溫曉鳴 謝俊霞 宋寧
[摘要] 目的 研究腹腔注射右旋糖酐鐵對(duì)大鼠嗅球、黑質(zhì)和紋狀體區(qū)多巴胺轉(zhuǎn)運(yùn)蛋白(DAT)蛋白表達(dá)的影響。方法 21 d離乳Wistar大鼠分別腹腔注射右旋糖酐鐵(10 mg/d)和生理鹽水,1周注射3次。1周后取大鼠嗅球、黑質(zhì)和紋狀體樣本,采用免疫印跡法(Western blot)檢測(cè)各腦區(qū)DAT蛋白表達(dá)情況。結(jié)果 與注射生理鹽水組相比,注射右旋糖酐鐵大鼠嗅球中DAT蛋白表達(dá)出現(xiàn)顯著降低(t=5.418,P<0.01),而黑質(zhì)和紋狀體中DAT蛋白表達(dá)未發(fā)生明顯改變(t=1.719、0.489,P>0.05)。結(jié)論 腹腔注射右旋糖酐鐵1周后引起大鼠嗅球中DAT蛋白表達(dá)的顯著下降。
[關(guān)鍵詞] 鐵右旋糖酐復(fù)合物;嗅球;黑質(zhì);紋狀體;多巴胺質(zhì)膜轉(zhuǎn)運(yùn)蛋白質(zhì)類;大鼠,Wistar
[中圖分類號(hào)] R338.2 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)02-0150-03
doi:10.11712/jms.2096-5532.2020.56.066 [開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200417.0915.009.html;2020-04-17 16:04
[ABSTRACT] Objective To explore the effect of intraperitoneal injection of iron dextran on the expression of dopamine transporter (DAT) protein in the olfactory bulb, substantia nigra, and striatum of rats. ?Methods Weaned Wistar rats aged 21 days were intraperitoneal injected with iron dextran (10 mg/d) or normal saline three times a week. One week later, the olfactory bulb, substantia nigra, and striatum were collected to analyze DAT protein expression in each brain region by immunoblotting (Western blot). ?Results Compared with the saline group, the rats injected with iron dextran had significantly reduced expression of DAT protein in the olfactory bulb (t=5.418,P<0.01), while the expression of DAT protein in the substantia nigra and striatum did not change significantly (t=1.719,0.489;P>0.05). ?Conclusion Intraperitoneal injection of iron dextran for one week can significantly decrease the expression of DAT protein in the olfactory bulb of rats.
[KEY WORDS] iron-dextran complex; olfactory bulb; substantia nigra; corpus striatum; dopamine plasma membrane transport proteins; rats, Wistar
