陳蕾蕾 宋寧 謝俊霞
[摘要] 帕金森?。≒D)是以黑質(zhì)區(qū)多巴胺能神經(jīng)元選擇性丟失為特征的第二大神經(jīng)退行性疾病。越來(lái)越多的研究證實(shí),黑質(zhì)區(qū)鐵沉積是多巴胺能神經(jīng)元退行病變的重要因素。鐵死亡是2012年首次報(bào)道的一種鐵依賴性的新型細(xì)胞死亡形式,目前鐵死亡在PD中的研究還非常有限。本文從鐵跨腦區(qū)轉(zhuǎn)運(yùn)、細(xì)胞內(nèi)鐵代謝、自噬-溶酶體途徑和泛素-蛋白酶體系統(tǒng)等幾個(gè)方面綜述了PD中鐵異常沉積的最新機(jī)制研究進(jìn)展,以及鐵死亡與PD之間的可能聯(lián)系,以期為闡明鐵參與多巴胺能神經(jīng)元的退變提供前沿性理論基礎(chǔ)。
[關(guān)鍵詞] 帕金森病;鐵;神經(jīng)變性疾病;多巴胺能神經(jīng)元;綜述
[中圖分類號(hào)] R742.5;R591.1 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)02-0127-06
doi:10.11712/jms.2096-5532.2020.56.102 [開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.r.20200521.1516.001.html;2020-05-22 11:11
[ABSTRACT] Parkinsons disease (PD) is the second most common neurodegenerative disease in clinical practice and is cha-racterized by selective loss of dopaminergic neurons in the substantia nigra. More and more studies have revealed that iron deposition in the substantia nigra is an important factor for the degeneration of dopaminergic neurons. Ferroptosis is a new form of iron-dependent cell death that was first reported in 2012; however, the research on ferroptosis in PD is still limited. This article reviews the latest research advances in abnormal iron deposition in PD from the aspects of transregional brain iron transport, intracellular iron metabolism, autophagy-lysosomal pathway, and ubiquitin-proteasome system, as well as the potential relationship between ferroptosis and PD, in order to provide a theoretical basis for clarifying the involvement of iron deposition in the degeneration of dopaminergic neurons.
[KEY WORDS] Parkinson disease; iron; neurodegenerative diseases; dopaminergic neurons; review
帕金森病(PD)是一種多發(fā)于中老年的中樞神經(jīng)系統(tǒng)退行性疾病,其病理學(xué)特征表現(xiàn)為中腦黑質(zhì)致密帶多巴胺能神經(jīng)元的選擇性丟失[1]。目前我國(guó)有超過(guò)270萬(wàn)的PD病人,預(yù)計(jì)到2030年將激增至500萬(wàn),占全世界PD病人總數(shù)的50%以上[2-4],該病的高患病率和高致殘率給社會(huì)造成了沉重的負(fù)擔(dān)。黑質(zhì)區(qū)鐵沉積是多巴胺能神經(jīng)元退行病變的一種重要因素[5],但是PD中鐵異常沉積的原因尚未完全闡明。本文將從鐵跨腦區(qū)轉(zhuǎn)運(yùn)、細(xì)胞內(nèi)鐵代謝、自噬-溶酶體途徑和泛素-蛋白酶體系統(tǒng)等幾個(gè)方面綜述PD中鐵異常沉積的最新研究進(jìn)展,以及鐵死亡[6]與PD之間的可能聯(lián)系。
1 黑質(zhì)區(qū)鐵沉積與PD
