)動癥狀,如靜止性震顫、肌強(qiáng)直、運(yùn)動遲緩和姿勢不穩(wěn)等;其次為非運(yùn)動癥狀,比如嗅覺功能異常、睡眠異常、腸道功能障礙等[2]。PD的主要病理表現(xiàn)是中腦黑質(zhì)多巴胺(DA)能神經(jīng)元的漸進(jìn)性缺失,紋狀體投射神經(jīng)纖維的丟失以及嗜酸性包涵體路易小體(LBs)沉積[3-4]。導(dǎo)致PD病理改變的原因極其復(fù)雜,主要有環(huán)境因素、免疫炎癥反應(yīng)、遺傳因素、線粒體功能異常、自噬功能的紊亂等[5-7]。一些神經(jīng)毒素,如1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)、6-羥基多巴胺(6-OHDA)、百草枯和魚藤酮等被用于PD模型的制備,這些藥物大多與增強(qiáng)細(xì)胞凋亡有關(guān)[8]。6-OHDA屬于DA與去甲腎上腺素類似物,其結(jié)構(gòu)與兒茶酚胺相似,有研究顯示其可以損毀神經(jīng)末梢,導(dǎo)致遞質(zhì)減少,被廣泛用于制備PD的細(xì)胞和動物模型[9]。胰島素樣生長因子-1(IGF-1)是一種含有70個氨基酸的多肽激素,其通過細(xì)胞膜表面的IGF-1受體(IGF-1R)發(fā)揮生物學(xué)作用[10]。IGF-1通過促進(jìn)不同類型細(xì)胞的存活和增殖在中樞神經(jīng)系統(tǒng)的發(fā)育和成熟中起著關(guān)鍵作用[11-12]。已有研究顯示,血清IGF-1水平隨著年齡增加而降低,PD病人早期血清IGF-1水平升高,隨著病情的進(jìn)展,IGF-1水平明顯下降,提示其與PD的發(fā)病有關(guān)[13]。因此,探討IGF-1的神經(jīng)保護(hù)作用能夠?yàn)榉乐蜳D奠定實(shí)驗(yàn)基礎(chǔ)。本研究在前期研究的基礎(chǔ)上,采用分子生物學(xué)技術(shù),探討IGF-1對6-OHDA誘導(dǎo)的人神經(jīng)母細(xì)胞瘤細(xì)胞(SK-N-SH細(xì)胞)多巴胺能細(xì)胞損傷的作用。現(xiàn)將結(jié)果報告如下。
1 材料與方法
1.1 試劑及其來源
SK-N-SH細(xì)胞由中國科學(xué)院上海細(xì)胞庫提供;IGF-1購自BioVision公司,用生理鹽水配制成1 g/L的溶液;DMEM購自Gibco公司;青霉素/鏈霉素儲存液購自新華制藥廠,分裝后,-20 ℃保存?zhèn)溆?胎牛血清購自Hyclone公司,分裝后,-40 ℃保存?zhèn)溆?二甲基亞砜(DMSO)購自Sigma公司;兔抗-Bcl-2抗體購自CST公司;兔抗-Bax抗體購自CST公司;6-OHDA由Sigma公司提供;BCA試劑盒由碧云天公司提供。
1.2 細(xì)胞培養(yǎng)
將SK-N-SH細(xì)胞接種于25 cm2的細(xì)胞培養(yǎng)瓶中,加入含有體積分?jǐn)?shù)0.10胎牛血清、100 mg/L鏈霉素和100 kU/L青霉素的DMEM培養(yǎng)液,置于37 ℃含體積分?jǐn)?shù)0.05 CO2的細(xì)胞培養(yǎng)箱中。當(dāng)細(xì)胞達(dá)到80%~90%融合時進(jìn)行實(shí)驗(yàn)。
1.3 MTT法檢測細(xì)胞活力
將SK-N-SH細(xì)胞接種于96孔板上,每孔加細(xì)胞懸浮液100 μL(含6×104個細(xì)胞),放置于細(xì)胞培養(yǎng)箱中培養(yǎng)至細(xì)胞達(dá)80%~90%融合時,開始加藥處理。先加入不同濃度的IGF-1(6.25、12.50、25.00、50.00 μg/L)預(yù)保護(hù)SK-N-SH細(xì)胞24 h,然后再與100 μmol/L 6-OHDA共同作用24 h。棄去培養(yǎng)液,每孔加入20 μL MTT溶液(5 g/L),繼續(xù)避光培養(yǎng)4 h。小心吸除多余MTT,每孔加100 μL 的DMSO,搖床80~90 r/min避光振蕩10 min,使結(jié)晶物充分溶解。應(yīng)用酶標(biāo)儀(490 nm)檢測各孔的吸光度(A)值。細(xì)胞活力以實(shí)驗(yàn)組A值/對照組A值表示。
