陳再發(fā) 劉彥呈 盧亨宇
摘 要:針對(duì)船舶永磁同步推進(jìn)電機(jī)的無(wú)位置傳感器控制需對(duì)電機(jī)參數(shù)進(jìn)行修正以實(shí)現(xiàn)精確控制的問(wèn)題,將模型參考自適應(yīng)法用于永磁同步電機(jī)參數(shù)的在線辨識(shí),運(yùn)用龍格-庫(kù)塔方法建立滿秩的可調(diào)模型,基于Popov的超穩(wěn)定性定理推導(dǎo)了自適應(yīng)控制律,通過(guò)逐步識(shí)別完成了電阻以及電感參數(shù)的辨識(shí),識(shí)別出的參數(shù)通過(guò)低通濾波器進(jìn)行高頻諧波過(guò)濾獲取精準(zhǔn)電機(jī)參數(shù),將濾波后的電機(jī)實(shí)際參數(shù)用于算法反饋實(shí)現(xiàn)電機(jī)模型動(dòng)態(tài)更新。軟件仿真和實(shí)物平臺(tái)均驗(yàn)證了MRAS參數(shù)在線辨識(shí)算法可以準(zhǔn)確、有效地辨識(shí)出電機(jī)實(shí)際定子電阻和電感,具有參數(shù)辨識(shí)的船舶永磁推進(jìn)電機(jī)無(wú)位置傳感器矢量控制方案可行有效。
關(guān)鍵詞:船舶永磁同步電機(jī);模型參考自適應(yīng);參數(shù)辨識(shí);無(wú)位置傳感器
DOI:10.15938/j.emc.2020.03.007
中圖分類號(hào):TM 341文獻(xiàn)標(biāo)志碼:A文章編號(hào):1007-449X(2020)03-0053-09
Abstract:To achieve accurate control,it needs to modify motor parameters of the sensorless control of the permanent magnet synchronous propulsion motor of ship. In this paper, the model reference adaptive method (MRAS) is used for the online identification of the parameters of the permanent magnet synchronous motor. The RungeKutta method was used to establish a fullrank adjustable model, and the adaptive law was derived according to Popov′s superstability theorem. The identification of resistance and inductance parameters was completed by step identification, the identified parameters were obtained by highfrequency harmonic filtering through a lowpass filter to obtain precise motor parameters, and the actual parameters of the filtered motor were used for algorithm feedback to dynamically update the motor model. Both the software simulation and the physical platform verified that the MRAS parameter online identification algorithm can accurately and effectively identify the actual stator resistance and inductance of the motor. The sensorless control scheme for marine permanent magnet propulsion motors with parameter identification is feasible and effective.
Keywords:marine permanent magnet synchronous motor; MRAS; parameter identification; sensorless
0 引 言