在中樞神經(jīng)系統(tǒng),鐵不但是眾多酶的輔助因子,參與蛋白質(zhì)的合成、DNA的復(fù)制和膜蛋白的構(gòu)筑等,還參與髓鞘和神經(jīng)遞質(zhì)的合成。雖然鐵必不可少,但是過(guò)量的鐵則會(huì)通過(guò)Fenton反應(yīng)促使過(guò)氧化物降解而產(chǎn)生大量羥自由基,進(jìn)而造成細(xì)胞死亡。在正常生理?xiàng)l件下,鐵會(huì)隨著年齡的增加沉積于黑質(zhì)、尾狀核和蒼白球等腦區(qū),但是這種現(xiàn)象在PD中尤為嚴(yán)重[7]。PD病人尸檢結(jié)果證實(shí),黑質(zhì)區(qū)鐵含量增高超過(guò)30%甚至更高[8]。磁共振成像顯示,PD病人腦內(nèi)鐵沉積早于臨床癥狀發(fā)生,而且PD進(jìn)程及其運(yùn)動(dòng)功能障礙均與鐵水平相關(guān)[9-10]。定量磁敏感檢測(cè)顯示,在特發(fā)性快速眼動(dòng)睡眠行為障礙病人雙側(cè)黑質(zhì)出現(xiàn)明顯鐵沉積,提示異常的鐵沉積可能是加速神經(jīng)退行性疾病前驅(qū)期向臨床期轉(zhuǎn)化的重要原因[11]。在PD病人和動(dòng)物模型中,鐵選擇性地沉積于黑質(zhì)區(qū),而且鐵離子螯合劑可起到明顯的神經(jīng)保護(hù)作用[12]。
1.1 鐵跨腦區(qū)轉(zhuǎn)運(yùn)
鐵雖然廣泛存在于腦的各個(gè)部位,但是其在各個(gè)腦區(qū)的分布并不均勻。最近,朱心紅等[13]報(bào)道,鐵離子在各腦區(qū)之間沿神經(jīng)投射進(jìn)行運(yùn)輸,有兩條鐵離子轉(zhuǎn)運(yùn)途徑:從腹側(cè)海馬(vHip)到內(nèi)側(cè)前額葉皮質(zhì)(mPFC)再到黑質(zhì)(SN),以及從丘腦(Tha)到杏仁核(AMG)再到mPFC。鐵在不同腦區(qū)之間的轉(zhuǎn)運(yùn)依賴于神經(jīng)元的活動(dòng),當(dāng)神經(jīng)元活動(dòng)增多時(shí),通過(guò)軸突轉(zhuǎn)出的鐵增多。作為目前已知唯一的跨膜鐵轉(zhuǎn)出蛋白,ferroprotin 1(FPN1)在軸突末梢的表達(dá)是鐵跨軸突轉(zhuǎn)運(yùn)的必要條件。研究還證實(shí)了vHip-mPFC-SN的鐵離子轉(zhuǎn)運(yùn)途徑異常與運(yùn)動(dòng)障礙相關(guān),是焦慮發(fā)生的關(guān)鍵環(huán)節(jié)[13]。更有趣的是,轉(zhuǎn)運(yùn)至黑質(zhì)區(qū)的鐵似乎并不再向其他腦區(qū)轉(zhuǎn)出,而是作為“蓄鐵池”將腦區(qū)過(guò)多的鐵儲(chǔ)存下來(lái)。在前期研究中,我們課題組應(yīng)用電感耦合等離子體質(zhì)譜法(ICP-MS),在PD、阿爾茨海默癥(AD)病人和同齡正常人的尸檢顳葉皮質(zhì)組織中,分別檢測(cè)了鐵、錳、鎳以及銅等4種金屬元素含量,結(jié)果顯示,PD病人顳葉皮質(zhì)鐵水平明顯下降,而錳、鎳以及銅等水平則無(wú)明顯變化;而AD病人的4種金屬元素均無(wú)明顯變化[14]。提示PD病人顳葉皮質(zhì)和黑質(zhì)腦區(qū)之間可能存在鐵的重新分布。這些證據(jù)提示,PD中黑質(zhì)區(qū)鐵沉積也可能來(lái)自于腦區(qū)間的鐵離子異常轉(zhuǎn)運(yùn)。
1.2 細(xì)胞內(nèi)鐵代謝
細(xì)胞內(nèi)的鐵代謝過(guò)程主要包括鐵儲(chǔ)存、鐵攝取和鐵轉(zhuǎn)出,而參與上述過(guò)程的某些蛋白功能紊亂則會(huì)導(dǎo)致鐵代謝異常,從而引起鐵沉積[8]。放射免疫實(shí)驗(yàn)檢測(cè)顯示,PD病人的鐵蛋白(ferritin)水平在黑質(zhì)區(qū)顯著下降[15],提示PD病人儲(chǔ)鐵能力下降。二價(jià)金屬離子轉(zhuǎn)運(yùn)體(DMT1)是非轉(zhuǎn)鐵蛋白結(jié)合鐵(NTBI)的主要轉(zhuǎn)運(yùn)工具,在PD病人和動(dòng)物模型的黑質(zhì)區(qū),DMT1的表達(dá)明顯增加,提示PD黑質(zhì)區(qū)DMT1介導(dǎo)的腦內(nèi)NTBI攝取可能增多[8]。NMDA受體激活、ATP-敏感鉀通道激活以及DMT1本身的亞硝基化,均可以增強(qiáng)DMT1的攝鐵功能而加重細(xì)胞內(nèi)的鐵沉積[16-19]。同時(shí),鐵轉(zhuǎn)出蛋白FPN1的表達(dá)降低引起鐵轉(zhuǎn)出減少,也被認(rèn)為與PD黑質(zhì)區(qū)的鐵沉積有關(guān)[20-21]。研究發(fā)現(xiàn),PD病人腦脊液和血漿中的銅藍(lán)蛋白水平明顯降低;敲除銅藍(lán)蛋白和肝素后,小鼠腦內(nèi)出現(xiàn)明顯的鐵沉積[22],提示銅藍(lán)蛋白和肝素作為鐵氧化酶通過(guò)協(xié)助FPN1介導(dǎo)的鐵轉(zhuǎn)出從而參與腦鐵代謝。近年來(lái),淀粉樣前體蛋白(APP)也被發(fā)現(xiàn)具有鐵氧化酶活性[23],其在膜轉(zhuǎn)運(yùn)過(guò)程中受到tau蛋白的調(diào)節(jié)。在PD病人和MPTP模型小鼠中,可溶性tau水平降低,使得APP的亞鐵氧化酶活性下降,從而與FPN1協(xié)同作用使鐵轉(zhuǎn)運(yùn)至細(xì)胞外的能力下降[24]。