1.4 Bcl-2和Bax蛋白表達(dá)檢測
應(yīng)用Western blot方法。將SK-N-SH細(xì)胞接種于96孔板中,分為對照組、損傷組、保護(hù)藥組。對照組細(xì)胞不處理;損傷組細(xì)胞應(yīng)用100 μmol/L的6-OHDA處理24 h;保護(hù)藥組細(xì)胞先用6.25 μg/L的IGF-1預(yù)保護(hù)24 h,再與100 μmol/L 6-OHDA共同作用24 h。棄去細(xì)胞培養(yǎng)液,每孔加入裂解液(lysis∶PMSF=99∶1)100 μL,冰上裂解30 min,然后用細(xì)胞刮輕輕刮下細(xì)胞,收集至1.5 mL的EP管中[14]。置于離心機(jī)中離心20 min (4 ℃,12 000 r/min),吸取80 μL上清,用BCA法檢測蛋白濃度。電泳30~40 min (80 V穩(wěn)壓),上樣量為15 μg;待蛋白Maker的不同分子量條帶分離開時,將電壓改為120 V,繼續(xù)電泳,根據(jù)所檢測蛋白分子量的大小來確定具體的電泳結(jié)束時間。然后,將膠和PVDF膜置于轉(zhuǎn)膜夾中進(jìn)行轉(zhuǎn)膜,條件為300 mA、90 min。轉(zhuǎn)膜結(jié)束后將PVDF膜使用50~100 g/L的脫脂奶粉封閉1 h,清洗掉殘留的奶粉加一抗,4 ℃搖床過夜后洗膜3次,每次10 min;二抗孵育1~2 h后洗膜3次,每次10 min,以發(fā)光液顯影。檢測Bcl-2、Bax與β-actin蛋白A值,以Bcl-2、Bax與β-actin的A值比值表示蛋白表達(dá)[15]。
1.5 統(tǒng)計學(xué)處理
應(yīng)用Graph Pad Prism 5.0統(tǒng)計軟件進(jìn)行數(shù)據(jù)分析,計量資料結(jié)果以±s表示,數(shù)據(jù)間比較用單因素方差分析(One-Way ANOVA),并繼以Tukey法進(jìn)行兩兩比較。P<0.05表示差異有顯著性。
2 結(jié) ?果
2.1 不同濃度IGF-1對6-OHDA誘導(dǎo)SK-N-SH細(xì)胞活力影響
與對照組(A組)相比,6-OHDA組(B組)的細(xì)胞活力明顯降低 (F=11.53,q=5.967,P<0.05);6.25 μg/L(C組)、12.50 μg/L(D組)、25.00 μg/L(E組)和50.00 μg/L(F組) IGF-1均可對抗6-OHDA的神經(jīng)毒性作用,提高SK-N-SH細(xì)胞的活力(q=4.857~5.556,P<0.05)。見表1。
2.2 IGF-1對6-OHDA誘導(dǎo)SK-N-SH細(xì)胞Bcl-2和Bax蛋白表達(dá)的影響
與對照組(A組)相比較,6-OHDA組(B組)SK-N-SH細(xì)胞Bcl-2蛋白表達(dá)水平明顯降低(F=22.92,q=8.223,P<0.01),Bax蛋白表達(dá)明顯升高(F=35.80,q=8.727,P<0.01);與6-OHDA組(B組)相比,IGF-1+6-OHDA組(C組)Bcl-2蛋白的表達(dá)明顯上升(q=8.361,P<0.01),Bax蛋白表達(dá)明顯下降(q=11.45,P<0.001)。見表2。
3 討 ?論
