黃玉菊 李沖 陳蕾蕾 謝俊霞
[摘要] 目的 探討柯諾辛對魚藤酮所致帕金森?。≒D)小鼠運(yùn)動功能的影響。方法 8周齡雄性C57BL/6n小鼠96只,隨機(jī)分為4組,每組24只。空白對照組給予空白溶劑,PD模型組給予魚藤酮(5 mg/kg),雷帕霉素組聯(lián)合給予雷帕霉素(10 mg/kg)和魚藤酮(5 mg/kg),柯諾辛組聯(lián)合給予柯諾辛(10 mg/kg)和魚藤酮(5 mg/kg),均灌胃給藥,每天1次,連續(xù)12周。分別于實(shí)驗(yàn)周期的第4、8和12周末,應(yīng)用轉(zhuǎn)棒實(shí)驗(yàn)檢測各組小鼠在轉(zhuǎn)棒上持續(xù)運(yùn)動的時(shí)間。結(jié)果 實(shí)驗(yàn)周期第4周末和第8周末,空白對照組、PD模型組、雷帕霉素組和柯諾辛組小鼠在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間比較差異無顯著性(F=1.220、3.638,P>0.05)。第12周末,PD模型組小鼠在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間較空白對照組縮短,雷帕霉素組、柯諾辛組在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間較PD模型組增加,差異均有統(tǒng)計(jì)學(xué)意義(F=5.166,P<0.05);雷帕霉素組與柯諾辛組比較,小鼠持續(xù)運(yùn)動時(shí)間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論 柯諾辛可以改善魚藤酮所致PD小鼠的運(yùn)動持久能力。
[關(guān)鍵詞] 帕金森病;魚藤酮;柯諾辛;小鼠;移動
[中圖分類號] Q426;R338.2 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號] 2096-5532(2020)02-0153-03
doi:10.11712/jms.2096-5532.2020.56.092 [開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200519.1427.002.html;2020-05-20 08:57
[ABSTRACT] Objective To investigate the effect of corynoxine on the motor function of mice with rotenone-induced Parkinsons disease (PD). ?Methods A total of 96 male C57BL/6n mice, aged 8 weeks, were randomly divided into blank control group, PD model group, rapamycin group, and corynoxine group, with 24 mice in each group. The mice in the blank control group were given blank solvent, those in the PD model group were given rotenone (5 mg/kg), those in the rapamycin group were given rapamycin (10 mg/kg) and rotenone (5 mg/kg), and those in the corynoxine group were given corynoxine (10 mg/kg) and rotenone (5 mg/kg), all by gavage, once a day for 12 consecutive weeks. At the end of weeks 4, 8, and 12 of experiment, the rotarod test was used to measure the duration of continuous movement on a rotating rod. ?Results At the end of weeks 4 and 8 of experiment, there was no significant difference in the duration of continuous movement on a rotating rod between the blank control group, the PD model group, the rapamycin group, and the corynoxine group (F=1.220,3.638;P>0.05). At the end of week 12, the PD model group had a significantly shorter duration of continuous movement on a rotating rod than the blank control group, and compared with the PD model group, the rapamycin group and the corynoxine group had a significant increase in the duration of continuous movement on a rotating rod (F=5.166,P<0.05). There was no significant difference in the duration of continuous movement on a rotating rod between the rapamycin group and the corynoxine group (P>0.05). ?Conclusion Corynoxine can improve motor duration in mice with rotenone-induced PD.