鐵調(diào)節(jié)蛋白(IRPs)是鐵代謝相關(guān)蛋白轉(zhuǎn)錄后調(diào)節(jié)的最重要的因素。神經(jīng)毒素、氧化應(yīng)激、促炎因子、NMDA受體激活以及蛋白激酶C途徑的激活,均可能作用于細(xì)胞內(nèi)鐵代謝的這個(gè)關(guān)鍵環(huán)節(jié)[8,16,25-26];在IRP2基因敲除小鼠中,鐵大量沉積在黑質(zhì)區(qū),多巴胺能神經(jīng)元死亡,動(dòng)物出現(xiàn)PD類似的運(yùn)動(dòng)癥狀[27]。另外,鐵調(diào)素在細(xì)胞鐵代謝中也發(fā)揮著舉足輕重的作用。作為一種抗菌肽,鐵調(diào)素能夠被炎癥激活,建立了鐵代謝和炎癥之間的緊密聯(lián)系[28-29]。研究顯示,鐵調(diào)素在腦細(xì)胞中對(duì)TfR1和DMT1有調(diào)控作用[30-31]。我們的研究也證實(shí),鐵調(diào)素在星形膠質(zhì)細(xì)胞處于高鐵和細(xì)胞外α-突觸核蛋白共存環(huán)境時(shí)表達(dá)明顯下降,這可能易化了星形膠質(zhì)細(xì)胞的鐵轉(zhuǎn)出過(guò)程,代表了一種對(duì)周圍神經(jīng)元的不利狀態(tài)[32]。目前尚無(wú)研究報(bào)道鐵調(diào)素在PD黑質(zhì)區(qū)的變化,但在接受深部腦刺激的PD病人血清中,鐵調(diào)素的前體形式水平明顯升高[33]。
1.3 自噬-溶酶體途徑
自噬-溶酶體途徑和泛素-蛋白酶體不但是降解受損細(xì)胞器和長(zhǎng)壽命蛋白聚合物(如Alpha-突觸核蛋白),維持細(xì)胞內(nèi)環(huán)境平衡的主要途徑,它們還在細(xì)胞內(nèi)的鐵代謝過(guò)程中發(fā)揮著重要作用[34-36]。在正常的生理?xiàng)l件下,自噬-溶酶體途徑通過(guò)降解含鐵物質(zhì)以及囊泡傳輸而促進(jìn)細(xì)胞內(nèi)的鐵循環(huán)[40]。溶酶體是細(xì)胞內(nèi)重要的儲(chǔ)鐵細(xì)胞器,它通過(guò)自噬降解含鐵物質(zhì)(比如鐵蛋白、含鐵豐富的線粒體蛋白等)將鐵釋放至胞漿。由于其酸性和還原性環(huán)境,溶酶體內(nèi)的鐵通常以還原活性Fe2+存在。目前的研究表明,溶酶體中的鐵釋放至胞漿主要與以下幾種通道相關(guān)[37]。①DMT1:DMT1主要位于早期或晚期的內(nèi)吞體。當(dāng)鐵通過(guò)Tf-TfR途徑轉(zhuǎn)運(yùn)時(shí),內(nèi)吞體內(nèi)的鐵主要通過(guò)DMT1釋放至胞漿。②黏蛋白1(TRPML1)和天然抗性相關(guān)巨噬細(xì)胞蛋白1(NRAMP1):TRPML1主要位于晚期內(nèi)吞體和溶酶體膜。當(dāng)鐵來(lái)源于溶酶體降解Tf-Fe復(fù)合物和含鐵物質(zhì)時(shí),溶酶體內(nèi)的鐵主要通過(guò)TRPML1和NRAMP1的通道釋放至胞漿[37-39]。當(dāng)然,DMT1和TRPML1介導(dǎo)的鐵釋放機(jī)制可能在某些細(xì)胞(如神經(jīng)元)上共存。在同時(shí)表達(dá)DMT1和TRPML1的細(xì)胞上,當(dāng)DMT1介導(dǎo)的內(nèi)吞體鐵釋放被抑制時(shí),溶酶體釋放鐵的過(guò)程并沒有被顯著影響,提示TRPML1介導(dǎo)的鐵釋放功能可保證內(nèi)吞體的鐵釋放[40]。③ 雙孔通道家族(TPCNs):TPCNs是細(xì)胞內(nèi)由TPCN1和TPCN2組成的陽(yáng)離子通道家族,它們獨(dú)特地定位于溶酶體,是眾所周知的鈣離子和鈉離子通道[41]。最近的研究發(fā)現(xiàn),TPCNs也參與內(nèi)吞體鐵的釋放,該過(guò)程受NAADP-AM和Ned-19所調(diào)節(jié)[42]。