PD是一種遲發(fā)性、進(jìn)行性、神經(jīng)退行性的運(yùn)動障礙疾病,占65歲及以上人口的1%[16-17],隨著中國人口老齡化狀況的日益加劇,PD的發(fā)病率也逐年增高,造成的家庭和社會負(fù)擔(dān)也日益嚴(yán)重[18]。目前,PD病人尚無有效的治療方法,開發(fā)研制有效防治PD的藥物迫在眉睫。6-OHDA是目前常用的建立PD模型的神經(jīng)毒素,能夠引起DA能神經(jīng)元的大量變性死亡,繼而導(dǎo)致錐體外系運(yùn)動功能障礙,如震顫、強(qiáng)直、運(yùn)動過緩等表現(xiàn)[19]。
IGF-1是一種天然存在于中樞神經(jīng)系統(tǒng)的強(qiáng)效神經(jīng)營養(yǎng)和抗凋亡因子,可以促進(jìn)不同類型細(xì)胞的發(fā)育分化[20-22]。IGF-1主要是通過IGF-1R信號通路,促進(jìn)細(xì)胞的生長、分化和存活,發(fā)揮神經(jīng)保護(hù)作用。有研究顯示,IGF-1R在腦組織內(nèi)廣泛表達(dá),其中在黑質(zhì)幾乎所有的DA能神經(jīng)元以及多數(shù)的膠質(zhì)細(xì)胞內(nèi)均存在[23]。許多研究表明,人體內(nèi)IGF-1水平與年齡相關(guān),幼兒期含量相對較低,成年后達(dá)到高峰,之后隨著年齡的增加逐漸降低[24]。臨床研究發(fā)現(xiàn),PD早期病人血清中IGF-1的水平升高,隨著病情的進(jìn)展IGF-1的水平逐漸下降。在認(rèn)知障礙病人中,IGF-1水平亦明顯降低[25-26]。
AYADI等[27]的研究顯示,IGF-1能夠通過激活下游的Ras/ERK1/2和PI3K/Akt信號通路,對抗6-OHDA對大鼠黑質(zhì)紋狀體系統(tǒng)DA能神經(jīng)元的損傷。在氧葡萄糖剝奪/再灌注SH-SY5Y神經(jīng)細(xì)胞模型中,miR-186-5p可通過降低IGF-1的表達(dá),誘導(dǎo)細(xì)胞凋亡[28]。離體細(xì)胞實(shí)驗(yàn)證明IGF-1通過抗凋亡和抗氧化應(yīng)激發(fā)揮神經(jīng)元保護(hù)功能[29-30]。本研究應(yīng)用6-OHDA損傷SK-N-SH細(xì)胞,制備PD細(xì)胞模型,探究IGF-1的神經(jīng)保護(hù)作用及其可能機(jī)制。MTT結(jié)果顯示,6-OHDA明顯損傷了SK-N-SH細(xì)胞,而IGF-1能夠明顯對抗6-OHDA的這種神經(jīng)毒性作用。為了進(jìn)一步探討IGF-1的保護(hù)作用及其機(jī)制,本實(shí)驗(yàn)應(yīng)用Western blot技術(shù),檢測了凋亡相關(guān)蛋白Bcl-2及Bax蛋白表達(dá)情況。實(shí)驗(yàn)結(jié)果顯示,與對照組相比,6-OHDA組抗凋亡蛋白Bcl-2蛋白的表達(dá)明顯降低,促凋亡蛋白Bax蛋白的表達(dá)顯著升高;而給予IGF-1預(yù)處理細(xì)胞后,Bcl-2蛋白表達(dá)明顯上調(diào),而Bax蛋白的表達(dá)明顯下調(diào)。表明IGF-1神經(jīng)元保護(hù)功能與抑制6-OHDA誘導(dǎo)的細(xì)胞凋亡有關(guān)。
綜上所述,IGF-1可對抗神經(jīng)毒素6-OHDA誘導(dǎo)的SK-N-SH細(xì)胞凋亡相關(guān)蛋白Bcl-2及Bax蛋白表達(dá)變化,發(fā)揮神經(jīng)保護(hù)作用。
[參考文獻(xiàn)]
[1] DAWSON T M, DAWSON V L. Molecular pathways of neurodegeneration in Parkinsons disease[J]. Science, 2003,302(5646):819-822.