帕金森?。≒D)是一種常見的神經(jīng)退行性疾病,其主要病理特征之一是黑質(zhì)-紋狀體系統(tǒng)多巴胺能神經(jīng)元的進(jìn)行性退變,紋狀體多巴胺含量減少,導(dǎo)致機(jī)體運(yùn)動(dòng)功能障礙[1]。酪氨酸在酪氨酸羥化酶的作用下生成左旋多巴,之后又通過芳香族氨基酸脫羧酶的作用生成多巴胺。多巴胺可以通過囊泡釋放到突觸間隙,作用于相應(yīng)的受體,突觸間隙中的多巴胺也可以經(jīng)多巴胺轉(zhuǎn)運(yùn)蛋白(DAT)被重新攝取到突觸前神經(jīng)元[2-4],從而維持多巴胺水平在突觸間隙處于一種穩(wěn)定狀態(tài)。DAT介導(dǎo)的多巴胺重?cái)z取可以增加細(xì)胞質(zhì)中多巴胺的含量進(jìn)而可能導(dǎo)致細(xì)胞損傷[5-6]。研究表明,在PD病人和PD動(dòng)物模型中都有黑質(zhì)致密區(qū)鐵的選擇性沉積[7-8]。大鼠腹腔注射右旋糖酐鐵可以導(dǎo)致鐵在黑質(zhì)致密區(qū)的選擇性沉積[9-10]。本研究的主要目的是在大鼠腹腔注射右旋糖酐鐵1周后觀察嗅球、黑質(zhì)和紋狀體中DAT蛋白表達(dá)的變化。
1 材料和方法
1.1 動(dòng)物分組與處理
SPF級(jí)21 d離乳Wistar大鼠20只,購于北京維通利華公司,飼養(yǎng)于室溫(21±2)℃、濕度(50±5)%、12 h/12 h晝夜循環(huán)光照環(huán)境下,可自由飲食。注射用右旋糖酐鐵購自Sigma公司。本實(shí)驗(yàn)將大鼠隨機(jī)分為注射生理鹽水組(A組)和注射右旋糖酐鐵組(B組),每組10只,分別注射生理鹽水和右旋糖酐鐵(10 mg/d),1周注射3次。
1.2 大鼠腦區(qū)樣本提取
大鼠腹腔注射右旋糖酐鐵或生理鹽水1周后,斷頭取嗅球、黑質(zhì)和紋狀體樣本,稱量嗅球、黑質(zhì)和紋狀體樣本凈質(zhì)量。
1.3 免疫印跡法(Western blot)檢測(cè)DAT蛋白的表達(dá)
按照樣本質(zhì)量分別加入一定量的蛋白裂解液,充分超聲研磨,以12 000 r/min離心25 min,采用BCA試劑盒檢測(cè)蛋白濃度,加入Loading buffer后95 ℃水浴5 min,之后將蛋白樣本進(jìn)行聚丙烯酰胺凝膠電泳,并濕轉(zhuǎn)到PVDF膜上,使用50 g/L的脫脂奶粉溶液室溫?fù)u床孵育2 h,用DAT(1∶1 000)和β-actin(1∶10 000)一抗4 ℃孵育過夜,再用山羊抗兔HRP-IgG (1∶10 000)二抗室溫孵育1 h,利用ECL化學(xué)發(fā)光試劑顯影。應(yīng)用Image J軟件進(jìn)行條帶灰度分析,目的蛋白的表達(dá)水平以目的蛋白與內(nèi)參蛋白β-actin條帶灰度值的比值來表示。
1.4 統(tǒng)計(jì)學(xué)分析
采用Prism 6軟件進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析,所得計(jì)量資料數(shù)據(jù)以±s表示,組間比較采用t檢驗(yàn),P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
與注射生理鹽水組相比,注射右旋糖酐鐵組大鼠嗅球中DAT蛋白表達(dá)出現(xiàn)顯著降低(t=5.418,P<0.01),而黑質(zhì)和紋狀體中DAT蛋白表達(dá)未發(fā)生明顯改變(t=1.719、0.489,P>0.05)。見表1。
3 討 ?論
PD作為一種多發(fā)于中老年人群的神經(jīng)退行性疾病,其主要發(fā)病因素包括遺傳因素、環(huán)境因素、年齡等[1,11]。PD病人腦內(nèi)紋狀體多巴胺含量下降是其發(fā)病的重要原因。多巴胺作為一種神經(jīng)遞質(zhì),一方面可以通過囊泡釋放到突觸間隙作用于相應(yīng)的受體,一方面本身易被氧化,可以與細(xì)胞內(nèi)的鐵作用生成有害物質(zhì),例如6-羥基多巴胺(6-OHDA)[5-6,12]。DAT介導(dǎo)的多巴胺重?cái)z取可維持多巴胺水平在突觸間隙處于一種穩(wěn)定狀態(tài)。去鐵胺(DFO)是一種鐵螯合劑,可以螯合細(xì)胞內(nèi)的鐵。有研究結(jié)果表明,DFO可以通過影響細(xì)胞內(nèi)吞作用和DAT mRNA的穩(wěn)定性而影響DAT的重吸收作用[13-14]。但是關(guān)于鐵對(duì)DAT的調(diào)節(jié)卻鮮有報(bào)道,故本研究通過腹腔注射右旋糖酐鐵制備大鼠高鐵模型,探討鐵對(duì)DAT蛋白表達(dá)的影響。
