曹玉珍,張乾昆,孫敬來(lái),張力新,余?輝,龐天翔
BM-MSCs的CNN特征映射與活性評(píng)價(jià)模型研究
曹玉珍1,張乾昆1,孫敬來(lái)1,張力新1,余?輝1,龐天翔2
(1.天津大學(xué)生物醫(yī)學(xué)檢測(cè)技術(shù)與儀器天津市重點(diǎn)實(shí)驗(yàn)室,天津 300072;2.中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院血液病與血液病研究所國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300020)
針對(duì)分選富集具有治療疾病效果的干細(xì)胞(MSCs)亞群很難實(shí)現(xiàn)質(zhì)量控制的問(wèn)題,設(shè)計(jì)了以深度神經(jīng)網(wǎng)絡(luò)作為特征映射的主成分分析-嶺回歸模型,實(shí)現(xiàn)對(duì)骨髓間充質(zhì)干細(xì)胞(BM-MSCs)的定量評(píng)價(jià).通過(guò)三維重建細(xì)胞計(jì)算基于長(zhǎng)軸的最大截面作為模型輸入;訓(xùn)練4層神經(jīng)網(wǎng)絡(luò)將細(xì)胞分為正常細(xì)胞與病人細(xì)胞,提取全連接層輸出作為特征映射;利用主成分分析降維后的前3項(xiàng)主成分向量作為自變量,樣本評(píng)分作為因變量,使用嶺回歸模型進(jìn)行擬合,將特征與細(xì)胞活性評(píng)分相聯(lián)系,實(shí)現(xiàn)BM-MSCs活性定量評(píng)價(jià),為后續(xù)分選高質(zhì)量的活性細(xì)胞提供依據(jù).第1階段通過(guò)對(duì)176例細(xì)胞樣本進(jìn)行數(shù)據(jù)擴(kuò)增,采用8折交叉驗(yàn)證輸入二分類神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,第2階段將其中標(biāo)有專家評(píng)分的68例細(xì)胞樣本輸入到已訓(xùn)練的神經(jīng)網(wǎng)絡(luò)中提取全連接層輸出作為特征,利用主成分分析-嶺回歸模型實(shí)現(xiàn)定量評(píng)價(jià),結(jié)果表明:神經(jīng)網(wǎng)絡(luò)二分類準(zhǔn)確率98.75%,敏感度為97.84%,特異度為99.43%,對(duì)于定量評(píng)價(jià),模型總體樣本的2為0.8736,擬合效果良好,可以實(shí)現(xiàn)對(duì)BM-MSCs定量評(píng)價(jià).
干細(xì)胞;深度學(xué)習(xí);特征映射;主成分分析;定量評(píng)價(jià)
骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BM-MSC)具有支持造血干細(xì)胞和造血祖細(xì)胞增殖,調(diào)節(jié)骨髓微環(huán)境的重要作用,并具有多向分化潛能[1].化療藥物、放射線、白血病細(xì)胞都能使BM-MSCs損傷和衰老,衰老間充質(zhì)干細(xì)胞支持造血功能顯著降低,是導(dǎo)致白血病患者正常造血功能衰竭的重要原因[2].BM-MSCs在多種組織中的免疫調(diào)節(jié)方面發(fā)揮重要作用,具有治療多種免疫異常所致疾病的潛能[3-4].雖然大量研究已經(jīng)使干細(xì)胞臨床應(yīng)用更進(jìn)一步,但可能是由于干細(xì)胞群體異質(zhì)性,結(jié)果仍無(wú)定論,很難實(shí)現(xiàn)質(zhì)量控制[5].
流式細(xì)胞技術(shù)通過(guò)標(biāo)記細(xì)胞表面分子,能夠精確分析和分選細(xì)胞亞群,為科學(xué)研究提供了重要研究方法.但是,流式細(xì)胞技術(shù)不能精確鑒別細(xì)胞活性狀態(tài).機(jī)器學(xué)習(xí)預(yù)測(cè)干細(xì)胞外觀已經(jīng)成為可能[6],Caicedo等[7]提出基于圖像方式可以獲得細(xì)胞的特征,進(jìn)而聯(lián)系細(xì)胞生物功能,文獻(xiàn)[8-10]在很多領(lǐng)域應(yīng)用深度學(xué)習(xí)取得成功,Nitta等[11]用簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)對(duì)活細(xì)胞分類,建立了基于圖像的流式細(xì)胞儀,為圖像與細(xì)胞之間建立了聯(lián)系,但是沒(méi)有對(duì)細(xì)胞活性進(jìn)行評(píng)價(jià).
