金濤 蘇見燊 張明揚(yáng)
摘 要:基于模塊化多電平換流器(modular multilevel converter, MMC)的高壓直流輸電(highvoltage directcurrent, HVDC)將是未來直流電網(wǎng)重要發(fā)展方向之一。相比電纜輸電,長(zhǎng)距離架空線輸電成本低,而直流故障隔離是在架空線路上應(yīng)用柔性直流輸電的棘手問題。首先,研究混合高壓直流斷路器的直流故障處理方案,提出基于直流電網(wǎng)的3種保護(hù)方案,包括線路差動(dòng)保護(hù),母線差動(dòng)保護(hù)和后備保護(hù);其次,結(jié)合實(shí)際工程中的現(xiàn)有技術(shù),論述選取參數(shù)的原則,采用架空線輸電方式搭建了具有混合直流斷路器的多端直流電網(wǎng)仿真平臺(tái)并進(jìn)一步驗(yàn)證了所提出方案的可行性和有效性。最后,通過仿真分析表明,混合高壓直流斷路器能夠在數(shù)ms 之內(nèi)斷開故障電流,所提出的3種保護(hù)方案能夠自動(dòng)、快速、有選擇性地隔離故障,且無故障部分正常運(yùn)行。
關(guān)鍵詞:混合高壓直流斷路器;直流電網(wǎng);保護(hù);模塊化多電平換流器
DOI:10.15938/j.emc.2020.03.013
中圖分類號(hào):TM 72文獻(xiàn)標(biāo)志碼:A文章編號(hào):1007-449X(2020)03-0106-08
Abstract:Highvoltage directcurrent (HVDC) based on modular multilevel converter (MMC) is important in the development of DC grid. Compared with cable transmission, longdistance overhead line transmission costs are low, and DC fault isolation is an important issue of applying HVDC power transmission over overhead lines. This paper studied the DC fault handling scheme of hybrid HVDC breakers and proposed three protection schemes based on DC grid, including DC line protection, DC bus protection and backup protection. Based on the existing technologies in actual projects, the principle of selecting parameters was discussed. A multiterminal DC power grid simulation platform with a hybrid DC circuit breaker was established by using overhead line transmission, and the feasibility and effectiveness of the proposed scheme were further verified. The results show that the hybrid highvoltage circuit breaker can break the fault current within several milliseconds. The three proposed protection schemes realize automatic, rapid and selective faults isolation, ensuring that other nonfaulty components return to normal operation.
Keywords:hybrid HVDC breakers; DC grid; protection; modular multilevel converter
0 引 言
基于MMCHVDC輸電具有顯著優(yōu)勢(shì),MMC的子模塊可分為半橋型、全橋型、雙箝位型等,能夠比較容易地實(shí)現(xiàn)高電壓或高功率輸送。與兩電平VSC相比,MMC拓?fù)浣Y(jié)構(gòu)具有眾多優(yōu)點(diǎn),如低諧波,低損耗,運(yùn)行效率高,模塊化程度高,輸出特性好,可拓展性強(qiáng)等,是新一代電壓源換流器中的佼佼者[1-5]。
由于半橋型子模塊器件少且成本低,目前大部分投運(yùn)的工程采用半橋型子模塊。而不具備直流故障自清除能力的半橋型子模塊,只能采用電纜進(jìn)行輸電,從而來降低線路故障率。比如,廈門示范工程、南澳工程和上海南匯工程等。然而在直流電網(wǎng)中,電纜輸電造價(jià)高,經(jīng)濟(jì)效益差,阻礙了直流電網(wǎng)的發(fā)展。相比電纜輸電,長(zhǎng)距離架空線輸電成本低[6-8]。所以,采用架空線路進(jìn)行長(zhǎng)輸電并具備故障切斷清除能力的直流電網(wǎng)技術(shù),顯得特別重要。