船舶電力推進(jìn)以其較強(qiáng)的節(jié)能減排、較高的操作性能等優(yōu)點(diǎn),代表著未來(lái)船舶動(dòng)力技術(shù)的發(fā)展方向,其中的永磁同步電動(dòng)機(jī)是電力推進(jìn)系統(tǒng)最為核心的部件。海事職能部門對(duì)船舶永磁同步推進(jìn)電動(dòng)機(jī)(permanent magnet synchronous motor,PMSM)電驅(qū)動(dòng)系統(tǒng)制定了極其嚴(yán)格的規(guī)范與技術(shù)標(biāo)準(zhǔn),其中位置傳感器的可靠性是重要指標(biāo)之一,而無(wú)位置傳感器控制是提高這一指標(biāo)切實(shí)可行的技術(shù)方案[1-3]。在無(wú)位置傳感器控制中,為了實(shí)現(xiàn)其高動(dòng)態(tài)響應(yīng)和高精確度的控制目標(biāo),如何在線獲取精確的電機(jī)參數(shù)成為關(guān)鍵,然而由于PMSM具有磁飽和和磁路交叉耦合的特點(diǎn),不同工況下電機(jī)參數(shù)會(huì)產(chǎn)生較大變化從而影響控制精確度,因此需要在工程實(shí)際中對(duì)參數(shù)進(jìn)行實(shí)時(shí)辨識(shí)[4-5]。
最小二乘算法、模型逼近法、自抗擾算法以及智能遺傳算法等都是電機(jī)工程中較為廣泛的參數(shù)辨識(shí)方法。文獻(xiàn)[6]中,作者提出了使用最小二乘算法實(shí)現(xiàn)對(duì)永磁電機(jī)參數(shù)的辨識(shí),但在參數(shù)辨識(shí)過(guò)程中需要施加直流電壓激勵(lì)信號(hào)以及功率壓降導(dǎo)致的電壓差需要補(bǔ)償。文獻(xiàn)[7]使用卡爾曼濾波算法動(dòng)態(tài)獲取電動(dòng)機(jī)參數(shù),并基于參數(shù)辨識(shí)設(shè)計(jì)了一種自適應(yīng)控制器,控制器的成功應(yīng)用表明參數(shù)估計(jì)的精確度對(duì)于控制系統(tǒng)性能的重要性。文獻(xiàn)[8]使用擴(kuò)展的卡爾曼濾波算法在線識(shí)別d、q軸的電感,然而擴(kuò)展的卡爾曼濾波是一種時(shí)域遞歸算法,只能識(shí)別時(shí)域中的電機(jī)參數(shù)。針對(duì)上述問(wèn)題,文獻(xiàn)[9]將卡爾曼濾波法與小波變化相結(jié)合,提出了一種能夠在時(shí)域和頻域中進(jìn)行多尺度辨識(shí)電機(jī)參數(shù)的復(fù)合算法。
基于電機(jī)精準(zhǔn)模型的永磁電機(jī)無(wú)位置傳感器控制對(duì)電機(jī)參數(shù)的魯棒性較差,芝加哥大學(xué)NahidMobarakeh B團(tuán)隊(duì)采用MRAS算法在線識(shí)別電機(jī)參數(shù)[10],卻忽略了永磁體磁鏈變化對(duì)辨識(shí)精確度的影響。文獻(xiàn)[11]提出了利用人工智能進(jìn)化算法實(shí)現(xiàn)在線參數(shù)辨識(shí),算法參數(shù)識(shí)別精確度較好,然而,該算法對(duì)控制器的計(jì)算能力提出了巨大的挑戰(zhàn),甚至影響整個(gè)系統(tǒng)的穩(wěn)定性。文獻(xiàn)[12]給出了基于粒子群算法的多參數(shù)在線辨識(shí)方案,工程應(yīng)用表明,該參數(shù)辨識(shí)方案可以解決多參數(shù)在線辨識(shí)模型的不足問(wèn)題,然而算法容易陷入局部最優(yōu)困境。文獻(xiàn)[13]采用自抗擾技術(shù)實(shí)現(xiàn)了永磁電機(jī)參數(shù)的解耦,完成了電機(jī)參數(shù)的在線辨識(shí),然而該方法算法過(guò)于復(fù)雜并不適用于船舶電力推進(jìn)系統(tǒng)。
本文在總結(jié)上述電機(jī)參數(shù)辨識(shí)算法優(yōu)缺點(diǎn)基礎(chǔ)上,以船舶電力推進(jìn)系統(tǒng)常見的表貼式永磁同步電機(jī)(surface mount permanent magnet motor,SPMSM)為參數(shù)辨識(shí)對(duì)象,基于MRAS對(duì)電機(jī)定子電阻以及d、q軸電感進(jìn)行在線辨識(shí),首先是分析了電動(dòng)機(jī)運(yùn)行過(guò)程中的參數(shù)變化對(duì)無(wú)位置傳感器算法精準(zhǔn)度的影響,其次是選擇RungeKutta方法用于建立電機(jī)多參數(shù)識(shí)別全秩可調(diào)模型,并運(yùn)用Popov超穩(wěn)定理論設(shè)計(jì)自適應(yīng)控制律,通過(guò)分步辨識(shí)法實(shí)現(xiàn)對(duì)定子電阻以及交、直軸電感的在線辨識(shí),將辨識(shí)結(jié)果用于對(duì)電機(jī)模型的更新,補(bǔ)償由于參數(shù)變化對(duì)轉(zhuǎn)速及轉(zhuǎn)子位置估計(jì)的影響。
5 結(jié) 論