區(qū)分BM-MSCs不同活性亞群具有重要科學(xué)價(jià)值.細(xì)胞分類方式多是采用二維平面細(xì)胞圖片通過(guò)傳統(tǒng)方法進(jìn)行處理,獲得細(xì)胞特征,無(wú)法定量評(píng)價(jià)細(xì)胞活性.通用的卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network,CNN)模型,例如GoogLeNet和ResNet,具有龐大的架構(gòu)和海量的權(quán)重系數(shù),訓(xùn)練此類網(wǎng)絡(luò)需要百萬(wàn)級(jí)樣本數(shù)據(jù),然而干細(xì)胞實(shí)驗(yàn)代價(jià)較大,無(wú)法獲得足量樣本完成網(wǎng)絡(luò)訓(xùn)練,因此此類現(xiàn)成網(wǎng)絡(luò)無(wú)法滿足現(xiàn)有需求.
本文從全新角度理解細(xì)胞結(jié)構(gòu)與功能的關(guān)聯(lián),針對(duì)小樣本數(shù)據(jù)集設(shè)計(jì)專用卷積神經(jīng)網(wǎng)絡(luò),使用基于長(zhǎng)軸的最大截面作為特征平面輸入,對(duì)急性髓系白血病(acute myeloid leukemia,AML)患者/正常對(duì)照組BM-MSCs進(jìn)行分類,通過(guò)遷移已訓(xùn)練好的網(wǎng)絡(luò)并利用主成分分析-嶺回歸模型分析進(jìn)行MSCs活性評(píng)價(jià),進(jìn)而鑒定功能亞群,為實(shí)現(xiàn)臨床急需BM-MSCs分選和富集過(guò)程的質(zhì)量控制提供新思路.
BM-MSCs來(lái)自于28名初次診斷為AML患者和15名健康捐獻(xiàn)者骨髓樣本.實(shí)驗(yàn)通過(guò)密度梯度離心法從新鮮骨髓樣本中分離BM-MSCs,進(jìn)行體外培養(yǎng)與功能測(cè)評(píng)(微環(huán)境下細(xì)胞周期實(shí)驗(yàn)與細(xì)胞衰老測(cè)評(píng));將培養(yǎng)的細(xì)胞用胰蛋白酶消解,計(jì)數(shù)并稀釋至每毫升1×104細(xì)胞;然后將細(xì)胞膜與細(xì)胞核分別染色,固定細(xì)胞并用共聚焦顯微鏡觀察細(xì)胞形態(tài),并且拍攝三維細(xì)胞圖像,圖1為拍攝所得到的細(xì)胞切片圖像.實(shí)驗(yàn)采用共聚焦顯微鏡(PerkinElmer),三維成像分辨率為0.0663μm×0.0663μm×0.5μm,平面切片1000像素×1000像素.
圖1?干細(xì)胞切片
共聚焦顯微鏡獲得的圖片切片攜帶的系統(tǒng)噪聲,主要是由相鄰圖層熒光散焦造成的.將整個(gè)光路看做一個(gè)光學(xué)系統(tǒng),則細(xì)胞與細(xì)胞圖像之間的關(guān)系為
式中:(,)表示細(xì)胞圖像;(,)代表細(xì)胞空間分布;(,)表示光學(xué)系統(tǒng)的傳遞函數(shù),即點(diǎn)擴(kuò)散函數(shù)(point spread function,PSF);*為卷積符號(hào).
本文采用Dainty提出的迭代盲反卷積(iterative blind deconvolution,IBD)算法對(duì)圖像進(jìn)行還原[12],然后對(duì)還原圖像進(jìn)行二值化,進(jìn)而采用可視化工具包(visualization toolkit,VTK)(https://vtk.org)中的面繪制算法對(duì)細(xì)胞圖像進(jìn)行三維重建.三維重建結(jié)果如圖2所示,其中純藍(lán)色代表細(xì)胞膜,棕紅色代表細(xì)?胞核.