在PD病人和動(dòng)物模型的大腦中,均發(fā)現(xiàn)自噬-溶酶體途徑功能障礙[43]。近年來(lái),越來(lái)越多研究表明,PD更像是一種溶酶體功能障礙疾病[44-45]。鐵沉積在促進(jìn)α-突觸核蛋白聚集的同時(shí),可引起自噬-溶酶體途徑功能受損[42],導(dǎo)致α-突觸核蛋白聚合物不能被有效地清除,從而引起多巴胺神經(jīng)元的退化和死亡[46]。PD相關(guān)的細(xì)胞和動(dòng)物實(shí)驗(yàn)證明,自噬相關(guān)基因的過(guò)表達(dá)或小分子自噬誘導(dǎo)劑可清除α-突觸核蛋白,保護(hù)神經(jīng)細(xì)胞[47-49]。自噬誘導(dǎo)劑姜黃素可通過(guò)螯合鐵離子發(fā)揮保護(hù)作用[50];經(jīng)典的鐵離子螯合劑去鐵胺(DFO)可在PD細(xì)胞模型通過(guò)誘導(dǎo)自噬而發(fā)揮保護(hù)作用[51]。以上證據(jù)揭示了自噬-溶酶體途徑在PD中的重要作用。由于溶酶體內(nèi)有大量強(qiáng)還原性鐵,維持其正常功能以及保護(hù)其膜的完整性則非常重要。鐵結(jié)合蛋白,比如金屬硫蛋白[52-53]和熱休克蛋白70(Hsp70)[54-55]等,具有內(nèi)源性鐵螯合劑特性,它們通過(guò)自噬進(jìn)入溶酶體并暫時(shí)螯合溶酶體內(nèi)的氧化還原性鐵,從而保護(hù)溶酶體膜的完整性進(jìn)而保護(hù)細(xì)胞免受Fenton反應(yīng)的損傷[54,56-57]。盡管目前有關(guān)自噬-溶酶體途徑在鐵代謝中的研究還非常有限,但是細(xì)胞鐵超載時(shí)往往伴隨著溶酶體功能障礙[58],而且溶酶體膜通透性的增加會(huì)直接導(dǎo)致細(xì)胞內(nèi)的氧化應(yīng)激反應(yīng)[59-60]。因此,自噬-溶酶體途徑功能障礙也可能是導(dǎo)致PD鐵穩(wěn)態(tài)失衡的一個(gè)重要因素[37,61]。
1.4 泛素-蛋白酶體系統(tǒng)
泛素-蛋白酶體系統(tǒng)是真核細(xì)胞內(nèi)另一條重要的蛋白降解通路,在降解細(xì)胞內(nèi)錯(cuò)誤折疊的蛋白(如Alpha-突觸核蛋白)和鐵代謝過(guò)程中也起著重要作用。與自噬-溶酶體途徑類似,泛素-蛋白酶體系統(tǒng)也可通過(guò)降解鐵蛋白而釋放鐵離子。當(dāng)細(xì)胞內(nèi)的鐵因過(guò)表達(dá)鐵轉(zhuǎn)出蛋白FPN1或者膜通透性強(qiáng)的鐵螯合劑而耗竭時(shí),鐵蛋白主要通過(guò)泛素-蛋白酶體系統(tǒng)降解而釋放鐵離子[62-63]。當(dāng)細(xì)胞內(nèi)的鐵因膜通透性差的鐵螯合劑(比如DFO)而耗竭時(shí),鐵蛋白降解則發(fā)生在溶酶體[63-64]。同時(shí),當(dāng)自噬抑制劑3-甲基腺嘌呤抑制自噬后,DFO誘導(dǎo)的鐵蛋白降解則發(fā)生在蛋白酶體內(nèi),提示泛素-蛋白酶體系統(tǒng)可作為補(bǔ)償途徑參與鐵蛋白降解。研究表明,蛋白酶體抑制劑可明顯增加大鼠黑質(zhì)區(qū)的總鐵和Fe2+水平,同時(shí)DMT1表達(dá)增加,提示泛素-蛋白酶體系統(tǒng)可能是通過(guò)降解DMT1而參與鐵代謝[65]。
在泛素-蛋白酶體系統(tǒng)降解蛋白質(zhì)的過(guò)程中,靶蛋白泛素化是必不可少的步驟,此過(guò)程不但需要ATP,還需要E1、E2和E3等3種酶的參與。泛素系統(tǒng)在細(xì)胞鐵代謝調(diào)節(jié)過(guò)程中起著非常重要的作用。在鐵含量充足的情況下,泛素連接酶SCFFBXL5可識(shí)別并泛素化具有IRE結(jié)合活性的IRP1和IRP2,最終通過(guò)蛋白酶體完成IRPs降解[66]。在自噬-溶酶體途徑介導(dǎo)的鐵蛋白降解過(guò)程中,多聚胞嘧啶結(jié)合蛋白1(PCBP1)作為分子伴侶將鐵離子運(yùn)送至溶酶體,并與溶酶體上的核受體輔助激活因子4(NCOA4)結(jié)合,從而完成鐵蛋白降解而釋放鐵離子。研究顯示,在上述過(guò)程中,NCOA4活性依賴于E3泛素連接酶——HERC2[67-68]。Nedd4家族相互結(jié)合蛋白1(Ndfip1)是泛素連接酶Nedd4家族的銜接蛋白。我們課題組的研究結(jié)果顯示,Ndfip1可以通過(guò)調(diào)節(jié)DMT1的降解而參與鐵代謝[69]。蛋白酶體抑制劑MG132可以明顯逆轉(zhuǎn)Ndfip1誘導(dǎo)的多巴胺轉(zhuǎn)運(yùn)體(DAT)降解,提示Ndfip1可以能通過(guò)泛素-蛋白酶體系統(tǒng)調(diào)節(jié)DAT[70]。綜上所述,PD中泛素-蛋白酶體系統(tǒng)功能障礙也可能是導(dǎo)致鐵異常沉積的一個(gè)重要因素。
2 鐵死亡
由于多巴胺能神經(jīng)元本身的特性,鐵在多巴胺能神經(jīng)元的沉積更易形成細(xì)胞內(nèi)的促氧化環(huán)境。鐵與多巴胺被認(rèn)為是一對(duì)毒性組合,鐵與多巴胺相互作用產(chǎn)生了對(duì)易損腦區(qū)有害的中間產(chǎn)物或終產(chǎn)物,二者形成的氧化還原組合可能是多巴胺能神經(jīng)元退行性病變的重要誘因[71]。近年來(lái),鐵對(duì)細(xì)胞毒性作用研究出現(xiàn)了一種嶄新形式——鐵死亡。
2.1 鐵死亡概述