本文在建立永磁同步推進(jìn)電機(jī)數(shù)學(xué)模型的基礎(chǔ)上介紹了無(wú)位置傳感器控制的基本原理,闡述了電機(jī)參數(shù)變化對(duì)電機(jī)模型以及由模型變化對(duì)無(wú)位置傳感器控制的巨大影響。其次是引入了MARS理論,建立了自適應(yīng)參數(shù)在線辨識(shí)模型,基于Popov超穩(wěn)定理論設(shè)計(jì)了矢量控制系統(tǒng)的自適應(yīng)控制率,對(duì)基于MARS參數(shù)在線辨識(shí)方案進(jìn)行了仿真驗(yàn)證,證實(shí)了算法的有效性。最后將參數(shù)辨識(shí)方案用于無(wú)位置傳感器的雙閉環(huán)矢量控制平臺(tái)進(jìn)行實(shí)物驗(yàn)證,將無(wú)位置傳感器估算的轉(zhuǎn)子位置與轉(zhuǎn)速與編碼器實(shí)測(cè)的轉(zhuǎn)子位置與轉(zhuǎn)速進(jìn)行實(shí)際對(duì)比,動(dòng)、靜態(tài)實(shí)驗(yàn)都驗(yàn)證了算法的有效性和穩(wěn)定性,可滿足復(fù)雜環(huán)境下船舶電力推進(jìn)系統(tǒng)無(wú)位置傳感器控制需求。
實(shí)驗(yàn)中也發(fā)現(xiàn),參數(shù)在線辨識(shí)結(jié)果出現(xiàn)了一定的偏差和波動(dòng),經(jīng)過(guò)分析主要是由于電流采樣存在增益誤差和偏置誤差導(dǎo)致。誤差的來(lái)源主要為電流互感器的非線性以及采樣調(diào)理電路的熱漂移造成。另外,程序中參與計(jì)算的電壓值是通過(guò)占空比計(jì)算而來(lái),這就引入了由于逆變器帶來(lái)的誤差。將設(shè)計(jì)相關(guān)算法對(duì)增益及偏置誤差進(jìn)行補(bǔ)償,進(jìn)一步提高參數(shù)在線辨識(shí)準(zhǔn)確度。
參 考 文 獻(xiàn):
[1] 李輝,劉行中,謝翔杰.風(fēng)電變槳電機(jī)參數(shù)對(duì)控制系統(tǒng)影響分析及改進(jìn)辨識(shí)方法[J].電機(jī)與控制學(xué)報(bào),2019,23(7):9.
LI Hui, LIU Xinzhong, XIE Xiangjie. Influence ofparameters on control system and improved identification method of pitch motor in wind turbine generator system [J]. Electric Machines and Control,2019,23(7):9.
[2] 吳瑩,黃顯林,高曉智.一種文化魚群算法及其在電機(jī)參數(shù)辨識(shí)中的應(yīng)用[J].電機(jī)與控制學(xué)報(bào),2012,16(5):102.
WU Ying,HUANG Xianglin, GAO Xiaozhi. A cultural artificial fishswarm optimization algorithm andapplication in the parameters identification of rotor system [J]. Electric Machines and Control, 2012, 16(5):102.
[3] 劉彥呈, 劉厶源,郭昊昊. UUV推進(jìn)電機(jī)在線參數(shù)辨識(shí)自適應(yīng)控制方法研究[J].電機(jī)與控制學(xué)報(bào),2016, 20(4):34.
LIU Yancheng, LIU Siyuan, GUO Haohao. Research on online parameter identification adaptive control method for UUV propulsion motor[J]. Electiric Machines and Control, 2016, 20(4):34.
[4] 王子輝,葉云岳. 反電勢(shì)算法的永磁同步電機(jī)無(wú)位置傳感器自啟動(dòng)過(guò)程[J].電機(jī)與控制學(xué)報(bào), 2011,15(10):36.
WANG Zihui, YE Yunyue. Sensorless selfstarting process of permanent magnet synchronous motor based on back EMF [J].Electric Machines and Control, 2011,15(10):36.
[5] 王莉娜, 楊宗軍.SIMULINK中PMSM模型的改進(jìn)及在參數(shù)辨識(shí)中的應(yīng)用[J]. 電機(jī)與控制學(xué)報(bào), 2012, 16(7):77.
WANG Lina, YANG Zongjun.Improvement of PMSM model in SIMULINK and its application in parameter identification [J]. Electric Machines and Control, 2012, 16(7):77.