圖2?正常和AML BM-MSCs三維結(jié)構(gòu)
2.1.1?長(zhǎng)軸計(jì)算
設(shè)細(xì)胞表面輪廓上點(diǎn)的坐標(biāo)為(x,y,z),=12,,,其中為輪廓點(diǎn)總數(shù),計(jì)算空間長(zhǎng)軸時(shí),遍歷表面輪廓上所有兩點(diǎn)間距離,取其中最大值就是骨髓間充質(zhì)干細(xì)胞空間長(zhǎng)軸max,其計(jì)算公式為
2.1.2?最大截面計(jì)算
其次坐標(biāo)系平移,將原坐標(biāo)系長(zhǎng)軸中點(diǎn)點(diǎn)作為新坐標(biāo)系原點(diǎn).定義原坐標(biāo)軸中任何一點(diǎn)在新坐標(biāo)系中坐標(biāo),其計(jì)算公式為
最后,利用旋轉(zhuǎn)矩陣可以將原坐標(biāo)系中所有點(diǎn)坐標(biāo)轉(zhuǎn)換成新旋轉(zhuǎn)坐標(biāo)系中坐標(biāo).經(jīng)過(guò)上面3步計(jì)算,得到重切片中所需原點(diǎn)(點(diǎn))和重切片軸中軸,圖4紅色曲線代表單位圓,圓心為點(diǎn),且軸垂直于此單位圓,然后利用軸與軸(圖4藍(lán)色虛線)在單位圓上旋轉(zhuǎn)實(shí)現(xiàn)最大截面選?。ㄟ^(guò)BM-MSCs光學(xué)切片的重切片后,利用細(xì)胞三維結(jié)構(gòu)的新坐標(biāo)系,將細(xì)胞空間長(zhǎng)軸作為旋轉(zhuǎn)軸,旋轉(zhuǎn)角步長(zhǎng)為1°,分別獲取細(xì)胞截面,共180組截面,按照面積大小對(duì)180組截面進(jìn)行排序,其中面積最大的對(duì)應(yīng)原始BM-MSCs輪廓的最大截面.
圖4?旋轉(zhuǎn)后坐標(biāo)系示意
Fig.4?Schematic of the coordinate system after rotation
根據(jù)最大截面坐標(biāo)軸信息,對(duì)原三維細(xì)胞切片進(jìn)行重切片,如圖5所示,采用VTK里的VTKImageReslice函數(shù),可獲得該細(xì)胞的基于長(zhǎng)軸的最大截面.
圖5?三維細(xì)胞重切片
2.2.1?構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)
自行設(shè)計(jì)的4層神經(jīng)網(wǎng)絡(luò),包括兩層卷積層和兩層全連接層,結(jié)構(gòu)如圖6所示,其中每個(gè)卷積層之后都采用了池化層,激活函數(shù)選擇ReLu函數(shù),在第3層全連接層之后有dropout層及池化層,其中dropout層的設(shè)計(jì)可以防止過(guò)擬合.本設(shè)計(jì)網(wǎng)絡(luò)結(jié)構(gòu)簡(jiǎn)單,有效限制了權(quán)重參數(shù)的數(shù)量,非常適用于小樣本數(shù)據(jù)集學(xué)習(xí)任務(wù).本文網(wǎng)絡(luò)學(xué)習(xí)分為兩階段,如圖7所示,第1階段利用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行特征映射,通過(guò)176例細(xì)胞樣本二分類標(biāo)簽完成網(wǎng)絡(luò)參數(shù)辨識(shí);第2階段通過(guò)遷移學(xué)習(xí)抽取特征,采用主成分分析技術(shù)進(jìn)行特征降維,結(jié)合嶺回歸模型,實(shí)現(xiàn)對(duì)BM-MSCs的定量分析.回歸模型用68例樣本進(jìn)行訓(xùn)練及評(píng)價(jià),由中國(guó)醫(yī)學(xué)科學(xué)院血液病醫(yī)院專家對(duì)細(xì)胞活性進(jìn)行人工評(píng)分,分?jǐn)?shù)在0~10之間,以0.5分劃分等級(jí).