[KEY WORDS] Parkinsons disease; rotenone; corynoxine; mice; locomotion
帕金森?。≒D)是發(fā)病率僅次于阿爾茨海默病的第二大神經(jīng)退行性疾病,其主要臨床表現(xiàn)為運(yùn)動功能障礙。流行病學(xué)研究顯示,60歲以上人群PD的發(fā)病率為1%~2%,并且隨著年齡的增加而增加[1-2]。由于PD的病因、病理機(jī)制尚未完全闡明,目前仍然缺乏有效的治療措施。PD病理特征包含路易小體的出現(xiàn),而路易小體的主要成分是聚集的α-突觸核蛋白。已有研究顯示,α-突觸核蛋白基因(SNCA)的多倍增加或點(diǎn)突變均可導(dǎo)致α-突觸核蛋白錯(cuò)誤折疊,從而引發(fā)PD[3]。在大鼠和果蠅中,過表達(dá)α-突觸核蛋白可產(chǎn)生類PD樣癥狀[4]。自噬是降解受損細(xì)胞器和長壽命蛋白聚合物(如α-突觸核蛋白)的主要途徑。研究結(jié)果表明,自噬功能障礙與PD密切相關(guān)[5-6]。PD相關(guān)的細(xì)胞和動物實(shí)驗(yàn)也顯示,自噬相關(guān)基因的過表達(dá)或小分子自噬誘導(dǎo)劑可清除α-突觸核蛋白,保護(hù)神經(jīng)細(xì)胞[7]。因此,篩選能夠有效清除α-突觸核蛋白的小分子自噬誘導(dǎo)劑,成為研發(fā)PD新藥的一個(gè)研究熱點(diǎn)。在前期研究中,我們從中藥鉤藤中篩選到哺乳動物雷帕霉素靶蛋白(mTOR)抑制劑——柯諾辛[8],研究顯示柯諾辛能夠通過誘導(dǎo)自噬有效清除PD細(xì)胞模型過表達(dá)的α-突觸核蛋白[9-10]。但是,目前尚無應(yīng)用PD動物模型評估柯諾辛神經(jīng)保護(hù)作用的研究。本研究采用灌胃給藥魚藤酮方法構(gòu)建PD小鼠模型,并通過轉(zhuǎn)棒實(shí)驗(yàn)評估柯諾辛對PD小鼠運(yùn)動功能障礙的影響。
1 材料與方法
1.1 動物分組及處理
SPF級8周齡雄性C57BL/6n小鼠96只,體質(zhì)量(23±2)g,購于北京維通利華實(shí)驗(yàn)技術(shù)有限公司。小鼠每籠5只飼養(yǎng),室溫(21±2)℃,濕度(50±5)%,12/12 h晝夜循環(huán)光照,自由飲水、攝食、運(yùn)動。適應(yīng)性飼養(yǎng)1周后,小鼠隨機(jī)分為空白對照組(A組)、PD模型組(B組)、雷帕霉素組(C組)、柯諾辛組(D組),每組24只??瞻讓φ战M給予空白溶劑,PD模型組給予5 mg/kg的魚藤酮溶液,雷帕霉素組給予10 mg/kg的雷帕霉素溶液+5 mg/kg的魚藤酮溶液,柯諾辛組給予10 mg/kg的柯諾辛溶液+5 mg/kg的魚藤酮溶液,均灌胃給藥。造模前對照組和PD模型組均預(yù)先灌胃生理鹽水;雷帕霉素組和柯諾辛組分別預(yù)灌胃給予雷帕霉素和柯諾辛1周,造模開始后兩種藥物灌胃時(shí)間需間隔4 h以上。各組均每周灌胃6 d,連續(xù)灌胃12周。
1.2 轉(zhuǎn)棒實(shí)驗(yàn)
在實(shí)驗(yàn)周期的第4、8、12周末進(jìn)行轉(zhuǎn)棒實(shí)驗(yàn),測試各組小鼠的運(yùn)動功能。使用美國Med Associates Inc公司生產(chǎn)的轉(zhuǎn)棒儀,先將小鼠放在靜止的轉(zhuǎn)棒儀上適應(yīng)2 min,之后將轉(zhuǎn)棒儀以轉(zhuǎn)速4~40 r/min轉(zhuǎn)動,記錄小鼠在旋轉(zhuǎn)棒上持續(xù)運(yùn)動的時(shí)間,記錄時(shí)間5 min。測試3次,每次間隔2 h,取平均值。
1.3 統(tǒng)計(jì)學(xué)分析
應(yīng)用Graph Pad Prism軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料結(jié)果以±s表示,多組間比較采用單因素方差分析(one-way ANOVA檢驗(yàn))。
2 結(jié) ?果