[2] NEIKRUG A B, MAGLIONE J E, LIU L Q, et al. Effects of sleep disorders on the non-motor symptoms of Parkinson di-sease[J]. Journal of Clinical Sleep Medicine: JCSM, 2013,9(11):1119-1129.
[3] LASHUEL H A, OVERK C R, OUESLATI A, et al. The many faces of α-synuclein: from structure and toxicity to therapeutic target[J]. Nature Reviews Neuroscience, 2013,14(1):38-48.
[4] KALIA L V, LANG A E. Parkinsons disease[J]. The Lancet, 2015,386(9996):896-912.
[5] NING Baile, ZHANG Qinxin, WANG Ninzhen, et al. β-Asarone regulates ER stress and autophagy via inhibition of thePERK/CHOP/Bcl-2/beclin-1 pathway in 6-OHDA-induced ? Parkinsonian rats[J]. Neurochemical Research, 2019,44(5):1159-1166.
[6] ZHONG Jiahong, XIE Jinfeng, XIAO Jiao, et al. Inhibition of PDE4 by FCPR16 induces AMPK-dependent autophagy and confers neuroprotection in SH-SY5Y cells and neurons exposed to MPP(+)-induced oxidative insult[J]. Free Radical Biology and Medicine, 2019,135:87-101.
[7] LUDTMANN M H R, ABRAMOV A Y. Mitochondrial cal-cium imbalance in Parkinsons disease[J]. Neuroscience Letters, 2018,663:86-90.
[8] SU Lingyan, LI Hao, LV Li, et al. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/alpha-synuclein aggregation[J]. Autophagy, 2015,11:1745-1759.
[9] GLINKA Y, TIPTON K F, YOUDIM M B. Mechanism of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine and its prevention by desferrioxamine[J]. European Journal of Pharmacology, 1998,351(1):121-129.
[10] ZHENG W H, QUIRION R. Insulin-like growth factor-1 (IGF-1) induces the activation/phosphorylation of Akt kinase and cAMP response element-binding protein (CREB) by activating different signaling pathways in PC12 cells[J]. BMC Neuroscience, 2006,7:51-61.
[11] BECK K D, POWELL-BRAXTON L, WIDMER H R, et al. IGF1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons[J]. Neuron, 1995,14(4):717-730.
[12] RUSSO V C, GLUCKMAN P D, FELDMAN E L, et al. The insulin-like growth factor system and its pleiotropic functions in brain[J]. Endocrine Reviews, 2005,26(7):916-943.
[13] MARCO P D, BARTELLA V, VIVACQUA A, et al. Insulin-like growth factor-Ⅰ regulates GPER expression and function in cancer cells[J]. Oncogene, 2013,32(6):678-688.