圖6?卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
2.2.2?特征映射回歸模型
將已經(jīng)訓(xùn)練好的網(wǎng)絡(luò)作為特征提取模型,提取最后全連接層8個(gè)神經(jīng)元輸出作為細(xì)胞特征,然后經(jīng)過(guò)主成分分析(principle component analysis,PCA)實(shí)現(xiàn)特征降維,經(jīng)過(guò)多次驗(yàn)證,前3項(xiàng)主成分向量特征值的貢獻(xiàn)率均為0.99以上,且第1項(xiàng)特征值貢獻(xiàn)率在0.9以上,以z(=1,2,…,8)來(lái)表示第個(gè)主成分向量,選擇1、2和3作為輸入回歸模型的自變量.
圖7?二階段模型示意
采用嶺回歸建立回歸方程,此方法為防止過(guò)擬合,損失函數(shù)使用了L2正則項(xiàng),即
實(shí)驗(yàn)共獲取了176例細(xì)胞樣本,其中101例健康捐獻(xiàn)者細(xì)胞,75例AML的細(xì)胞.由于生物實(shí)驗(yàn)成本昂貴,難度較高,可重復(fù)性較小,只能獲取較小樣本數(shù)據(jù)集,而深度學(xué)習(xí)一般適用于大樣本,為了解決本問(wèn)題,采用自己設(shè)計(jì)的小型網(wǎng)絡(luò),通過(guò)數(shù)據(jù)擴(kuò)增和交叉驗(yàn)證保證設(shè)計(jì)網(wǎng)絡(luò)穩(wěn)定性.由于基于長(zhǎng)軸最大截面的圖像數(shù)據(jù)為1000×1000,所以通過(guò)圖像預(yù)處理,均抽樣為32×32大小的圖片.
數(shù)據(jù)擴(kuò)增是將小樣本集通過(guò)旋轉(zhuǎn)、平移、縮放、翻轉(zhuǎn)、加噪聲等方法,增加樣本數(shù)量的一種方式[13].通過(guò)數(shù)據(jù)擴(kuò)增,將原本176例樣本擴(kuò)增到了3694例,其中2119例健康捐獻(xiàn)者細(xì)胞,1575例急性髓系白血病人細(xì)胞.圖8展示了經(jīng)過(guò)旋轉(zhuǎn)和翻轉(zhuǎn)等擴(kuò)增后BM-MSCs圖片.
圖8?同一圖片擴(kuò)增數(shù)據(jù)
采用8折交叉驗(yàn)證,即將擴(kuò)增后的數(shù)據(jù)平均分為8份,每份440個(gè)樣本,均含有正常細(xì)胞和AML細(xì)胞樣本,總計(jì)對(duì)上述卷積網(wǎng)絡(luò)訓(xùn)練8次,每次使用7份數(shù)據(jù)進(jìn)行訓(xùn)練,剩下的1份數(shù)據(jù)作為測(cè)試集,去判斷網(wǎng)絡(luò)分類效果,最終得到8個(gè)訓(xùn)練好的模型.
采用隨機(jī)梯度下降算法,初始學(xué)習(xí)率為0.001,損失函數(shù)選擇二分類交叉熵函數(shù).對(duì)最大截面重采樣像素尺度進(jìn)行定量測(cè)試,結(jié)果如表1所示,像素尺度過(guò)大,如128像素×128像素,會(huì)導(dǎo)致網(wǎng)絡(luò)參數(shù)過(guò)多,訓(xùn)練時(shí)間較長(zhǎng),而準(zhǔn)確率受限于樣本數(shù)量反而不高.綜合考慮后,本文最終選擇樣本為32像素×?32像素,經(jīng)過(guò)8折交叉驗(yàn)證訓(xùn)練,得到平均準(zhǔn)確率為98.75%,標(biāo)準(zhǔn)差為0.34%.高準(zhǔn)確率和較低標(biāo)準(zhǔn)差表明模型具有較好穩(wěn)定性.