目前,國(guó)家電網(wǎng)正在建設(shè)的張北柔性直流電網(wǎng)采用架空線傳輸功率,發(fā)生線路故障的概率大。與交流電網(wǎng)相比,直流電網(wǎng)阻尼很小,發(fā)生線路故障時(shí),故障電流可在數(shù)ms內(nèi)激增到幾十kA[9-11]。直流故障迅速切斷是當(dāng)前研究利用架空線路進(jìn)傳輸?shù)娜嵝灾绷鬏旊娯酱鉀Q的困難。目前對(duì)直流故障隔離方法大致可分為3種思路[12-14]:1) 利用交流斷路器進(jìn)行直流故障隔離是目前柔性直流輸電工程所普遍采用的直流故障保護(hù)方案。通過交流斷路器隔離故障存在響應(yīng)速度慢且可靠性低等問題。2) 基于全橋子模塊或箝位雙子模塊的MMC具備直流故障穿越能力,但所需功率半導(dǎo)體器件多且損耗高。3) 利用高壓直流斷路器實(shí)現(xiàn)故障隔離的方案是最直接有效的手段,上述3種方案中,利用高壓直流斷路器隔離故障是國(guó)際大電網(wǎng)會(huì)議推薦的直流電網(wǎng)保護(hù)方案[15-17]。
文獻(xiàn)[18]初步探究了柔性電網(wǎng)線路及母線保護(hù)方案,但未涉及后備保護(hù)相關(guān)研究。正在建設(shè)中的張北柔性直流電網(wǎng),故障處理方案是選擇采用半橋型子模塊結(jié)構(gòu)和混合高壓直流斷路器方案[19-20]。
本文首先研究混合高壓直流斷路器的直流故障處理方案,提出直流電網(wǎng)保護(hù)方案,即3種保護(hù)策略,結(jié)合3種保護(hù)方案進(jìn)行動(dòng)作參數(shù)選取原則分析,在仿真平臺(tái)上,驗(yàn)證所提出基于混合式斷路器的直流電網(wǎng)保護(hù)方案的可行性和有效性。
1 直流電網(wǎng)保護(hù)方案
與交流電網(wǎng)相比,直流電網(wǎng)阻尼更小,故障電流di/dt更大。如圖1所示,當(dāng)發(fā)生雙極短路時(shí),故障電流主要來源于:一是大量不具備直流故障清除能力的半橋型子模塊電容迅速放電產(chǎn)生的直流分量;二是交流系統(tǒng)注入的三相交流分量[6]。
3 結(jié) 論
1)混合高壓直流斷路器將是未來直流電網(wǎng)中重要設(shè)備之一?;旌鲜綌嗦菲髂軌蛟? ms之內(nèi)斷開故障電流,而不中斷到其他線路直流功率輸送。
2)本文提出直流故障隔離的3種保護(hù)方案,即3種保護(hù)策略:線路差動(dòng)保護(hù)、母線差動(dòng)保護(hù)和后備保護(hù),能夠及時(shí)、準(zhǔn)確地檢測(cè)直流輸電系統(tǒng)故障類型,自動(dòng)、快速、有選擇性地將故障從直流電網(wǎng)中切除,保證其他無故障部分迅速恢復(fù)正常運(yùn)行,系統(tǒng)處于動(dòng)態(tài)平衡。
3)準(zhǔn)確快速的直流電網(wǎng)仿真技術(shù)是發(fā)展直流電網(wǎng)重要技術(shù)之一,而本文所搭建的直流電網(wǎng)存在問題是仿真速度需要進(jìn)一步提高,研究簡(jiǎn)化仿真模型將是下一階段的工作。
參 考 文 獻(xiàn):
[1] 溫家良,葛俊,潘艷,等. 直流電網(wǎng)用電力電子器件發(fā)展與展望[J].電網(wǎng)技術(shù),2016,40(3):663.
WEN Jialiang, GE Jun, PAN Yan, et al. Development and expectation of power electronic devices for DC grid[J]. Power System Technology, 2016, 40(3): 663.
[2] 姚良忠,吳婧,王志冰,等. 未來高壓直流電網(wǎng)發(fā)展形態(tài)分析[J].中國(guó)電機(jī)工程學(xué)報(bào),2014,34(34): 6007.
YAO Liangzhong, WU Jing, WANG Zhibing, et al. Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE,2014,34(34): 6007.
[3] 吳亞楠,呂錚,賀之淵,等. 基于架空線的直流電網(wǎng)保護(hù)方案研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2016, 36(14): 3726.
WU Yanan, LU Zheng, HE Zhiyuan, et al. Study on the protection strategies of HVDC grid for overhead line application[J].Proceedings of the CSEE,2016, 36(14):3726.
[4] 賀之淵,劉棟,龐輝. 柔性直流與直流電網(wǎng)仿真技術(shù)研究[J].電網(wǎng)技術(shù),2018,42(1):1.
HE Zhiyuan, LIU Dong, PANG Hui. Research of simulation technologies of VSCHVDC and DC grids[J]. Power System Technology,2018,42(1):1.
[5] 吳杰, 王志新. 混合直流輸電系統(tǒng)功率同步控制研究[J].電機(jī)與控制學(xué)報(bào), 2017, 21(7):1.
WU Jie, WANG Zhixin. Power synchronization control of hybrid HVDC[J]. Electric Machines and Control,2017, 21(7):1.