[14] CHEN Wenfang, ZHOU Liping, CHEN Lei, et al. Involvement of IGF-Ⅰ receptor and estrogen receptor pathways in the protective effects of ginsenoside Rg1 against A beta(25-35)-induced toxicity in PC12 cells[J]. Neurochemistry International, 2013,62(8):1065-1071.
[15] 任曉璠,孫憲昌,王宇鑫,等. Rg1和GR阻斷劑對脂多糖誘導(dǎo)的BV2小膠質(zhì)細(xì)胞iNOS及COX2蛋白表達(dá)影響[J]. 青島大學(xué)醫(yī)學(xué)院學(xué)報, 2016,52(2):148-152.
[16] BRAAK H, DEL TREDICI K, RB U, et al. Staging of brain pathology related to sporadic Parkinsons disease[J]. Neurobiology of Aging, 2002,24(2):197-211.
[17] JAKOWEC M W, PETZINGER G M. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of Parkinsons di-sease, with emphasis on mice and nonhuman primates[J]. Comparative Medicine, 2004,54(5):497-513.
[18] MICHEL P P, HIRSCH E C, HUNOT S. Understanding dopaminergic cell death pathways in Parkinson disease[J]. Neuron, 2016,90(4):675-691.
[19] TEISMANN P, TIEU K, COHEN O, et al. Pathogenic role of glial cells in Parkinsons disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2003,18(2):121-129.
[20] BENARROCH E E. Insulin-like growth factors in the brain and their potential clinical implications[J]. Neurology, 2012,79(21):2148-2153.
[21] GASPERI M, CASTELLANO A E. Growth hormone/insulin-like growth factor 1 axis in neurodegenerative diseases[J]. Journal of Endocrinological Investigation, 2010,33(8):587-591.
[22] DYER A H, VAHDATPOUR C, SANFELIU A, et al. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity[J]. Neuroscience, 2016,325(14):89-99.
[23] QUESADA A, ROMEO H E, MICEVYCH P. Distribution and localization patterns of estrogen receptor-beta and insulin-like growth factor-1 receptors in neurons and glial cells of the female rat substantia nigra: localization of ERbeta and IGF-1R in substantia nigra[J]. The Journal of Comparative Neurology, 2007,503(1):198-208.
[24] SMITH C P, DUNGER D B, WILLIAMS A J, et al. Relationship between insulin,insulin-like growth factor 1, and dehydroepiandrosterone sulfate concentrations during childhood, puberty, and adult life[J]. The Journal of Clinical Endocrino-logy and Metabolism,1989,68(5):932-937.
[25] GODAU J, HERFURTH M, KATTNER B, et al. Increased serum insulin-like growth factor 1 in early idiopathic Parkinsons disease[J]. Journal of Neurology Neurosurgery and Psychiatry, 2010,81(5):536-538.
[26] GODAU J, KNAUEL K, WEBER K, et al. Serum insulin like growth factor 1 as possible marker for risk and early diagnosis of parkinson disease[J]. Archives of Neurology, 2011,68(7):925-931.
[27] AYADI A E, ZIGMOND M J, SMITH A D. IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases[J]. Exp. Brain Res, 2016,234(7):1863-1873.
[28] WANG Rui, BAO Hongbo, ZHANG Shihua, et al. miR-186-5p promotesapoptosisby targeting IGF-1 in SH-SY5Y OGD/R model[J]. International Journal of Biological Scirnces, 2018,14(13):1791-1799.
[29] PARK Y G, JEONG J K, MOON M H, at el. Insulin-like growth factor-1 protects against prion peptide-induced cell death in neuronal cellsvia inhibition of Bax translocation[J]. International Journal of Molecular Medicine, 2012,30(5):1069-1074.
[30] WEN Di, CUI Can, DUAN Weisong, et al. The role of insulin-like growth factor 1 in ALS cell and mouse models: a mitochondrial protector[J]. Brain Research Bulletin, 2019,144:1-13.
(本文編輯 黃建鄉(xiāng))