實(shí)驗(yàn)周期第4周末和第8周末,空白對照組、PD模型組、雷帕霉素組和柯諾辛組小鼠在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間比較,差異均無顯著意義(F=1.220、3.638,P>0.05)。第12周末,PD模型組小鼠在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間較空白對照組縮短,雷帕霉素組、柯諾辛組在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間較PD模型組增加,差異均有統(tǒng)計(jì)學(xué)意義(F=5.166,P<0.05);雷帕霉素組與柯諾辛組比較,小鼠持續(xù)運(yùn)動時(shí)間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表1。
3 討 ?論
PD的病因?qū)W研究顯示,環(huán)境因素和遺傳因素是PD的兩大病因。目前,利用1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)建立的PD動物模型研究已經(jīng)取得了不少的成果,但現(xiàn)實(shí)生活中接觸MPTP的人并不多。而作為殺蟲劑和除草劑的魚藤酮,其結(jié)構(gòu)與MPTP類似,脂溶性高,可迅速穿過血-腦脊液屏障[11]。應(yīng)用魚藤酮建立的PD動物模型幾乎可以復(fù)制PD的所有癥狀,其中最為突出的是魚藤酮所致PD動物模型可以很好地模擬突觸核蛋白聚集和路易小體形成[12]。本文研究通過灌胃給藥魚藤酮構(gòu)建PD小鼠模型,從而模擬散發(fā)性PD。
目前PD治療缺乏有效的措施,而中草藥來自大自然,具有悠久的臨床應(yīng)用史,在PD的治療和研究中廣泛應(yīng)用。研究顯示,諸多中草藥的提取物或活性成分,如鉤藤[13]、烏雞白鳳丸[14]、丹參素[15]、銀杏[16]、雷公藤[17]和何首烏[18]等,可以從對抗焦慮、清除致病蛋白、減少氧化損傷、對抗神經(jīng)毒性等方面發(fā)揮顯著的神經(jīng)保護(hù)作用。因此,借助分子生物學(xué)技術(shù)和PD動物模型,從中草藥尤其是其活性組分中篩選小分子自噬誘導(dǎo)劑,是目前研發(fā)防治PD新藥的一項(xiàng)有效策略。
柯諾辛是從中藥鉤藤中提取的一種重要活性成分,我們前期的細(xì)胞實(shí)驗(yàn)證實(shí),柯諾辛可以在細(xì)胞水平通過抑制mTOR通路誘導(dǎo)自噬有效清除α-突觸核蛋白[8],但尚未在動物水平評估其神經(jīng)保護(hù)作用。運(yùn)動功能障礙是PD的主要臨床特征,本文研究通過轉(zhuǎn)棒實(shí)驗(yàn)評估柯諾辛作用不同時(shí)間對魚藤酮所致PD模型小鼠運(yùn)動功能的改善情況。mTOR在調(diào)節(jié)自噬的功能中發(fā)揮重要作用[19],雷帕霉素是第一個(gè)被發(fā)現(xiàn)的mTOR抑制劑,研究顯示,雷帕霉素對MPTP所致PD模型小鼠具有神經(jīng)保護(hù)作用,其可上調(diào)谷氨酸轉(zhuǎn)運(yùn)體和IL-6的表達(dá)[20],因此本文選用雷帕霉素作為陽性對照。本文研究結(jié)果顯示,實(shí)驗(yàn)周期的第4周和第8周末,PD模型組與空白對照組小鼠在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間差異無顯著性,直到第12周末PD模型組小鼠的運(yùn)動時(shí)間才顯著縮短,其原因可能是因?yàn)镻D的運(yùn)動癥狀一般晚于病理特征出現(xiàn)[21]。有文獻(xiàn)報(bào)道,只有當(dāng)黑質(zhì)中的多巴胺能神經(jīng)元受損超過50%,紋狀體中多巴胺遞質(zhì)的含量降低超過80%時(shí),運(yùn)動障礙癥狀才會出現(xiàn)[22]。本文研究結(jié)果顯示,實(shí)驗(yàn)周期的第12周末雷帕霉素組和柯諾辛組小鼠在轉(zhuǎn)棒上持續(xù)運(yùn)動時(shí)間較PD模型組明顯增加,且雷帕霉素組和柯諾辛組比較差異無顯著性,提示柯諾辛可以明顯增加PD模型小鼠的運(yùn)動持續(xù)能力。
綜上所述,柯諾辛對PD小鼠的運(yùn)動障礙具有改善作用,但是柯諾辛對多巴胺能神經(jīng)元的保護(hù)作用及其機(jī)制,還需要進(jìn)一步研究。
[參考文獻(xiàn)]
[1] MA Chunlin, SU Li, XIE Juanjuan, et al. The prevalence and incidence of Parkinsons disease in China: a systematic review and meta-analysis[J]. Journal of Neural Transmission, 2014,121(2):123-134.