2012年,DIXON等[72]首次報(bào)道了一種鐵依賴性的、以脂質(zhì)過(guò)氧化物累積為特征的細(xì)胞死亡形式——鐵死亡。在細(xì)胞形態(tài)上,鐵死亡與以往報(bào)道的任何一種細(xì)胞死亡形式都不同,它沒有像凋亡那樣的染色質(zhì)聚集和邊緣化,也沒有像壞死那樣的細(xì)胞腫脹和質(zhì)膜破裂,更沒有像自噬那樣的雙層膜結(jié)構(gòu)形成。在鐵死亡過(guò)程中,ATP合成和細(xì)胞核不受影響,但是與正常細(xì)胞相比,鐵死亡的細(xì)胞線粒體萎縮變小,且膜密度增加[72]。細(xì)胞凋亡、壞死、自噬抑制劑均不能阻斷鐵死亡,而鐵螯合劑、抗氧化劑等卻可以阻斷鐵死亡[73]。在生化特征上,鐵死亡主要表現(xiàn)為鐵、氨基酸和脂質(zhì)的代謝紊亂而導(dǎo)致的鐵離子聚集、還原型谷胱甘肽(GSH)耗竭和細(xì)胞膜脂質(zhì)過(guò)氧化物累積等。在分子機(jī)制上,雖然眾多化合物誘導(dǎo)鐵死亡的信號(hào)通路不同,但是它們的上游信號(hào)通路最終都是通過(guò)直接或者間接影響谷胱甘肽過(guò)氧化酶 4(GPX4)的活性,因此GPX4被普遍認(rèn)為是一種重要的鐵死亡調(diào)節(jié)因子[74]。同時(shí),GPX4是一種內(nèi)源性的膜脂修復(fù)酶,在其催化作用下,GSH可將具有潛在毒性的過(guò)氧化脂類還原為無(wú)毒的脂醇,從而阻止鐵死亡的發(fā)生。隨著研究的深入,研究者們發(fā)現(xiàn)在某些癌細(xì)胞上,抑制GPX4后并不能觸發(fā)鐵死亡,提示在這些細(xì)胞中可能存在著某些獨(dú)立于GPX4的保護(hù)系統(tǒng)[75]。即使在GPX4缺失時(shí),鐵死亡抑制蛋白1(FSP1)仍然可在細(xì)胞膜上將輔酶Q10氧化還原為泛醇,從而阻礙鐵死亡的發(fā)生,而且只有N端被豆蔻酰化修飾后FSP1才能發(fā)揮抗鐵死亡的功能,這是目前首次發(fā)現(xiàn)的能夠補(bǔ)償GPX4缺失而抑制鐵死亡的酶催化系統(tǒng)。
2.2 鐵死亡與PD
自從發(fā)現(xiàn)鐵異常聚集在多巴胺能神經(jīng)元退變中起著重要作用以來(lái),研究者的關(guān)注點(diǎn)基本集中在鐵誘導(dǎo)的氧化應(yīng)激和自由基生成,以及由此產(chǎn)生的凋亡、壞死、自噬等細(xì)胞死亡形式。以往尸檢報(bào)告顯示,與正常人相比,PD病人黑質(zhì)區(qū)的鐵水平增加超過(guò)30%[76],GSH水平下降約40%[77],脂質(zhì)過(guò)氧化物明顯升高[78],雖然這些特征與鐵死亡的生化特征高度吻合,但是鐵死亡在PD中的研究還非常少。GPX4對(duì)運(yùn)動(dòng)神經(jīng)元的健康和生存非常重要,成年小鼠條件敲除GXP4后很快誘發(fā)運(yùn)動(dòng)神經(jīng)元變性,從而導(dǎo)致小鼠癱瘓和死亡,而鐵死亡抑制劑可延緩這一過(guò)程[79],提示鐵死亡在神經(jīng)退變過(guò)程中起著重要作用。2016年,BRUCE等[80]在MPTP制備的PD小鼠模型上發(fā)現(xiàn)了鐵死亡現(xiàn)象,該過(guò)程與PKCα激活相關(guān),而且鐵死亡抑制劑Ferrostatin-1可顯著抑制MPTP對(duì)多巴胺能神經(jīng)元的毒性。以上的研究提示,鐵死亡參與了黑質(zhì)區(qū)多巴胺能神經(jīng)元的退變過(guò)程[81],但是PD相關(guān)蛋白和基因是否參與調(diào)控死亡,仍有待于進(jìn)一步的研究。另外,值得注意的是,自噬可以通過(guò)促進(jìn)鐵蛋白的降解加劇鐵死亡的發(fā)生[82]。一方面,自噬可通過(guò)促進(jìn)α-突觸核蛋白的清除保護(hù)多巴胺能神經(jīng)元[83];另一方面,自噬促進(jìn)鐵蛋白的降解加劇鐵死亡。這充分體現(xiàn)了自噬的雙面性。
3 結(jié)語(yǔ)
近年來(lái),越來(lái)越多的研究證實(shí)鐵異常沉積參與了多巴胺能神經(jīng)元的退變,由此研究者們提出鐵可成為PD早期臨床診斷的指標(biāo),是開發(fā)防治PD新型藥物的一個(gè)靶點(diǎn)。作為一種鐵依賴性的新型細(xì)胞死亡形式,鐵死亡在神經(jīng)退行性疾病、腦外傷、出血性和缺血性中風(fēng)等疾病中得到廣泛關(guān)注。雖然鐵死亡的主要生化特征(鐵離子聚集、GSH耗竭和細(xì)胞膜脂質(zhì)過(guò)氧化物累積等)很早就已經(jīng)在PD病人中被發(fā)現(xiàn),但是鐵死亡在PD中的研究仍然非常少。因此,深入探討鐵死亡在PD發(fā)生中的作用,將為闡明多巴胺能神經(jīng)元的退變機(jī)制及其防治提供新的作用靶點(diǎn)和前沿性理論基礎(chǔ)。
[參考文獻(xiàn)]
[1] PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. Nature Reviews Neuroscience, 2017,18(4):251-259.