已有研究表明,PD病人紋狀體囊泡攝取功能障礙可能導(dǎo)致多巴胺能神經(jīng)元死亡[15],主要原因可能是囊泡攝取多巴胺的能力下降,導(dǎo)致細(xì)胞質(zhì)中游離多巴胺的水平增加,多巴胺代謝副產(chǎn)物包括羥基自由基等物質(zhì)可以對(duì)細(xì)胞造成損傷。DAT將多巴胺攝取至細(xì)胞內(nèi)可能會(huì)增加多巴胺能神經(jīng)元中多巴胺的含量,多巴胺氧化可產(chǎn)生6-OHDA和醌類等有毒物質(zhì)[5],從而對(duì)多巴胺能神經(jīng)元造成損傷;同時(shí),DAT還可以將某些有毒物質(zhì)攝取到細(xì)胞中[16]。1-甲基4-苯基-1,2,3,6-四氫吡啶(MPTP)可以被單胺氧化酶催化轉(zhuǎn)變?yōu)?-甲基-4-苯基吡啶(MPP+),通過DAT進(jìn)入細(xì)胞后可以造成線粒體功能障礙。DAT敲除小鼠可以抵抗MPTP的毒性作用[17],而DAT過表達(dá)小鼠對(duì)MPTP的毒性作用更敏感[18]。另外,可卡因及其類似物可以阻止DAT將多巴胺轉(zhuǎn)運(yùn)至細(xì)胞的過程,安非他命及其類似物可以翻轉(zhuǎn)DAT轉(zhuǎn)運(yùn)多巴胺的過程,將細(xì)胞內(nèi)的多巴胺轉(zhuǎn)運(yùn)至突觸間隙[19],促使突觸間隙的多巴胺含量增加。因此,DAT在多巴胺能神經(jīng)元損傷的機(jī)制中具有非常重要的作用。
有研究結(jié)果表明,與正常人相比,PD病人黑質(zhì)紋狀體系統(tǒng)中突觸前末梢和胞體中DAT表達(dá)均出現(xiàn)顯著降低[20]。DAT的活性可以受到某些翻譯后修飾的調(diào)節(jié),例如磷酸化、泛素化和糖基化等,這些翻譯后修飾主要影響DAT的轉(zhuǎn)運(yùn)動(dòng)力學(xué)和在細(xì)胞中的分布,例如蛋白激酶C可以通過磷酸化作用促進(jìn)DAT的內(nèi)化[19],胞外信號(hào)調(diào)節(jié)激酶則可以上調(diào)DAT的表達(dá)水平和活性[21]。此外,有研究表明,在細(xì)胞模型中DFO可以降低DAT蛋白的表達(dá)和活性[13-14]。鐵能夠促進(jìn)多巴胺氧化過程,鐵和多巴胺反應(yīng)生成的6-OHDA是線粒體復(fù)合體Ⅰ和復(fù)合體Ⅳ的抑制劑,可以導(dǎo)致線粒體功能障礙,從而減少ATP的產(chǎn)生,最終導(dǎo)致細(xì)胞的死亡;6-OHDA的代謝還可以產(chǎn)生過氧化氫,參與Fenton反應(yīng)生成羥基自由基,導(dǎo)致DNA加合物的合成、脂質(zhì)過氧化、質(zhì)膜完整性的丟失以及凋亡等[5]。PD的非運(yùn)動(dòng)癥狀包括嗅覺減退,嗅覺減退出現(xiàn)的時(shí)間比運(yùn)動(dòng)癥狀出現(xiàn)的時(shí)間更早。有研究結(jié)果表明,在注射MPTP的食蟹猴嗅球中,多巴胺含量增加,而且嗅球多巴胺含量的增加并不依賴于黑質(zhì)紋狀體多巴胺能神經(jīng)元的退變[22],另外也有研究在PD病人嗅球中發(fā)現(xiàn)多巴胺能細(xì)胞數(shù)量的增加[23],這可能是由于其他神經(jīng)遞質(zhì)系統(tǒng)早期損傷所產(chǎn)生的代償導(dǎo)致的。在本研究中,注射右旋糖酐鐵大鼠嗅球中DAT蛋白表達(dá)水平出現(xiàn)明顯降低,但是黑質(zhì)和紋狀體中DAT蛋白表達(dá)水平并未出現(xiàn)明顯改變,其確切的機(jī)制還需要進(jìn)一步研究探討。
[參考文獻(xiàn)]
[1] KALIA L V, LANG A E. Parkinsons disease[J]. Lancet (London, England), 2015,386(9996):896-912.