表1?深度學(xué)習(xí)模型測(cè)試結(jié)果
Tab.1?Testing results of the deep learning model
采用敏感度(sensitivity,TPR)、特異度(specific-ity,TNR)和受試者工作特征(receiver operating characteristic,ROC)曲線及其曲線下面積(area under curve,AUC)來(lái)評(píng)價(jià)模型應(yīng)用價(jià)值.其中,敏感度值越大說(shuō)明患者被診斷出患病的概率越大,漏檢率越低,模型越好,特異度值越大說(shuō)明健康的人被誤診概率越小,模型越好.本模型敏感度為97.84%,特異度為99.43%,受試者特征曲線如圖9所示,其AUC為0.998,受試者曲線越靠近左上角、AUC越接近1,說(shuō)明模型應(yīng)用價(jià)值越高.由以上評(píng)價(jià)標(biāo)準(zhǔn)可以看出所用網(wǎng)絡(luò)模型適用于實(shí)驗(yàn)研究.
圖9?卷積神經(jīng)網(wǎng)絡(luò)的受試者工作特征曲線
在第2階段,采用68例細(xì)胞活性評(píng)分?jǐn)?shù)據(jù)為樣本,分為兩組,其中50個(gè)樣本作為訓(xùn)練集用于計(jì)算回歸模型,18個(gè)樣本作為測(cè)試集用于模型檢驗(yàn).經(jīng)過(guò)特征映射回歸模型,得到
表2?回歸模型擬合結(jié)果分析
Tab.2?Fitting results analysis of the regression model
健康捐獻(xiàn)者與AML患者的BM-MSCs在顯微鏡下可以觀察到具有顯著的三維形態(tài)差異,因此可以將其形態(tài)與功能聯(lián)系起來(lái),實(shí)現(xiàn)BM-MSCs的分選與識(shí)別.本文首先提出了基于長(zhǎng)軸的最大截面的算法,在三維細(xì)胞結(jié)構(gòu)中找到特征面,即使用二維特征面代替三維細(xì)胞,充分保留其結(jié)構(gòu)特征;其次提出一個(gè)簡(jiǎn)單的4層卷積神經(jīng)網(wǎng)絡(luò),主要針對(duì)小樣本集,使用數(shù)據(jù)擴(kuò)增技術(shù),通過(guò)訓(xùn)練和測(cè)試,基于細(xì)胞形態(tài)來(lái)分析和分選細(xì)胞,實(shí)驗(yàn)結(jié)果表明該模型分類效果好、穩(wěn)定性高,極具應(yīng)用價(jià)值.此外本文提出通過(guò)二分類神經(jīng)網(wǎng)絡(luò)的特征映射,進(jìn)行遷移學(xué)習(xí),采用PCA-嶺回歸模型,定量分析BM-MSCs的新思路,實(shí)驗(yàn)結(jié)果表明該定量模型可以滿足臨床應(yīng)用需要,進(jìn)而彌補(bǔ)流式細(xì)胞儀在細(xì)胞功能鑒定上的不足,為細(xì)胞分析、分選和富集提供了可能.
[1] 岑航輝,韓春茂. 骨髓間充質(zhì)干細(xì)胞的研究[J]. 國(guó)際輸血及血液學(xué)雜志,2002,25(4):359-362.
Cen Hanghui,Han Chunmao. Review of bone marrow mesenchymal stem cells[J]. International Journal of Blood Transfusion and Hematology,2002,25(4):359-362(in Chinese).
[2] Stenderup K,Justesen J,Clausen C,et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells[J]. Bone (New York),2003,33(6):919-926.
[3] Castro-Manrreza M E,Montesinos J J. Immunoregula-tion by mesenchymal stem cells:Biological aspects and clinical applications[J]. Journal of Immunology Research,2015,2015:1-20.
[4] Kim S U,De V J. Stem cell-based cell therapy in neurological diseases:A review[J]. Journal of Neuroscience Research,2010,87(10):2183-2200.
[5] Lee M W,Ryu S,Kim D S,et al. Mesenchymal stem cells in suppression or progression of hematologic malignancy:Current status and challenges[J]. Leukemia,2019,33(3):597-611.
[6] Amy M. Machine learning predicts the look of stem cells[EB/OL]. http://www.nature.com/articles/nature. 2017.21769.
[7] Caicedo J C,Cooper S,Heigwer F,et al. Data-analysis strategies for image-based cell profiling[J]. Nature Methods,2017,14(9):849-863.