[6] 郭曉茜,崔翔,齊磊. 架空線雙極MMCHVDC系統(tǒng)直流短路故障分析和保護(hù)[J].中國(guó)電機(jī)工程學(xué)報(bào),2017,37(8):2177.
GUO Xiaoqian, CUI Xiang, QI Lei. DC shortcircuit fault analysis and protection for the overhead line bipolar MMCHVDC system[J]. Proceedings of the CSEE,2017, 37(8):2177.
[7] 劉高任,許烽,徐政,等. 適用于直流電網(wǎng)的組合式高壓直流斷路器[J].電網(wǎng)技術(shù),2016, 40(1): 70.
LIU Gaoren, XU Feng, Xu Zheng, et al. An assembled HVDC breaker for HVDC grid[J]. Power System Technology, 2016,40(1):70.
[8] MAJUMDER R, AUDDY S, BERGGREN B, et al. An alternative method to build DC switchyard with hybrid DC breaker for DC grid[J]. IEEE Transactions on Power Delivery,2016,32(2):713.
[9] REN Y, YANG X, ZHANG F,et al. A compact gate control and voltagebalancing circuit for series connected SiC MOSFETs and its application in a DC breaker[J]. IEEE Transactions on Industrial Electronics,2017, 64(10):8299.
[10] 孫栩,曹士冬,卜廣全,等. 架空線柔性直流電網(wǎng)構(gòu)建方案[J].電網(wǎng)技術(shù),2016,40(3):678.
SUN Xu, CAO Shidong, BU Guangquan, et al. Construction scheme of overhead line flexible HVDC grid[J]. Power System Technology,2016, 40(3): 678.
[11] HAJIAN M, ZHANG L, JOVCIC D.DC transmission grid with lowspeed protection using mechanical DC circuit breakers[J]. IEEE Transactions on Power Delivery, 2015,30(3):1383.
[12] 江斌開, 王志新. 基于VSCMTDC的平均值建模與控制策略[J]. 電機(jī)與控制學(xué)報(bào), 2018(3):1.
JIANG Binkai, WANG Zhixin. Averagevalue modeling and control strategy of VSCMTDC[J]. Electric Machines and Control, 2018(3):1.
[13] 魏曉光,高沖,羅湘,等. 柔性直流輸電網(wǎng)用新型高壓直流斷路器設(shè)計(jì)方案[J].電力系統(tǒng)自動(dòng)化,2013, 37(15): 95.
WEI Xiaoguang, GAO Chong, LUO Xiang, et al. A novel design of highvoltage DC circuit breaker in HVDC flexible transmission grid[J]. Automation of Electric Power Systems, 2013, 37(15): 95.
[14] DESCLOUX J, RAISON B, CURIS J B, Protection strategy for undersea MTDC grids[C]//IEEE Power Tech, Grenoble, 2013: 1-6.
[15] MOKHBERDORAN A, GOMISBELLMUNT O, SILVA N, et al. Current flow controlling hybrid DC circuit breaker[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1323.
[16] LIN W, JOVCIC D, NGUEFEU S, et al. Modelling of highpower hybrid DC circuit breaker for gridlevel studies[J]. IET Power Electronics, 2016, 9(2): 237.
[17] 武健, 王蕊, 張彩紅,等. 并聯(lián)型MMCMTDC系統(tǒng)直流故障特性分析及保護(hù)策略[J].電機(jī)與控制學(xué)報(bào), 2016, 20(9):103.
WU Jian, WANG Rui, ZHANG Caihong, et al. DC fault analysis and protection design in shunt modular multilevel based MTDC system[J]. Electric Machines and Control, 2016, 20(9):103.
[18] 彭發(fā)喜, 汪震, 鄧銀秋,等. 混合式直流斷路器在柔性直流電網(wǎng)中應(yīng)用初探[J].電網(wǎng)技術(shù), 2017, 41(7):2092.
PENG Faxi, WANG Zhen, DENG Yinqiu, et al. Potentials of Hybrid HVDC Circuit Breakers′ Application to MMCHVDC Grid[J]. Power System Technology, 2017, 41(7): 2092.
[19] JAMSHIDIFAR A, JOVCIC D. Design. Modeling and control of hybrid DC circuit breaker based on fast thyristors[J]. IEEE Transactions on Power Delivery, 2017, 33(2): 919.
[20] 丁驍,湯廣福,韓民曉,等. 混合式高壓直流斷路器型式試驗(yàn)及其等效性評(píng)價(jià)[J]. 電網(wǎng)技術(shù),2018, 42(1): 72.
DING Xiao, TANG Guangfu, HAN Minxiao, et al. Design and equivalence evaluation of type test for hybrid DC circuit breaker[J]. Power System Technology, 2018, 42(1): 72.
(編輯:賈志超)