[2] MULVIHILL K G. Presynaptic regulation of dopamine release: role of the DAT and VMAT2 transporters[J]. Neurochemistry International, 2019,122:94-105.
[3] GEORGE R U. Dopamine compartmentalization, selective dopaminergic vulnerabilities in Parkinsons disease and therapeutic opportunities[J]. Annals of Clinical and Translational Neurology, 2019,6(2):406-415.
[4] MCHUGH P C, BUCKLEY D A. The structure and function of the dopamine transporter and its role in CNS diseases[J]. Vitamins and Hormones, 2015,98:339-369.
[5] HARE D J, DOUBLE K L. Iron and dopamine: a toxic couple[J]. Brain: a Journal of Neurology, 2016,139(Pt 4):1026-1035.
[6] SONG Ning, XIE Junxia. Iron, dopamine, and α-Synuclein interactions in at-risk dopaminergic neurons in Parkinsons di-sease[J]. Neuroscience Bulletin, 2018,34(2):382-384.
[7] OAKLEY A E, COLLINGWOOD J F, DOBSON J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease[J]. Neurology, 2007,68(21):1820-1825.
[8] WANG Jun, BI Mingxia, XIE Junxia. Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats[J]. Cellular and Molecular Neurobiology, 2015,35(5):661-668.
[9] JIANG Hong, SONG Ning, WANG Jun, et al. Peripheral iron dextran induced degeneration of dopaminergic neurons in rat substantia nigra[J]. Neurochemistry International, 2007,51(1):32-36.
[10] WANG Ran, WANG Youcui, QU Le, et al. Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2[J]. Neurochemistry International, 2019,125:127-135.
[11] PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. Nature Reviews Neuroscience, 2017,18(4):251-259.
[12] ZUCCA F A, SEGURA-AGUILAR J, FERRARI E A, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinsons disease[J]. Progress in Neurobio-logy, 2017,155(SI):96-119.
[13] WIESINGER J A, JAMES P B, CHRISTOPHER J C, et al. Down-regulation of dopamine transporter by iron chelationin vitrois mediated by altered trafficking, not synthesis[J]. Journal of Neurochemistry, 2007,100(1):167-179.
[14] NARASIMHA V H, GORDON L J, ERICA L U. Iron chelation down-regulates dopamine transporter expression by decreasing mRNA stability and increasing endocytosis in N2a cells[J]. Experimental Cell Research, 2011,317(4):405-412.
[15] PIFL C, RAJPUT A, REITHER H, et al. Is Parkinsons di-sease a vesicular dopamine storage disorder? evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum[J]. Journal of Neuroscience, 2014,34(24):8210-8218.
[16] KELLY M L, SHABABA T M, ALI S, et al. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease[J]. European Journal of Neuroscience, 2017,45(1):20-33.
[17] BEZARD E, CHRISTIAN E G, MARIE-CHRISTINE F, et al. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter[J]. Experimental Neurology, 1999,155(2):268-273.
[18] MASOUD S T, VECCHIO L M, BERGERON Y, et al. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits[J]. Neurobiology of Disease, 2015,74:66-75.
[19] CHRISTOPHER L G, MICHELLE G B, MCFADDEN L M, et al. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for di-sease[J]. Pharmacological Reviews, 2015,67(4):1005-1024.
[20] FAZIO P, SVENNINGSSON P, CSELNYI Z, et al. Nigrostriatal dopamine transporter availability in early Parkinsons disease[J]. Movement Disorders, 2018,33(4):592-599.
[21] ELIZABETH A B, BRONWYN K, JALIGAM V, et al. D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism[J]. Molecular Pharmacology, 2007,71(5):1222-1232.
[22] PIFL C, HARALD R, DEL REY N L, et al. Early paradoxical increase of dopamine: a neurochemical study of olfactory bulb in asymptomatic and symptomatic MPTP treated monkeys[J]. Frontiers in Neuroanatomy, 2017,11:46.
[23] IAKI-CARRIL M, MARIA-CRISTINA C, CRISTINA O, et al. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders[J]. Acta Neuropathologica, 2011,122(1):61-74.
(本文編輯 馬偉平)