[8] Lecun Y,Bengio Y,Hinton G. Deep learning[J]. Nature,2015,521(7553):436-444.
[9] 路志英,任一墨,孫曉磊,等. 基于深度學(xué)習(xí)的短時(shí)強(qiáng)降水天氣識(shí)別[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2018,51(2):111-119.
Lu Zhiying,Ren Yimo,Sun Xiaolei,et al. Recognition of short-time heavy rainfall based on deep learning[J]. Journal of Tianjin University:Science and Technology,2018,51(2):111-119(in Chinese).
[10] 侯永宏,葉秀峰,張?亮,等. 基于深度學(xué)習(xí)的無(wú)人機(jī)人機(jī)交互系統(tǒng)[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2017,50(9):967-974.
Hou Yonghong,Ye Xiufeng,Zhang Liang,et al. A UAV human robot interaction method based on deep learning[J]. Journal of Tianjin University:Science and Technology,2017,50(9):967-974(in Chinese).
[11] Nitta N,Takeaki S,Akihiro I,et al. Intelligent image-activated cell sorting[J]. Cell,2018,175(1):266-276.
[12] Dainty G R,Ayers J C. Iterative blind deconvolution method and its applications[J]. Optics Letters,1988,13(7):547-549.
[13] Dhungel N,Carneiro G,Bradley A P. A deep learning approach for the analysis of masses in mammograms with minimal user intervention[J]. Medical Image Analysis,2017,37:114-128.
CNN-Based Feature Mapping and Activity State Evaluation Models of BM-MSCs
Cao Yuzhen1,Zhang Qiankun1,Sun Jinglai1,Zhang Lixin1,Yu Hui1,Pang Tianxiang2
(1. Tianjin Key Laboratory of Biomedical Testing Technology and Instruments,Tianjin University,Tianjin 300072,China;2. State Key Laboratory of Experimental Hematology,Institute of Hematology and Blood Diseases Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Tianjin 300020,China)
During sorting and enrichment of stem cell subgroups(e.g.,mesenchymal stem cells)with therapeutic effects,it is difficult to achieve quality control.A principal component analysis-ridge regression model with deep neural network as feature map is designed to achieve the quantitative evaluation of bone marrow mesenchymal stem cells(BM-MSCs).The maximum cross sections based on the long axis are calculated as model inputs through the three-dimensional reconstruction of cells.A four-layer neural network is trained to enable the binary classification of normal and AML BM-MSCs,and the fully connected layer output is extracted as a feature map.In principal component analysis,the first three principal component vectors after dimensionality reduction are used as the independent variable,whereas the sample score is used as the dependent variable.The ridge regression model is used to fit and correlate the characteristics with the cell activity score to achieve the quantitative evaluation of BM-MSC activity,which provides a basis for the subsequent sorting of high-quality active cells.First,data are augmented from 176 cell samples as input of the neural network using an eight fold cross-validation.Then,68 cell samples labeled with expert scores are imported into the trained neural network and the fully connected layer output is extracted as a feature map.The principal component analysis-ridge regression model is used to achieve quantitative evaluation.The model results show that the accuracy of neural network classification is 98.75%,its sensitivity is 97.84%,and its specificity is 99.43%.For quantitative evaluation,the2value of the model sample is 0.8736,and the fitting effect is good.Thus,the quantitative evaluation of BM-MSCs,which can provide the basis for cell sorting and enrichment,can be achieved.
mesenchymal stem cells(MSCs);deep learning;feature map;principal component analysis(PCA);quantitative evaluation
TK448.21
A
0493-2137(2020)06-0626-07
10.11784/tdxbz201905105
2019-05-28;
2019-06-21.
曹玉珍(1963—??),女,博士,教授,yzcao@tju.edu.cn.
余?輝,yuhui@tju.edu.cn.
天津科技重大專項(xiàng)與工程資助項(xiàng)目(18ZXZNSY00240,16ZXCXSF00040,X-2018-31).
Supported by Tianjin Science and Technology Major Special Project(No. 18ZXZNSY00240,No. 16ZXCXSF00040,No. X-2018-31).
(責(zé)任編輯:孫立華)