[2] KALIA L V, LANG A E. Parkinsons disease[J]. Lancet, 2015,386(9996):896-912.
[3] ROSSI A, BERGER K, CHEN H, et al. Projection of the prevalence of Parkinsons disease in the coming decades: revisited[J]. Movement Disorders, 2018,33(1):156-159.
[4] DORSEY E R, CONSTANTINESCU R, THOMPSON J P, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J]. Neurology, 2007,68(5):384-386.
[5] MOREAU C, DUCE J A, RASCOL O, et al. Iron as a therapeutic target for Parkinsons disease[J]. Movement Disorders, 2018,33(4):568-574.
[6] GUINEY S J, ADLARD P A, BUSH A I, et al. Ferroptosis and cell death mechanisms in Parkinsons disease[J]. Neurochemistry International, 2017,104:34-48.
[7] THOMAS G E C, LEYLAND L A, SCHRAG A E, et al. Brain iron deposition is linked with cognitive severity in Parkinsons disease[J]. J Neurol Neurosurg Psychiatry, 2020,91(4):418-425.
[8] JIANG H, WANG J, ROGERS J, et al. Brain Iron metabolism dysfunction in Parkinsons disease[J]. Molecular Neurobiology, 2017,54(4):3078-3101.
[9] BERG D, SEPPI K, BEHNKE S, et al. Enlarged substantia nigra hyperechogenicity and risk for parkinson disease a 37-month 3-center study of 1 847 older persons[J]. Archives of Neurology, 2011,68(7):932-937.
[10] PESCH B, CASJENS S, WOITALLA D, et al. Impairment of motor function correlates with neurometabolite and brain Iron alterations in Parkinsons disease[J]. Cells (Basel, Switzerland), 2019,8(2):96-108.
[11] SUN J, LAI Z, MA J, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder[J]. Movement Disorders, 2019,35(3):478-485.
[12] DEVOS D, CABANTCHIK Z I, MOREAU C, et al. Conservative iron chelation for neurodegenerative diseases such as Parkinsons disease and amyotrophic lateral sclerosis[J]. J Neural Transm (Vienna), 2020,127(2):189-203.
[13] WANG Zhuo, ZENG Yuanning, YANG Peng, et al. Axonal Iron transport in the brain modulates anxiety-related behaviors[J]. Nature Chemical Biology, 2019,15(12):1214-1222.
[14] YU Xiaojun, DU Tingting, SONG Ning, et al. Decreased Iron levels in the temporal cortex in postmortem human brains with Parkinson disease[J]. Neurology, 2013,80(5):492-495.
[15] DEXTER D T, CARAYON A, VIDAILHET M, et al. Decreased ferritin levels in brain in Parkinsons disease[J]. Journal of Neurochemistry, 1990,55(1):16-20.
[16] XU Huamin, LIU Xiaodong, XIA Jianjian, et al. Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinsons disease[J]. FASEB Journal, 2018,32(11):6100-6111.
[17] SALAZAR J, MENA N, HUNOT S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinsons disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(47):18578-18583.
[18] LIU C, ZHANG C W, LO S Q, et al. S-nitrosylation of divalent metal transporter 1 enhances Iron uptake to mediate loss of dopaminergic neurons and motoric deficit[J]. Journal of Neuroscience, 2018,38(39):8364-8377.
[19] DU X, XU H, SHI L, et al. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro[J]. Sci Rep, 2016,6:33674-33683.
[20] SONG N, WANG J, JIANG H, et al. Ferroportin 1 but not hephaestin contributes to Iron accumulation in a cell model of Parkinsons disease[J]. Free Radical Biology & Medicine, 2010,48(2):332-341.
[21] WANG Jun, JIANG Hong, XIE Junxia. Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats[J]. European Journal of Neuroscience, 2007,25(9):2766-2772.
[22] ZHENG J, JIANG R, CHEN M, et al. Multi-Copper Ferroxidase-Deficient mice have increased brain iron concentrations and learning and memory deficits[J]. Journal of Nutrition, 2018,148(4):643-649.
[23] DUCE J A, TSATSANIS A, CATER M A, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by Zinc in Alzheimers disease[J]. Cell, 2010,142(6):857-867.
[24] LEI P, AYTON S, FINKELSTEIN D I, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export[J]. Nature Medicine, 2012,18(2):291-295.