[2] LI Gen, MA Jianfang, CUI Shishuang, et al. Parkinsons di-sease in China: a forty-year growing track of bedside work[J]. Translational Neurodegeneration, 2019,8(1):22.
[3] EMILY M R, MIRANDA B D, SANDERS L H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinsons disease[J]. Neurobiology of Disease, 2018,109:249-257.
[4] TRIGO-DAMAS I, DEL REY N L, BLESA J, et al. Novel models for Parkinsons disease and their impact on future drug discovery[J]. Expert Opinion on Drug Discovery, 2018,13(3):229-239.
[5] GUO Fang, LIU Xinyao, CAI Huaibin, et al. Autophagy in neurodegenerative diseases: pathogenesis and therapy[J]. Brain Pathology, 2018,28(1):3-13.
[6] LYNCH-DAY M A, MAO K, WANG K, et al. The role of autophagy in Parkinsons disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012,2(4): a009357.
[7] HARRIS H, RUBINSZTEIN D C. Control of autophagy as a therapy for neurodegenerative disease[J]. Nature Reviews Neurology, 2012,8(2):108-117.
[8] CHEN Leilei, SONG Juxian, LU Jiahong, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of Alpha-Synuclein via Akt/mTOR pathway[J]. Journal of Neuroimmune Pharmacology, 2014,9(3):380-387.
[9] CHEN Leilei, WANG Yongbo, SONG Juxian, et al. Phosphoproteome-based kinase activity profiling reveals the critical role of MAP2K2 and PLK1 in neuronal autophagy[J]. Autophagy, 2017,13(11):1969-1980.
[10] CHEN Lei, XIE Junxia. Identification of neuronal autophagy regulators: combined use of iKAP and THANATOS[J]. Movement Disorders, 2018,33(4):580-581.
[11] BOVE J, PERIER C. Neurotoxin-based models of Parkinsons disease[J]. Neuroscience, 2012,211(SI):51-76.
[12] GREENAMYRE J T, CANNON J R, DROLET R, et al. Lessons from the rotenone model of Parkinsons disease[J]. Trends in Pharmacological Sciences, 2010,31(4):141-142.
[13] SONG Juxian, LU Jiahong, LIU Liangfeng, et al. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B[J]. Autophagy, 2014,10(1):144-154.
[14] JIA R, GOU Y, HO L O, et al. Anti-apoptotic activity of Bak Foong Pills and its ingredients on 6-hydroxydopamine-induced neurotoxicity in PC12 cells[J]. Cell Biology International, 2005,29(10):835-842.
[15] WANG Xinjian, XU Jianxing. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytoto-xicity[J]. Neuroscience Research, 2005,51(2):129-138.
[16] 馮建軍,郭雄. 銀杏葉提取物對帕金森病模型大鼠神經(jīng)形態(tài)學(xué)的影響[J]. 西部醫(yī)學(xué), 2013,25(10):1455-1463.
[17] 周子懿,高俊鵬,向軍,等. CX3CR1參與雷公藤內(nèi)酯對MPP+帕金森病大鼠多巴胺能神經(jīng)元的保護(hù)作用[J]. 中國病理生理雜志, 2015,31(4):659-663.
[18] 李玉娟,段昌令,李連達(dá),等. 何首烏提取物對魚藤酮所致帕金森病線蟲模型的神經(jīng)保護(hù)作用[J]. 中國藥業(yè), 2016,25(5):12-15.
[19] KIM Y C, GUAN K L. mTOR: a pharmacologic target for autophagy regulation[J]. The Journal of Clinical Investigation, 2015,125(1):25-32.
[20] ZHANG Yunlong, HE Xiaoliang, WU Xiaojuan, et al. Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinsons disease[J]. Cell Death & Disease, 2017,8(2):e2611-e2611.
[21] BAIG F, LAWTON M, ROLINSKI M, et al. Delineating nonmotor symptoms in early Parkinsons disease and first-degree relatives[J]. Movement Disorders, 2015,30(13):1759-1766.
[22] SCHAPIRA A H, JENNER P. Etiology and pathogenesis of Parkinsons disease[J]. Movement Disorders, 2011,26(6):1049-1055.
(本文編輯 黃建鄉(xiāng))