[6] 王高林,楊榮峰.內(nèi)置式永磁同步電機(jī)轉(zhuǎn)子初始位置估計(jì)方法[J].電機(jī)與控制學(xué)報(bào), 2010,10(6):56.
WANG Gaolin, YANG Rongfeng. Initial rotor position estimation method for interior permanent magnet synchronous motor [J]. Electric Machines and Control, 2010,10(6):56.
[7] 胡慶波, 孫春媛. 永磁同步電機(jī)全速范圍無(wú)速度傳感器控制[J]. 電機(jī)與控制學(xué)報(bào), 2016, 20(9):73.
HU Qingbo, SUN Chunyuan. Speed sensorless control of permanent magnet synchronous motor in full speed range[J].Electric Machines and Control, 2016, 20(9):73.
[8] PIIPPO A, HINKKANEN M,LUOMI J.Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2008, 55(2):570.
[9] 林國(guó)漢, 章兢, 劉朝華.改進(jìn)綜合學(xué)習(xí)粒子群算法的 PMSM參數(shù)辨識(shí)[J]. 電機(jī)與控制學(xué)報(bào), 2015, 19(1):51.
LIN Guohan, ZHANG Jing, LIU Chaohua. Parameter identification of PMSM using improved comprehensive learning particle swarm optimization [J]. Electric Machines and Control, 2015, 19(1):51.
[10] 陳振鋒, 鐘彥儒, 李潔. 嵌入式永磁同步電機(jī)自適應(yīng)在線參數(shù)辨識(shí)[J].電機(jī)與控制學(xué)報(bào), 2010, 14(4):9.
CHEN Zhenfeng, ZHONG Yanru, LI Jie. Adaptive online parameter identification of embedded PMSM[J]. Electric Machines and Control, 2010, 14(4):9.
[11] 荀倩, 王培良, 李祖新. 基于遞推最小二乘法的永磁伺服系統(tǒng)參數(shù)辨識(shí)[J]. 電工技術(shù)學(xué)報(bào), 2016,31(17):151.
XUN Qian, WANG Peiliang, LI Zuxin.Parameter identification of permanent magnet servo system based on recursive least square method [J]. Transactions of China Electrotechnical Society,2016,31(17):151.
[12] 何志明, 廖勇, 向大為. 定子磁鏈觀測(cè)器低通濾波器的改進(jìn)[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2008, 28(18):61.
HE Zhiming, LIAO Yong, XIANG Dawei. Improvement of low pass filter for stator flux observer [J]. Proceedings of the CSEE, 2008, 28(18):61.
[13] 盧亨宇, 劉彥呈,郭昊昊.基于零漂修正和偏置補(bǔ)償?shù)亩ㄗ哟沛溣^測(cè)算法[J].微特電機(jī), 2017, 45(12):49.
LU Hengyu, LIU Yancheng,GUO Haohao. Stator flux estimation algorithm based on drift correction and offset compensation[J]. Micro special motor, 2017, 45(12):49.
[14] ZHEN Yujun, LING Haifeng, QIU Guan. Adaptive parameters for a modified comprehensive learning particle swarm optimizer [J].Mathematical Problems in Engineering,2012: 2012.
[15] INOUE Y,YAMADA K,MORIMOTO S,et al. Effectiveness of voltage error compensation and parameter identification for modelbased sensorless control of IPMSM[J]. IEEE Transactions on Industry Applications, 2009, 45(1):213.
[16] MOHAMED A R I. Design and implementation of a robust currentcontrol scheme for a PMSM vector drive with a simple adaptive disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4):1981.
[17] 李彪, 李黎川. 新型磁鏈觀測(cè)算法及其在永磁同步電機(jī)無(wú)位置傳感器控制中的應(yīng)用[J].西安交通大學(xué)學(xué)報(bào),2015, 49(11):102.
LI Biao, LI Lichuan. New flux observer algorithm and its application in sensorless control of permanent magnet synchronous motor [J]. Journal of Xi'an Jiaotong University, 2015, 49(11):102.
[18] LIU Zhaohua,ZHANG Jing,ZHOU Shaowu,et al.Coevolutionary particle swarm optimization using AIS and its application in multiparameter estimation of PMSM [J]. IEEE Transactions on Cybernetics, 2013,43(6):21.
(編輯:賈志超)