[25] WANG W, SONG N, ZHANG H, et al. 6-Hydroxydopamine upregulates iron regulatory protein 1 by activating certain protein kinase C isoforms in the dopaminergic MES23.5 cell line[J]. The International Journal of Biochemistry & Cell Biology, 2012,44(11):1987-1992.
[26] WANG Jia, SONG Ning, JIANG Hong, et al. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive Oxygen/Nitrogenspecies production in ventral mesencephalic neurons[J]. Bio-chimica et Biophysica Acta, 2013,1832(5):618-625.
[27] CI Y Z, LI H, YOU L H, et al. Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinsons di-sease[J]. Neurochem Int, 2020,134:104657.
[28] NEMETH E, TUTTLE M S, POWELSON J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science (New York, N.Y.), 2004,306(574):2090-2093.
[29] SCHMIDT P J. Regulation of iron metabolism by hepcidin under conditions of inflammation[J]. Journal of Biological Che-mistry, 2015,290(31):18975-18983.
[30] DU F, QIAN C, QIAN Z M, et al. Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase a pathway[J]. Glia, 2011,59(6):936-945.
[31] DU Fang, QIAN Zhongming, LUO Qianqian, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-Overloaded rats[J]. Molecular Neuro-biology, 2015,52(1):101-114.
[32] CUI Juntao, LI Qijun, SONG Ning, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure[J]. Frontiers in Cellular Neuroscience, 2020,14:47-60.
[33] KWIATEK-MAJKUSIAK J, GEREMEK M, KOZIOROWSKI D, et al. Higher serum levels of pro-hepcidin in patients with Parkinsons disease treated with deep brain stimulation[J]. Neurosci Lett, 2018,684:205-209.
[34] HOU X, WATZLAWIK J O, FIESEL F C, et al. Autophagy in Parkinsons disease[J]. J Mol Biol, 2020,[online ahead of print].
[35] ZHANG Y, MIKHAEL M, XU D, et al. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit[J]. Antioxidants & Redox Signaling, 2010,13(7):999-1009.
[36] HORIE T, KAWAMATA T, MATSUNAMI M, et al. Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth[J]. Journal of Biological Chemistry, 2017,292(20):8533-8543.
[37] CHEN L L, HUANG Y J, CUI J T, et al. Iron dysregulation in Parkinsons disease:focused on the Autophagy-Lysosome pathway[J]. ACS Chemical Neuroscience, 2019,10(2):863-871.
[38] DONG X Q, CHENG X, MILLS E, et al. The type Ⅳ mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel[J]. Nature, 2008,455(7215):992-996.
[39] JABADO N, JANKOWSKI A, DOUGAPARSAD S, et al. Natural resistance to intracellular infections:natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent Manganese transporter at the phagosomal membrane[J]. Journal of Experimental Medicine, 2000,192(9):1237-1248.
[40] HENTZE M W, MUCKENTHALER M U, ANDREWS N C. Balancing acts:molecular control of mammalian iron metabolism[J]. Cell, 2004,117(3):285-297.
[41] LIN-MOSHIER Y, KEEBLER M V, HOOPER R, et al. The two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(36):13087-13092.
[42] FERNANDEZ B, FDEZ E, GOMEZ S P, et al. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A[J]. Autophagy, 2016,12(9):1487-1506.
[43] LYNCH D A, MAO K, WANG K, et al. The role of auto-phagy in Parkinsons disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012,2(4):1-13.
[44] KLEIN A D, MAZZULLI J R. Is Parkinsons disease a lysosomal disorder[J]? Brain, 2018,141(8):2255-2262.
[45] WALLINGS R L, HUMBLE S W, WARD M E, et al. Lysosomal dysfunction at the centre of Parkinsons disease and frontotemporal dementia/amyotrophic lateral sclerosis[J]. Trends in Neurosciences, 2019,42(12):899-912.
[46] GUO F, LIU X, CAI H, et al. Autophagy in neurodegenerative diseases:pathogenesis and therapy[J]. Brain Pathology, 2018,28(1):3-13.
[47] HARRIS H, RUBINSZTEIN D C. Control of autophagy as a therapy for neurodegenerative disease[J]. Nature Reviews Neurology, 2012,8(2):108-117.
[48] CHEN L L, SONG J X, LU J H, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway[J]. Journal of Neuroimmune Pharmacology, 2014,9(3):380-387.
[49] CHEN L L, WANG Y B, SONG J X, et al. Phosphoproteome-based kinase activity profiling reveals the critical role of MAP2K2 and PLK1 in neuronal autophagy[J]. Autophagy, 2017,13(11):1969-1980.
[50] YANG C, MA X, WANG Z, et al. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation[J]. Drug Des Devel Ther, 2017,11:431-439.
[51] WU Y C, LI X Q, XIE W J, et al. Neuroprotection of de-feroxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells[J]. Neurochemistry International, 2010,57(3):198-205.
[52] ULLIO C, BRUNK U T, URANI C, et al. Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells[J]. Autophagy, 2015,11(12):2184-2198.
[53] CAVALCA E, CESANI M, GIFFORD J C, et al. Metallothioneins are neuroprotective agents in lysosomal storage di-sorders[J]. Annals of Neurology, 2018,83(2):418-432.
[54] KARLSSON M, KURZ T. Attenuation of iron-binding pro-teins in ARPE-19 cells reduces their resistance to oxidative stress[J]. Acta Ophthalmologica, 2016,94(6):556-564.
[55] KURZ T, BRUNK U T. Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form[J]. Autophagy, 2009,5(1):93-95.
[56] LI Y, CHEN M, XU Y, et al. Iron-mediated lysosomal membrane permeabilization in ethanol-induced hepatic oxidative damage and apoptosis: protective effects of quercetin[J]. Oxid Med Cell Longev, 2016, 2016:4147610-4147624.
[57] TERMAN A, KURZ T. Lysosomal iron, iron chelation, and cell death[J]. Antioxidants & Redox Signaling, 2013,18(8):888-898.
[58] SEIBLER P, BURBULLA L F, DULOVIC M, et al. Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells[J]. Brain, 2018,141(10):3052-3064.
[59] KURZ T, LEAKE A, VON ZGLINICKI T, et al. Relocalized redox-active lysosomal iron is an important mediator of oxidative-stress-induced DNA damage[J]. Biochemical Journal, 2004,378(Pt 3):1039-1045.
[60] TENOPOULOU M, DOULIAS P T, BARBOUTI A, et al. Role of compartmentalized redox-active iron in Hydrogen peroxide-induced DNA damage and apoptosis[J]. Biochemical Journal, 2005,387(Pt 3):703-710.
[61] KRISHAN S, JANSSON P J, GUTIERREZ E, et al. Iron metabolism and autophagy:a poorly explored relationship that has important consequences for health and disease[J]. Nagoya Journal of Medical Science, 2015,77(1/2):1-6.
[62] DE DOMENICO I, VAUGHN M B, LI L, et al. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome[J]. EMBO Journal, 2006,25(22):5396-5404.
[63] DE DOMENICO I, WARD D M, AUTOPHAGY K J. Ferritin and iron chelation[J]. Autophagy, 2010,6(1):157-157.
[64] DE DOMENICO I, WARD D M, KAPLAN J. Specific iron chelators determine the route of ferritin degradation[J]. Blood, 2009,114(20):4546-4551.
[65] ZHU Wen, LI Xuping, XIE Wenjie, et al. Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration[J]. Neurobiology of Disease, 2010,37(2):307-313.
[66] IWAI K. Regulation of cellular iron metabolism: Iron-depen-dent degradation of IRP by SCF (FBXL5) ubiquitin ligase[J]. Free Radic Biol Med, 2019,133:64-68.
[67] MANCIAS J D, PONTANO VAITES L, NISSIM S, et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis[J]. Elife, 2015,4:10308-10326.
[68] RYU M S, DUCK K A, PHILPOTT C C. Ferritin iron regulators, PCBP1 and NCOA4, respond to cellular iron status in developing red cells[J]. Blood Cells Mol Dis, 2018,69:75-81.
[69] JIA W T, XU H M, DU X X, et al. Ndfip1 attenuated 6-OHDA-induced iron accumulation via regulating the degradation of DMT1[J]. Neurobiol Aging, 2015,36(2):1183-1193.
[70] LIU Kai, XU Huamin, XIANG Hengwei, et al. Protective effects of Ndfip1 on MPP(+)-induced apoptosis in MES23.5 cells and its underlying mechanisms[J]. Experimental Neuro-logy, 2015,273:215-224.
[71] SONG N, IRON X J. Dopamine, and alpha-synuclein interactions in at-risk dopaminergic neurons in Parkinsons disease[J]. Neuroscience Bulletin, 2018,34(2):382-384.
[72] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072.
[73] YANG W S, STOCKWELL B R. Ferroptosis: death by lipid peroxidation[J]. Trends in Cell Biology, 2016,26(3):165-176.
[74] SEIBT T M, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019,133:144-152.
[75] BERSUKER K, HENDRICKS J M, LI Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019,575(7784):688-692.
[76] DEXTER D T, WELLS F R, LEES A J, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinsons disease[J]. Journal of Neurochemistry, 1989,52(6):1830-1836.
[77] SIAN J, DEXTER D T, LEES A J, et al. Alterations in glutathione levels in Parkinsons disease and other neurodegenerative disorders affecting basal ganglia[J]. Annals of Neurology, 1994,36(3):348-355.
[78] DEXTER D T, CARTER C J, WELLS F R, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinsons di-sease[J]. Journal of Neurochemistry, 1989,52(2):381-389.
[79] CHEN L, HAMBRIGHT W S, NA R, et al. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons Results in rapid motor neuron degeneration and paralysis[J]. Journal of Biological Chemistry, 2015,290(47):28097-28106.
[80] DO VAN B, GOUEL F, JONNEAUX A, et al. Ferroptosis, a newly characterized form of cell death in Parkinsons disease that is regulated by PKC[J]. Neurobiology of Disease, 2016,94:169-178.
[81] CHEN L, XIE J. Ferroptosis-suppressor-protein 1: a potential neuroprotective target for combating ferroptosis[J]. Mov Di-sord, 2020,35(3):400-400.
[82] GAO M H, MONIAN P, PAN Q H, et al. Ferroptosis is an autophagic cell death process[J]. Cell Research, 2016,26(9):1021-1032.
[83] XILOURI M, BREKK O R, STEFANIS L. Autophagy and Alpha-synuclein: relevance to Parkinsons disease and related synucleopathies[J]. Movement Disorders, 2016,31(2):178-192.
(本文編輯 于國(guó)藝)